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N the following pages an attempt is made to give an account of physical
optics without having recourse to any hypothesis respecting the nature

of the influence that constitutes light or the character of the medium in
which it is propagated. From a few simple experimental facts it is shown
that a stream of light may be represented by a periodically varying vector
transverse to the direction of the beam, and on this result, with an appeal
where necessary to experimental facts, the treatment of the subject is based.

An abstract wave-theory cannot of course satisfy our requirements or be
regarded as the last word of science on physical optics; but as it is the
touchstone on which optical theories are tried, a thorough knowledge of its
teachings is essential as a preparation for penetrating below the surface of
ascertained facts into the domain of hypothesis. No one optical theory can
at present be said to hold the field so completely as to render a consideration
of others unnecessary, and so long as that is the case, much that is of value
in preparing the ground for a solution of the problem may be learned from
the various attempts that have been made to apply methods of ethereal
physics to the explanation of the phenomena of light. The introduction
of the salient points of these endeavours would have had the effect of
veiling by wealth of material the main purpose of the book.

As the object kept in view has been to give an account of the analytical
development of the wave-theory that might serve as an introduction to the
study of higher optics, experimental methods and results have been intro-
duced only with a sparing hand. Ample information on the descriptive side
of the subject is to be found in books readily accessible to students, and it
is for those that have already made an acquaintance with physical optics
that the present work is intended. A detailed knowledge of instruments
and of experimental methods can only be acquired in a physical laboratory.
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CHAPTER 1.

GEOMETRICAL PROPOSITIONS OF THE WAVE THEORY.

1. THE science of Physical Optics may be regarded as comprising two
fields of enquiry; the one includes the study of the physical properties of a
stream of light, the other comprehends the investigation of the mechanism
by means of which the stream is propagated. These two divisions may be
termed respectively the kinematics and the dynamics of the subject.

The fundamental property of light, that forms the basis of physical optics,
is its progressive movement. The fact that light travels through space with
a finite, though very great velocity, was first deduced by Romer in 1676 from
observations of the eclipses of Jupiter’s satellites; it afforded Bradleyin 1728
the explanation of astronomical aberration ; and it was directly demonstrated
by the experiments of Fizeau in 1849 and of Foucault in 1850. That it is
energy that is radiated from a luminous body and is perceived by the eye as
light is shown by the phenomena associated with a stream of light and by a
consideration of the nature of the sources from which it is emitted. Now
energy can be transmitted through space in either of two modes—Dby the:
transport of matter connected with the energy or by means of waves. Each
of these methods of the transference of energy has in turn been applied to
the explanation of the propagation of light.

The emission or corpuscular theory, adopted and expounded by Newton,
attributes the sensation of light to the impact on the retina of particles
ejected from a luminous body by the vibratory motions of its parts. The
particles, according to Newton, must be assumed to be capable of exciting
vibrations in an “ztherial medium” and it is to the waves thus set up that
he ascribes the mutual dependence of reflection and refraction : he further
suggests that the “bignesses” of the vibrations started by the corpuscles
depend upon the colour or refrangibility of the light. Thus Newton to a
certain extent adopted some of the features of the wave-theory, but it is to
be noted that according to him the waves are the effect and not the cause of
light. That these waves are not an essential adjunct of the emission theory
has been shown by Boscovich and also by Biot, to whom several brilliant
extensions of the theory are due. As thus developed, however, the emission
theory is lacking in simplicity, and overcrowded with hypotheses; moreover

W. 1



4 The Analytical Theory of Light [cH. 1

it contradicts the facts in an important particular, for it leads to the result
that the propagational speed of light is greater in a dense medium, such as
water, than it is in air, whereas direct experiments show that the reverse
is the case.

The wave-theory, based on the second mode of the transport of energy,
was first presented in an intelligible form by Huygens, but owes its recog-
nition to the work of Fresnel. This theory regards light as consisting in
vibrations of or in a medium, that is supposed to fill interstellar space and to
pervade all ponderable media. When however we enquire into the character
of the vibrations and the properties of the medium, we find that the wave-
theory has assumed different forms: according to the dynamical theories the
vibrations are assimilated to those of a medium, that has either intrinsic
rigidity, or a quasi-rigidity imparted to it gyrostatically; while the electro-
magnetic theory applies to the problem the equations of an electromagnetic
field and regards the ether as a dielectric medium subject to a rapidly
periodic electric displacement. These two forms of the wave-theory must be
regarded as distinct, until it is possible to form a conception of an ether that
is competent to coordinate optical and electrical phenomena: on the other
hand the explanation of the physical properties of a stream of light is
independent of the particular idea that we may formulate respecting the
nature of the vibrations in a train of luminous waves.

2. We owe to Huygens a very important principle, according to which
the direction of propagation of a luminous disturbance within or at the
confines of homogeneous media is made to depend upon the form and the
orientation of a certain surface characteristic of each medium. This surface,
which is called “the Wave-surface,” is the locus of the points to which a
disturbance emanating from a luminous point travels in unit time: in ordinary
isotropic media it is a sphere ; it is a double surface or a surface of two sheets
in media such that in general two disturbances can be propagated in any
direction with different speeds; and so on.

W

Fig. 1.

Huygens’ principle, which follows at once from that of the superposition
of small disturbances, lies at the very basis of the wave-theory and consists
in this:—that each of the points of a wave W may be regarded as a centre of
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disturbance, the wave at any subsequent time ¢ being the envelope of secondary
waves of form characteristic of the medium and proper to the wave W,
described round the points of W as centres with dimensions corresponding to
the time ¢.

It follows from this that the surfaces W and W’ are so related that to a
point P on the former there corresponds a point B on the latter, at which it
is touched by the secondary wave that emanates from P, and it is clear that
the time required for the’disturbance to traverse all lines joining corre-
sponding points is the same, being that in which the wave travels from W to
W’, and that this time is less than that in which it would traverse any other
line connecting the surfaces; for any other line such as PR’ cuts the secondary
wave described round P in some point @ and the time along PQ is equal to
that along PR.

Hence defining a ray as a line joining corresponding points on a wave in
its successive positions, we arrive at Fermat’s law that the time in which a
disturbance is propagated along the rays from a wave-surface to its position
at any subsequent time is the same and less than for any other path. This
is expressed by saying that a ray is the course of earliest arrival ¥,

Fresnel introduced an important simplification into the study of the
propagation of waves by recognising that, since a surface may be regarded
as the envelope of its tangent planes, we may substitute for a wave of any
form a system of plane waves coincident with the tangent planes of the wave-
front at the given time. If now we consider a plane wave that touches the
wave-front W at the point P, it follows from Huygens’ principle that after a
lapse of time ¢ this wave will coincide with the tangent plane to the new
position of the wave W’ at the point R, and it becomes necessary to distinguish
between the ray-velocity o with which the disturbance traverses the ray and
the wave-velocity o with which the corresponding plane wave advances in the
direction of its normal. These velocities are connected by the relation

o =g cos (VR)
where (VR) denotes the angle between the normal and the ray.

Another surface that is of fundamental importance in the study of waves
of light is the pedal of the wave-surface. The physical significance of this
surface arises from its being formed by the assemblage of points, that are
obtained by taking on every radius-vector through some point a distance
equal to the velocity of the plane wave that has its normal in this direction.
It may therefore be called “the surface of wave-quickness.”

* The ray is only a course'of earliest arrival ‘ for paths from P up to all points P’ such that
the successive wave-fronts between P and P’ belonging to a radiant disturbance maintained at P

do not develope any singularity along the course of the ray.” Larmor, &ther and Matter, pp. 82
and 276.

1—2
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3. Huygens' principle is of itself insufficient for the explanation of all
the questions that arise in connection with the propagation of light, and the
determination of its analytical expression, as well as the justification for its
employment, must be reserved for future consideration. In the mean time
however it will be convenient to consider it in its geometrical aspect for
the purpose of obtaining some results that will be of service to us in the
sequel.

When a wave meets the interface of two homogeneous media that have
different optical properties, the waves in each medium at any subsequent
time are by Huygens’ principle the envelopes of the secondary waves charac-
teristic of that medium, described in it round the points of the interface with
dimensions corresponding to the time that elapses between the passage of the
incident wave through these points and the instant under consideration.

In accordance with the simplification introduced by Fresnel, these reflected
and refracted waves may be regarded as the envelopes of those that result
from a system of plane waves, coincident with the tangent planes of the
incident wave, and each reflected or refracted at a plane surface, separating
two media identical with the given media and coincident with the tangent
plane to the actual interface at the point, in which it is met by the corre-
sponding ray of the incident wave. The problem is thus reduced to the
consideration of the reflection and refraction of a plane wave at a plane
surface, and in this case it is readily seen that the reflected and refracted
waves are themselves also plane.

Now if the incident wave cut the interface of the media at times 7' and
T+t in the lines 7 and ', the reflected and refracted waves at time 7+ ¢
must by Huygens’ principle pass through I’ and also touch the wave-surfaces

Fig. 2.

. 8, S, of the two media, described round any point of 7 with dimensions
corresponding to the time ¢, and the position of the line I’ is determined by
the fact that if the second medium be identical with the first, the wave at
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time T'+¢ would coincide with the tangent plane through I’ to that sheet
of 8; which corresponds to the incident wave.

Hence we have the following construction :—round any point O of the
line in which the incident wave cuts the interface at time 7, describe the
wave-surfaces S,, S, characteristic of the media with dimensions corresponding
to unit time: draw in the second medium a plane parallel to the incident
wave to touch the corresponding sheet of §,, and through the line in which
this plane cuts the interface draw in the first medium tangent planes to the
sheets of S, and in the second medium tangent planes to the sheets of S,.
These tangent planes represent respectively the reflected and the refracted
waves : the vectors from O to the points of contact of the tangent planes to
the wave-surfaces give the reflected and the refracted rays and the corre-
sponding ray-velocities: the perpendiculars from O on the tangent planes give
the wave-velocities.

It thus follows that the normals to the incident, the reflected and the
refracted waves at any point of the interface separating two media lie in a
plane perpendicular to this surface, and since the waves at any time intersect
the interface in the same straight line, the sine of the angle between either
wave and the surface bears to the corresponding wave-velocity a ratio that is
the same for each of the waves.

4. For this construction we may substitute another, that will be found
more convenient in theory and practice, though it is without the same
physical significance. This is due to Sir William Hamilton* and is obtained
from Huygens’ construction by reciprocating with respect to a sphere of unit
radius concentric with the wave-surfaces.

The polar reciprocal of any surface being the inverse of its first pedal, it
follows that the surface required for the new construction is the inverse of
the surface of wave-quickness: that is, the radius from the centre represents
the wave-slowness, or the reciprocal of the propagational speed of a plane
wave with its normal in that direction. On this account the surface is
termed the surface of wave-slowness: obviously in an ordinary isotropic
medium it is a sphere ; and a double surface or a surface of two sheets in a
doubly-refracting medium, having always a centre O round which it is
symmetrical.

As an example of Hamilton’s construction let us consider the case of the
passage of light through a parallel plate of a doubly refracting crystal
embedded in an ordinary isotropic substance, wherein the constant wave-
velocity is () ; supposing first of all that the crystal is more strongly refracting
than the surrounding medium, so that Q is greater than the wave-velocities
within the crystal.

* Trans. R. Irish Acad. xvi1. 141—144 (1833). Cf. also MacCullagh, Collected Works, p. 34.
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Now in Huygens’ construction the incident, reflected and refracted waves
at any time intersect the surface separating the media in the same straight
line: hence the corresponding points on the surfaces of wave-slowness of the
media lie on a line perpendicular to the interface, and the reflected and the
refracted wave-normals are determined by the following construction.

Round a point O of the line in which the incident wave cuts the interface
at time ¢, describe the surfaces of wave-slowness of the media with dimensions
corresponding to unit time : these will be a sphere for the outer medium,
the radius of which represents the reciprocal of  and a double surface for
the crystal entirely surrounding the sphere. Through the point £ in which
the incident wave-normal IO, produced into the plate, meets the sphere,
draw EA perpendicular to the interface and produce it both ways to meet
the sphere again in R and the surface of wave-slowness of the crystal in the
points W,, W, within the plate and the points W', W, without it.

W,

Fig. 3.

Then it is clear that OR is the normal of the wave given by ordinary
reflection at the first surface of the plate: OW,, OW, give the normals of the
refracted waves and the slowness of these waves; and since the surface of
wave-slowness is the polar reciprocal of the wave-surface, the perpendiculars
from O on the tangent planes to the surface at W, and W, give the corre-
sponding rays and the slowness of these rays. Each of the refracted waves
on arrival at the second surface of the plate gives an emergent wave with
its normal in the direction OF and two reflected waves with their normals
parallel to OW," and O W, respectively, while each of these reflected waves is
again divided at the first surface into an emergent wave and two reflected
waves with their normals parallel to OR, O W,, OW, respectively; and so on.
Thus the normal to every wave within the plate is parallel to one of the
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four lines OW,, OW,, OW,, OW, and the corresponding wave-velocities are
given by the reciprocals of the lengths of these lines. The directions of the
rays are determined by the perpendiculars from O on the tangent planes to
the surface of wave-slowness at the points W;, W,, Wy, W, and the ray-
velocities are given by the reciprocals of the lengths of these perpendiculars.
In order to determine the directions of the waves within the plate
analytically, let us assume that the first surface of the plate is the plane of
zy and the plane of incidence that of wz, the positive quadrant of xz being
that which contains the directions of propagation of the refracted waves.
Referred to these axes, let the equation of the surface of wave-slowness be

If < be the angle of incidence,  the angle between the positive direction of
the axis of z and the normal to any one of the waves within the plate, the
coordinates of a point on the surface of wave-slowness are

e=sin1/Q, y=0, z=sini/(Qtanr)............... (2).
Substituting these values in (1), we shall obtain an equation of the form
a,tantr + 4a, tan®r + 6a, tan®r +4da, tanr+a,=0......... (3),

in which the coefficients are functions of sin® 7 (since the surface is symmetrical
with respect to its centre) and of the quantities that define the interface of
the media and the plane of incidence in terms of axes fixed in the plate and
dependent upon its structure.

The roots of (3) give the tangents of the four angles that the normals to
the waves within the plate make with the positive direction of the axis of 27—
the normal to the first surface of the plate drawn inwards*.

5. In the case just considered, in which the surface of wave-slowness of
the first medium lies entirely within that of the second, the line A meets
each sheet of the latter surface in two points, that lie one on each side of
the interface, whatever the angle of incidence may be. If however the plate
be less refracting than the outer medium and consequently the surface of
wave-slowness for that medium lie without that of the plate, different cases
occur as the angle of incidence increases.

When this angle is small, everything is as in the former case, but as the
incidence increases, an angle is attained for which the line £A touches the
inner sheet of the surface of wave-slowness of the plate, and for angles of
incidence greater than this there is only one refracted wavet. This then is
the critical angle of total reflection for the quicker wave and the corre-
sponding ray is clearly in the plane of incidence and in the surface of the
plate.

* Liebisch, N. Jahrb. fiir Min. (1885) 1r. 181. Phys. Kryst. p. 290.
+ Anomalies however occur in the immediate neighbourhood of a singular point of the
surface, see §156.
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The same thing occurs with the outer sheet of the surface of wave-
slowness.

WO
A, \|A,

w3

2

If then a tangent cylinder be drawn to the surface of wave-slowness of
the second medium with its generating lines perpendicular to the interface
of the media this cylinder will cut the surface of wave-slowness of the first
medium in a curve, that will be the director curve of a cone having its
vertex at the centre of the surfaces, the generating lines of which are the
normals to the waves that are at the limit of total reflection at the interface
of the media. Since the equation (3) has equal roots when the angle of
incidence is the critical angle, the equation to the cone, obtained by equating
the discriminant of (3) to zero, is

Fig. 4.

(@oy — 4a,a; + 3a.2) — 27 (@@a04 + 20,0505 — Aoas* — @02 — a2 = 0...(4),

in which sin? and the quantities defining the plane of incidence are the
variables*.

6. It follows from the above investigations that we can find the directions
of the reflected and refracted waves, due to the incidence of a plane wave on
the interface of two homogeneous media, when the surfaces of wave-slowness,
or which comes to the same thing the surfaces of wave-quickness, of the media
are known. One of the chief methods of experimentally determining the
form of these surfaces for any substance is by measures made with prisms,
and we will now consider the case of a doubly refracting prism placed in a
less refracting isotropic medium, in which the constant propagational speed
of light is Q.

With any point O of the edge of the prism as centre, describe a sphere

* Liebisch, loc. cit.
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with radius 1/9, and the surface of wave-slowness of the prism: produce the
incident wave-normal to meet the sphere in N and through N draw a line
perpendicular to the face of entry of the prism 04, meeting the surface of
wave-slowness in the points M and P on the same side of OA4 as the point

p
M
N

A
Fig. 5.

N: finally through M and P draw perpendiculars to the face of emergence
OB meeting the sphere in the points N’ and N respectively on the same
side of OB as the points M and P. Then OM and OP are the refracted, ON’
and ON” the emergent wave-normals.
We will first suppose that the incident wave is parallel to the edge of the
" prism. Let
A be the angle of the prism, D the deviation of either of the waves,
7, ¢’ the angles of incidence and emergence,
r, v’ the angles that the refracted wave makes with the faces of the
prism, ;
v the angle that the refracted wave-normal OM makes with the plane
bisecting its angle.
Then if the figure represent the normal section of the prism, and 1/ be the
length of OM or the slowness in that direction, we obtain at once

B = QO k7R b dBodthnsopbacad g oo dadt (5),
RO (W @PBIRE 3. 5, toahs pode o st vuraat o (6),
s T o R | L T | SORe PR (7),
R S T 0 v o e e (8),
and V+A2=m/2+r, p—A2=m/2-1

or = g S s ER R laseluse o se s wloems e o e 9).
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From these equations we may eliminate » and 7/, angles that we are
unable to measure, and one of the angles D, ¢ or ¢’ and thus obtain ¥ and
in terms of A and two other measurable angles.

First we have sing t sin ¢’ = (Q/w)(sin7 £ sin ) .
sini+i,cosi_il Qsin’r-l-rlcosr_rl
or e 08 S s
2 2 o 2 A R B (10),
oob 2 0y SIS IE R G e
2 S e 2 2
and eliminating 2/ between these equations
r=r  r+r _ i—1' a4
cot.2 tan 3 =cot, 3 tan g
" whence tan Yr = — cot% cot (z' - A{‘;—D—) tan 4 ; D A (11).
Again eliminating (¢ —1’)/2 between the equations (10), we find
S+ B =
COS' , SIn /
' 2 sin’r_r+ 2 - P !
Qa7 o p A 2 Y 2
Cos sin® —5
= (2 cos? AT SN L e S et ek (12),,
A+D *o A, D
cos —5 sin —
where C= i aa B = e (13).
(01} —2- i sin E

Thus by means of equations (11) and (12), it is possible to determine
from measured quantities the points of the section of the surface of wave- .
quickness made by the normal section of the prism*.

It follows from (12) that the trace of the refracted wave on the normal
section of the I;rism touches the ellipse
szz Sy Szy‘.! = _Qz’
where the axes of z and y are taken along the internal and external bisectors
of the angle between the lines OA and OB. With a given prism, the form
of the ellipse depends upon the single parameter D and thus changes for each
angle of incidence : but writing the equation in the form

(x’ / cos.’% - ﬂ’) -+ (y*/ sin”% —.ﬂ’) tan? £ ; =0,

we see that it is satisfied identically by = + Qcos(4/2), y =+ Qsin(4/2),
and thus all the ellipses pass through the points in which the circle

a2 + y2 =2
intersects the lines 04, OB.

* Stokes, B. 4. Report (1862), p. 272.
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In the case of minimum deviation dD =0, and the ellipse is unchanged
by an infinitesimal variation in the angle of incidence. Moreover in this
case the ellipse touches what may be called, for shortness, the line of the
wave, that is, the line in which the normal section of the prism cuts a
tangent cylinder to the wave-surface with its generating lines parallel to the
edge of the prism. For in the case of a wave that undergoes minimum
deviation, its intersection with a consecutive wave passes through a point on
the ellipse, and the intersection of these two consecutive tangent planes to
the wave-surface also passes through a point on the line of the wave: hence
since the trace of the wave touches both the ellipse and the line of the wave,
these two curves are tangents to one another and to the trace of the refracted
wave. Thus in the case of minimum deviation, the ellipse (C%, S-?) is a
tangent to the refracted wave at the same point as the line of the wave, so
that it has all the properties of this line and defines the wave-velocity and
the projection of the refracted ray on the normal section of the prism. Hence
the consideration of a complex line of the wave is replaced by that of an
ellipse symmetrically placed with respect to the faces of the prism, with axes
that are simple functions of the angle of the prism and of the deviation *.

7. Turning now to the refraction of plane waves that are not parallel to
the edge of the prism, it is clear in the first place that the incident and
emergent waves are inclined at the same angle y to the edge. This follows
at once from the construction given above, for the points N, N’, N” lie in
a plane perpendicular to the edge, and therefore since ON, ON’, ON"” are all
equal, these lines make equal angles with the edge.

Secondly the law of sines applies to the traces of the waves on the normal
section of the prism, provided that we take for the refractive index, not the
true value n = Q/w, but the value m defined by , : 3

m=~Nn?+(n*—1)tan®y
For if OM make an angle 5’ with the normal section, we have, since M
and IV are at the same distance from it,

OMsiny’'=0Nsiny, ..siny=nsiny ............ (14).
Also if M and IV be projected on the normal section in the points x and »,
g = 2t i OM OBy SO ST a1 (1),

Ov  ONcosy " oS X

Let AOB (fig. 6) be the normal section of the prism: describe a sphere
round O as centre and through O draw lines parallel respectively to the
normals to the faces of the prism and to the incident, refracted and emergent
waves to meet the sphere in the points Ny, NV, S,, S, S,.

Let the internal and external bisectors of the angle AOB and the edge
* Cornu, 4nn. de Uécole norm. (2) ur, 1 (1874).
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of the prism cut the sphere in the points £, 5, ¢ and draw the great circles
£S,, &8, ¢S, to cut the great circle &£n in the points oy, o, o,.

g’

S

9

Fig. 6.

Then if D be the deviation 8,8, and D, the deviation ¢,0, of the projec-
tions of the wave-normals on the normal section of the prism, we have from
the triangle &8,8,, in which ¢S, = &S, =m/2 — x and the angle S,&8, is D,,

cos D =sin?y + cos? y cos D,

) e
or sin 5 = cos x sin —2—‘? .............................. (16),
8o that the minimum value of D corresponds to the minimum value of D,.
Let SR =TS IV =17 Ry SHVA==t M SV —1 8

SE=x SE=V, Sfn=0, Sfn=42,

then D depends upon the lateral deviation Af and the longitudinal deviation
AN ; but
sin y = sin A sin @ =sin \'sin &,

hence if the lateral deviation be zero, or 6 = @', we have
sin A=sginA’ or A =180°-1x;

that is the arc S,S, is bisected by the great circle #{ and by symmetry the
point S is on this great circle.

Let Noi=1, Nwo,=1, No=r, No=r/, Eoa=+,
then COS T =1C0S1%,COS ), COST = COS 1% COS Y }
COS 7 =COST, o8 Y, COS7T =Cos7, cosy’
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and since the projections of the wave-normals on the normal section of the
prism obey the sine law with refractive index m, we have from (11) and (12)

tan yr = — cot 2 o0 (io o TD") Gl o Ol L (18),
2 2 2
2 2 2 )
and C;%cos?r + Sy 2sin? Y =m™2 = DGR ISV o 111 (19).

O cos*y’  tan’y
It follows then that if we measure 4, D, 7, x we can determine D, 1, ¥, ¥/,

® in succession from (16), (17), (18), (19), (14) and hence find the direction
and the propagational speed of the wave within the prism.

8. Let us take the normal section of the prism as the plane of zy, the
internal and external bisectors of the angle between the traces of the faces
on this plane being the axes of z and y respectively, and the positive
quadrant containing the trace of the face of emergence. Then if [, m, n be
the direction-cosines of the wave-normal, the equation of the refracted wave
at unit time after passing through the origin is

lz+my+nz=ew
or Ex+qy +82=1,
where £, 7, ¢ are the coordinates of the point M (fig. 5).

Now ¢=siny/Q and since the lines MN and MN’ are perpendicular
respectively to the faces of entry and emergence,

- ‘fcosé + 7 sin é:ONcosxsin 1, = €oS 7y sin %,/(2,

2 2
4 .4 O uey
fcos—§+ns1n§=0Ncosxsmzo=cosxsmzo/ﬂ,
whence
S 1 e ot A 5 N A
€0s x (sin %, — sin 1,) sin 5 cos  (sin 2, + sin ) cos 5
&= Qsin 4 ke Qsin 4 ’

and the equation of the refracted wave becomes
PIEAR S T AN T . L - e .
sin (sin 2,’ —sin 7)) & + cos 3 (sin 2, +sin %) y + tan y sin Az

—OsecysinAd =0....cceernieniencnns (20).

If now «, y, z be the coordinates of the point in which this wave touches
the wave-surface, they must satisfy equation (20) and that derived from it
by giving infinitesimal variations to the angles %, %, and x. Thus in the
special case of a wave parallel to the edge of the prism we have, dropping
the suffixes as no longer needed,

sin%(sini’—sini)w+cos% (sinz’ +sinz)y — Nsin 4 =0...(21)
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and

(.'c sin % + y cos %) cos v'di’ — (a: sin % — 7 cos %) cosidi+zsin A dy=0

Let us suppose that we are looking in the plane of the normal section of
the prism so that the eye receives the light incident upon the prism, and let
OI be the normal to an incident wave parallel to the edge and inclined at an
angle ¢ to the face of entry, OI’ the normal to a wave inclined at an angle
dy to the edge. Then if ¢+ d¢ be the projection of the angle of incidence of
this wave on the normal section, and if ¢ be the angle between the planes
I0I' and I0Z, reckoned positive to the right of I0Z,

tan ¢ = — di/dy.
Z
A
o X
v I/’ B
/x ¥z z
Il
7 f
N
Fig. 7.

Similarly in the case of the emergent waves, the corresponding angle ¢ is

given by
tan ¢’ = di’[dy,

the change of sign arising from the fact that the increase in the angle 2’ is in
the opposite direction to that of <.

Substituting these values, (22) becomes

(w sin % + 4 cos %) cos ¢’ tan ¢’

+(wsin%—yccs%)cositan¢+zsinxi=0 .......... (23).
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It follows then that the image, seen through the prism, of the slit of a
collimator placed parallel to the edge, will be turned through an angle ¢,
given by

(a: sin % + y cos %) cost tan ) +2zsin 4 =0............ (24),

and in order that the imagé may be parallel to the edge, the slit must be
turned through an angle ¢,, where

(a:sin%—ycos%)cositan¢o+zsinzl=0 ............ (25);

and if these angles be measured, the coordinates «, y, z may be determined
from (24) and (25) together with the equation of the wave, which may be
written ‘

. 1= 1 —1
C sin 5 z — S cos 3

where C, S have the meanings given above.

In the case of minimum deviation, dD =d:+di' =0, and we obtain by
differentiating (26)

1 —2 et
3 z+ Ssin 3

and from this equation and (26) we find

C cos

Z/=O,

. .
A==

w=—0—lsin’”“2*, Y= 8008 5 i raniastene (),

and then equations (24) and (25) give
2= cosec (1 +1') costcos i tan ¢,
= —cosec (¢ + ') cos 1cos ¢ tan @y .....eeennennn. (28).

Thus from equations (24), (25), (26) or in the simpler case of minimum
deviation from (27) and (28) we can determine the ray corresponding to a
wave within the prism that is parallel to its edge*.

* Cornu, loc. cit,



CHAPTER II.

ANALYTICAL EXPRESSION FOR A TRAIN OF PLANE WAVES

9. THE analytical expression for a train of plane waves in an homo-
geneous transparent and isotropic medium is obtained by stating that the
disturbance at a distance r from a fixed plane parallel to the wave-fronts at
a time ¢ is the same as that at a distance r + wt’ at the time ¢ + ¢, where
is the propagational speed of the waves. It is hence given by one or more
functions of the argument wt —r, since such functions alone have the special
property of remaining unchanged in value when ¢+¢ is written for ¢ and
7+ wt’ for 7.

In the case however of an infinite train of plane waves of monochromatic
light, it is possible to assign to these functions a more precise form, which
may be deduced from the experimental fact that the state of things occurring
at any instant in a given plane parallel to the wave-fronts is at the same
instant exactly reproduced at certain definite intervals along the train of
waves; from this it follows that the functions representing the train must
be periodic with respect to » and hence also with respect to ¢.

This fact, which was first inferred by Newton, is shown very simply by
the following experiment due to Michelson*, from which important deduc-
tions will be made later.

Light from a vacuum tube is analysed by prisms forming a spectrum
from which any required radiation may be separated by passing through
a slit S. The light from this slit is rendered approximately parallel by
a collimating lens and then falls on a transparent film of silver on the
surface of a thick parallel plate ;. Here it divides, part being transmitted
to a plane mirror M, and part being reflected to a mirror M,. These mirrors
return the light to the silvered surface, where the first part is reflected and
the second is transmitted, so that both parts coincide and are received in a
telescope 7. A second plate G, of the same thickness as @, and parallel to
it, is introduced to equalise the optical paths of the two streams. Now if the
one mirror be parallel to the image of the other in the silvered surface and

* Michelson, Phil. Mag. (5) x11. 236 (1882).
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the telescope be focussed on infinity, there will be seen a series of concentric
bright and dark rings, and on moving one mirror parallel to itself, so as to
alter the distance traversed by one of the streams, the rings move in towards
or out from the centre, which becomes alternately bright and dark, a given

S

M,
Fig. 8.

shift of the mirror always producing the same number of alternations. But
in the case of the light that forms the centre of the pattern, it is clear that
the motion of the mirror alters the path of one of the streams by an amount
equal to twice the shift; and it thus follows that a given phenomenon is
reproduced when the path of one of the streams is altered by any multiple of
a given constant length A and that the train of waves is periodic with respect
to this length.

Hence the functions representing the train may be expanded in series of
the form

gAgcos {ngz(wt— r)— an} ..................... 1),
1 A

and since on repeating the above experiment with light from a different part
of the spectrum, a result is obtained in all respects the same with the
exception of the value that is to be assigned to A, it follows that this
quantity is characteristic of the colour of the light, and as (1) is an aggregate
of terms in which the values of A are different, we are led to retain only the

first term of the series in the case of a train of waves of strictly mono-
chromatic light.

Monochromatic light is thus said to consist in simple harmonic vibrations,
of whatever nature these may be, the period of which is 7=2\/w, where A is-
the wave-length of the train of waves and o is their propagational speed.

w. 2

&



18 The Analytical Theory of Light (on.

10. It is found however that as the motion of the mirror in Michelson’s
experiment is gradually increased, the distinctness of the system of rings
varies, which would not be the case if the streams were of the simple
harmonic type assumed above. It is thus necessary to suppose that in any
actual case the light is not absolutely monochromatic and that the stream
must be represented by a series of simple harmonic terms of periods that
differ only very slightly from one another. It will be shown later how
Michelson has been able to deduce the terms of this series in the case of
light from different simple sources by means of determinations of the
visibility of the system of rings.

A consideration of the state of things occurring in a luminous source,

even of the simplest character, also leads to the result that the light emitted
cannot be absolutely monochromatic*.

In the first place there is gradual loss of energy from communication
to the ethert: thus, supposing that the vibration rises from zero to a
maximum and then decreases again to zero, Fourier’s theorem gives

@ @

cosat.da f e~ cos nx cos az . dz

2
e % cos nt = = f
. w 0

0

a—n

= 2_]‘:—1;/;‘[0 {e—(_2—k-)2 + e_(%f} cos at . da,

and the second member represents an aggregate of trains of waves, each
individual train being absolutely monochromatic. If the variation of the
amplitude be slow, & is small compared with n and the second exponential

may be neglected while the first is only sensible when a is very nearly
equal to n.

In the next place there is departure from regularity due to abrupt
changes of phase and amplitude. To illustrate this let us suppose that the
vibrations in the source are given by

Y (t) = £ sin 2w/,

wherein the positive sign applies from 0 to mr, 2m7 to 8mr, ..., and the

negative sign from mr to 2mr, 3mr to 4mr, .... Then since Fourier’s
theorem gives y

W BT B s R
m7.1[r(t)=f sm——z.dz-l-ZEcos—Wtf sin =% 2. cos = 7. dz
0 T 1 mT 0 T mT

2]

e i 1 —cos nwr ST o
17 1—n¥(dm?)" " mr”’
* Lord Rayleigh, Phil. Mag. (5) xxx1v. 407 (1892) ; xxvIr. 298 (1889). .

t Jaumann, Wied. Ann. ui. 832 (1894); wrv. 178 (1895). Galitzin, ibid. Lvi. 78 (1895).
Lommel, ibid. Lv1. 741 (1895). Michelson, 4strophys. J. 11. 251 (1895).
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the light will consist of an aggregate of trains of waves given by
2 nir
ot =S ST A
 mar {1 — n?/(4n?)} S o
the summation extending to all odd values 1, 3, 5, ... of n.

When 7 is nearly equal to 2m, the terms of this series become relatively
very great, the most important being
cos e (1 ar L) t, cos (1 Ele i) 1A
T 2m T 2m
the train of waves with period T not occurring at all.

Again there is the motion of the molecules as wholes to be considered,
and the effect of this is twofold.

Firstly by Doppler’s principle if £ be the component of the velocity of a
molecule in the direction of the line of sight and w be the velocity of light,
the natural wave-frequency N is changed by the motion into n, where

n=DN (o + £)/o.
Now the number of molecules, for which the component velocity in the line
of sight lies between & and £+ d§, is proportional to exp {—B&%} d§; hence
what would be a mathematical line is dilated in the spectrum into a band
and the intensity of the part of the band corresponding to frequencies
between n and n+4dn will be proportional to

eB—MWYN?

or at a distance « from the centre in a spectrum formed on a scale of wave-
frequencies to exp (— az®)*.

Secondly there is the motion of rotation to be considered. The effect of
this will depend upon the law of radiation in various directions from a
stationary molecule, but in any case it will in general cause the amplitude
of the vibration emitted in a given direction to be a. periodic function of the
time, whence it follows that the light so radiated ceases to be monochromatic.

In the case in which the luminous source is a narrow band isolated from
a spectrum, other considerations lead to the same result, and it will be shown
in dealing with diffraction that the finiteness of the wave-length of light
imposes a limit on the resolving power of a spectroscope and causes at each
point of a spectrum a superposition of light of slightly different wave-
lengthst.

* Ebert, Wied. Ann. xxx1v. 39 (1888); xxxvI. 466 (1889).

+ The nature of white light and the origin of the periodicity introduced by dispersion into its
constituents has been discussed by: Gouy, J. de Phys. (2) v. 354 (1886); Ann. de Ch. et de Phys.
(6) xvi. 262 (1889); C. R. cxx. 915 (1895); cxxx. 241, 560 (1900). Schuster, Phil. Mag. (5)
xxxvi, 509 (1894); C. R. cxx. 987 (1895). Poincaré, C. R. cxx. 757 (1895). Larmor, Zther
and Matter, 239—251 (1900). Carvallo, C. R. cxxx. 79, 130, 401 (1900); J. de Phys. (3) 1x. 138
(1900). Fabry, C. R. cxxx. 238 (1900). Corbino, C. R. cxxxmi. 402 (1901). Godirey, Phil.
Trans. cxcv. A. 329 (1901). Planck, Drude’s Ann. vir. 390 (1902).
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It thus follows that in any actual case a stream of light is complex in
quality; but it is convenient in considering optical phenomena to assume
that the light is monochromatic, and then to determine when necessary the
modifications that are introduced by its departure from this simple character.

11. If two streams of light, coming initially from the same source, are
made to cross one another at a small angle, interference phenomena may be
observed in the region common to the two streams and at certain points the
illumination is greater and at others it is less. than that due to either of the
beams alone. Beyond the region of crossing, however, each of the streams is
found to have the same characteristics as if it alone existed, and we must
therefore infer that the result of the superposition of two streams is merely a
superposition of their effects without any permanent modification of the
streams themselves. This being so, it must be possible so to choose the
analytical expressions ¢, x, v, ... characterising a stream of light, that the
result of the superposition of several streams is expressed by the sum of the
corresponding functions ¢y, ¥n, ¥a,... characteristic of the constituent streams,

so that we have

d=2¢n, X=Zxn, V=2, ....
These equations are the analytical expressions of the principle of inter-
ference *.

12. The next step in the analytical specification of a train of plane
waves of monochromatic light is afforded by the phenomenon of polarisation,
discovered by Huygens in 1678 during the course of experiments on the
double refraction in Iceland spar and published by him in 1690 in a book
entitled “ Traité de la Lumiére.”

Iceland spar, a crystal of calcium carbonate, cleaves very readily in three
definite directions, so that a block may be obtained by cleavage in the
form of a rhombohedron : the three obtuse angles of such a rhombohedron
are all equal and are so turned that two opposite solid angles are contained
by equal obtuse angles, while each of the remaining six is contained by one
obtuse and two acute angles. A direction equally inclined to, the three
edges that meet in one of the obtuse solid angles is called the awis of the
crystal, and a plane through the axis perpendicular to a face of the rhomb is
called the principal plane of that face.

Now it is found that when a cylindrical stream of light, coming directly
from a luminous source, falls normally upon a rhomb of Iceland spar, it is
subdivided into two refracted streams: the one, called the ordinary stream,
traverses the crystal without deviation; the other passes obliquely through
the rhomb with its axis in the principal plane of the face of entry and
emerges parallel to the first, from which it will be entirely distinct provided

* Voigt, Komp. der Theor. Phys. 1. p. 531.
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the diameter of the incident stream does not exceed about one-tenth of the
length of the rhomb. These two streams have practically the same intensity,
and the phenomenon is unaltered by a rotation of the rhomb about an axis
normal to its end faces.

The case is however different if either of these emergent streams be
transmitted through a second rhomb with its end faces parallel to those of
the first : for then the relative brightness of the two streams, into which it
is in general divided, depends upon the orientation of the second rhomb, and
in certain cases one of these streams entirely vanishes. Thus the ordinary
stream emergent from the first rhomb gives rise to an ordinary stream alone,
when the principal planes of the faces of entry of the two rhombs are
parallel, and to an extraordinary stream alone when these planes are at right
angles; while the reverse is the case with the extraordinary stream of the
first rhomb.

‘Hence while a stream of light coming directly from a luminous source
exhibits properties that are alike on all sides of its direction of propagation,
in the streams emergent from a rhomb of spar different directions round their
axes are no longer of equal value. The streams may in fact be said to have
acquired sides or to be polarised. The sides of the stream must in some way
be connected with fixed planes in the rhomb and considerations of symmetry
lead to their being referred to the principal plane of the face of entry or to
the plane perpendicular to it. Either of these planes might be selected, but
it is assumed that the ordinary stream has its sides or is polarised in the
principal plane, and that the extraordinary stream is polarised in the perpen-
dicular plane.

13. Before leaving this fundamental experiment of polarisation, a further
point may be mentioned, that will prove of use subsequently. The direction
of the axis of the extraordinary stream in the first rhomb is clearly indepen-
dent of the diameter of the incident beam, so that the axes of the emergent
pencils will be at a distance apart dependent only upon the length of the
rhomb. It is then possible by increasing the diameter of the streams to make
their perimeters intersect, giving rise to a complex stream in which three
parts may be distinguished. The two outer parts are due to the streams
ordinarily and extraordinarily refracted respectively and have equal inten-
sities: the central part is formed by the superposition of these two streams
and has twice the intensity of the two outer parts.

Now if this central part be examined with a second rhomb, it is found to
exhibit no traces of polarisation and to behave exactly like common light.
Thus a stream of comon light has the same properties as that which results
from the superposition of the two equally intense streams polarised at right-
angles, into which a rhomb of Iceland spar divides a beam of common light
incident upon it. Further, since the two streams traverse the rhomb with
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different speeds, they will on emergence have a relative retardation depen-
dent upon the length of the rhomb. Hence common light may be regarded
as equivalent to the stream resulting from the superposition of two streams
of equal intensity polarised at right-angles, whatever may be the retardation
of the one stream with respect to the other.

14. In order to express the phenomenon of polarisation analytically, it
becomes necessary to assume that a train of plane waves of polarised light
may be represented at any instant by a vector d, the rectangular components
of which may be written

u=Acos{2—;-r(wt—r)—a}, v =B cos 1(2% (mt——r)—b},

w=C cos {2—: (wt—r)—c}.

From these equations it follows that this vector always lies in the plane

# LA w .

a sin (b—c¢) + Bsm(c —a)+ Usm(a—b)—O,
and that its extremity in general describes an ellipse, the projections of
which on the coordinate planes are given by

Uiy ot uY
B 243

and two similar equations.

cos (@ — b) = sin® (@ — b)

If the plane of zy be parallel to the plane of the elliptic path of the
extremity of the vector, C=0, and the angle @ that the axes of the ellipse
make with the coordinate axes is given by

24B
tan 20 = T

where tan o = B[4, and if tan B be the ratio of the axes of the ellipse,

cos (@ — b) = tan 20 . cos (¢ — b),

sin 23 = sin 20 . sin (@ — b).
Now

|

u=§ cos(a——b)—%sin(a—b)tan {%?(wt—r)—a}

gives the tangent of the angle that the vector d makes with the axis of # at
any time ¢, As the time increases, tan {2%- (wt —1)— a} increases, and hence

the vector moves from left to right or from right to left on the upper part
of its path, according as (B/4)sin(a —b) or ABsin(a—b) is positive or
negative: in the first case the motion is said to be right-handed and in the
second left-handed. Thus 4 and B having the same signs, the motion is
right-handed when @ — b is between 0 and 7 or between — 7 and — 27, and
left-handed if this angle lie between 7 and 27 or between 0 and — .
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15. It has been mentioned that the phenomenon of interference is to be
ascribed to a superposition of the effects of different trains of waves without
any modification of the waves themselves. From this it follows that the
differential equations of the polarisation-vector d are linear, and this leads to
a symbolical representation of the vector, that is often useful.

Since 2 cos § = ¢ + ¢, and each exponential repeats itself on differentia-
tion, all the terms in any one equation can be arranged in two groups, one
containing e as a factor and the other containing e~ as a factor: these two
groups will be independent and each will satisfy the differential equations.
Hence we may introduce one exponential alone, and then writing the result
of our calculations in the form P+, we have only to throw away the
imaginary part or else to reject the real part and omit the ¢, since the system
of quantities P and the system Q must separately satisfy the conditions of
the problem.

Thus when convenient the components of the polarisation-vector may be
represented by the symbolical expressions

L2—”(wt—7) (wt—'r) - z - (wt—r)

w=Ade * = Be 3 =(Ce A
the bars (=) placed over the letters 4, B, C denotmg that they may be
complex. Let

A=A'—1A"=Ae, B=B —(B"=Be? (=0 —-.0"=Ce;

then the actual components of the vector are

D= Acos{—(wt—r)—— }=A’cos—(cot—r)+./1”sm T (wt—1),
} B’ cos (wt—’r‘)+B”51n-—(mt ),

v-—Bcos{ (wt—7)—0b

o 4
w= C cos {2—;—7 (wt—r)—c}: (8¢ cos—2—7f(wt— r)+ 0" sin I(wt—r),

and we may remark, what will be of use later, that if 4’, B, 0 be the
expressions conjugate to 4, B, C,

A=Al A B BB i€l Cnl
tana_——u tanb———B B, tanc-——la g
A+ 4 «B+B 1 C+ 0
Clearly + 4', + B, + C’and + 4", £ B", & C” are the components of the
polarisation-vector d, at the times for which
2 (wt —r)A=hm and (2h+1)m/2
respectively, where % is an integer. Determining the condition that d has
then a maximum or a minimum value, we obtain

A A"+ B .B'+(.0" =0,
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whence A%+ B2+ (" is real, and this condition can always be satisfied by a
proper choice of the origin of time. When this is so chosen,
d?= A"+ B"+ 0",
a/=A’/dl’ BV=B//dI’ 7’=0l/dl’
and similar expressions with doubly-accented letters give the semi-axes ', d”
of the elliptic path of the extremity of the polarisation-vector and their
direction-cosines.

16. Before proceeding to a precise localisation of the polarisation-vector,
it is necessary to obtain a measure of the intensity of a train of plane waves
of light ; and though this is scarcely possible, until some theory is formulated
respecting the nature of the polarisation-vector, the following considerations
lead to an estimate of the intensity, that is sufficient as a working hypothesis*.

Since the phenomena that are associated with a stream of light indicate
that it is energy that is propagated by the waves, and since moreover the
intensity of light from a given source varies inversely as the square of the
distance from the source—the same law as obtains in the case of the rate at
which energy is propagated across a given area perpendicular to the direction
of flow—it 1s natural to measure the intensity of the stream by this quantity.
It is thus necessary to express the energy in terms of the polarisation-vector,
and this can only be done when the nature of the vector is itself determined.
Since however energy is a scalar quantity, it must be expressed by an even
power of the vector and this for present purposes may be taken as the second,
for the variation of energy must be the same in sign as that of d? and if d?
vanishes, so must the energy.

But light to be perceived must act for a finite period on the retina, and it
is impossible to follow the rapid variations of the polarisation-vector during
its vibrations. The intensity may thus be taken as measured by the mean
value of the square of the vector for the time 7' required for light to affect
the eye, and on account of the rapidity of the vibrations, T may be taken as
an integral multiple of the period. Hence with monochromatic light

i %f:(u2+v”+'w2) dt = A+ B+ C.
If the light be not monochromatic,

u=2Ancos{%r(wt—r)—%}, v=23B, cos {?X—:(wt—r)—bn},

w = 30, cos {i—w (0t —7)— cn},

and since 7' is very great compared with T,, the terms in the expression for I
that arise from the product of different cosines are vanishingly small and may
be neglected : whence

I=3(4."+ B+ Cy?),

* Voigt, loc. cit. pp. 524, 529, 537.
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and the intensity is the sum of the intensities of the different monochromatic
constituents—a result that depends upon the mean value of the square of the
polarisation-vector being taken as the measure of the intensity.

17. Tn 1816 Fresnel and Arago, in consequence of a discovery made by
the latter, were led to investigate the conditions of the interference of
polarised light. Postponing for the present any consideration of their experi-
ments, it suffices for the completion of the specification of the polarisation-
vector for a train of waves of monochromatic light to mention, that among
other results they found that two polarised streams coming from the same
stream, whether polarised or natural, are capable of interfering perfectly,
when the polarisations are the same; that they do not interfere at all, if
polarised in perpendicular planes; and that in intermediate cases, they
interfere in intermediate degrees.

In order to determine the analytical significance of this result, we must
investigate the conditions of the interference of two polarised streams, and
for this purpose there is no occasion to consider the manner, in which they
are related to the original stream, but it is sufficient to start with the
component streams themselves*.

Taking the direction of propagation as the axis of z, let 8, and 90° + 6, be
the azimuths of the axes of the ellipse that is the projection on the plane of
the waves of the path of the extremity of the polarisation-vector, azimuths
being measured round z from « to ¥, and let tan B, be the ratio of the axes of
this ellipse, 8, lying numerically between 0° and 90°. Then if u, and v, be
measured along the axes of this ellipse, the components of the polarisation-
vector of the first stream may be represented by

‘ Uy = ¢, cos BT+ = 4 eT+a)y
¥, = — 1¢, 8in BT+ = — , B, o{T+a)e,
w, = kyc,elTHate)
where 7' is written for shortness in place of 27 (ot — 2)/A and B, is positive or

negative according as the projection of the path on the plane of xy is
described in a left- or a right-handed direction.

Let us, ¢, ... be for the second stream what u,, c,, ... are for the first, and
let p,, p, be the retardations of phase that occur before the recomposition of
the streams: then resolving all the components along the axes of #, y and z,
and writing 8=a,—p, — a; +py,

u=(4,cos 0, + (B, sin 8,) &T+a—m 4 (4,cos 8, + ¢ B, sin 92) eT+az—pe
= {(4,co8 6, + A, cos 0,€") + ¢ (B, sin 6, + B, sin G,e)} e(T+a-ry,

v={(4,sin 0, + 4,sin 0,¢%) — ¢ (B, cos 6, + B, cos 0.€%)} e(T+a—ro,

w = {kc, + kycg@rea-a) e(Ttata—p)

* Stokes, Camb, Phil. Trans. 1x. Part 3, 399 (1852).
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and the intensity is given by
I={(A,cos 8, + A,cos 0,¢*) + ¢ (B, sin 6, + B, sin 6,¢*)}
x {(4, cos 6, + 4, cos G,e7%) — ¢ (B, sin 6, + B, sin ,¢7)}
+ {(4, sin 8, + 4, sin 6,¢>) — ¢+ (B, cos 6, + B, cos 6,¢*)}
x {(4,sin 6, + 4,sin G,e7%) + ¢ (B, cos 6, + B, cos 6,¢7)}
+ (ker0y + koo @ 2= 00) (Foy0, + fogcoe=CHea—ev)
=A2+ A2+ B2+ B2 + ke + ke + 2 (4,4, + B, By) cos (6, — 0,)cos &
—2(4,B,+ A,B))sin (0,— 6,) sin & + 2k,k,c,0, 08 (8 + €, — €)
=c2(1+k)+c?(1+4?)
+ 2¢,¢, {cos (B, — B,) cos (8, — 6,) cos 8 —sin (B, + B,) sin (0, — ;) sin &
+ kik, cos (8 + €, — €))).

Now if there be no interference, the intensity must be independent of the
relative retardation of phase p,— p;, and we must have

cos (B, — By) cos (6, — 6)) + kyk, cos (e,— ) =0,
and sin (B, + By) sin (0, — 6,) + ki, sin (e, — €)= 0,

which conditions may be satisfied in an infinite number of ways, all of which
appear equally admissible, unless recourse be had to other considerations.

There is however a case that leads to a definite conclusion ; for it is found
that there is no interference, when the two streams are both, say, the ordinary
streams emergent from two rhombs of Iceland spar so placed that the planes
of polarisation are at right-angles. In this case the one component stream is,
so far as relates to its polarisation, what the other stream becomes on being
turned about its axis through a right-angle. Writing then

0=—100="90 3 B B R k= e =Te i)
the above conditions become
k2=0, sin28,=0;

that is, the polarisation-vector has no component in the direction of propaga-
tion of the stream and its vibrations are rectilinear.

Now the streams emergent from a rhorb of Iceland spar are said to be
plane polarised, and thus in a stream of plane polarised light the polarisation-
vector is transverse to the direction of propagation and its vibrations are
rectilinear*. By symmetry these vibrations must be either in or perpen-
dicular to the plane of polarisation : in what follows we shall assume that the
latter is the case.

* Fresnel, Mém. de I’Acad. des Sc. vi1. 56 (1821); Euvres completes, 11. 490. Verdet, Ann. de
Ch. et de Phys. (3) xxx1. 377 (1851); Euwres, 1. 73.
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If a stream of plane polarised light be resolved into two streams, polarised
at right-angles to one another, and these be recompounded after one has
been retarded relatively to the other, the polarisation-vector of the resultant
stream will have for its components

{)
u=4 cos 0 cos {2% (wt—z)+a}, v=4 sin 0 cos {%(wt-—z)+a—8},

where @ and 90°— @ are the angles that the plane of polarisation of the
original stream makes with the planes of polarisation of the components.
The vibrations of the polarisation-vector of the resultant stream are thus
represented by an ellipse lying in the plane of the waves, and the light is
said to be elliptically polarised.

In the particular case in which §=45° and the relative retardation of
phase is + (2n+ 1) 7/2, the vibrations are circular and the light is said to be
circularly polarised.

18. Returning to the general conditions that express that there is no
interference between polarised streams, and writing &, =k, =0, we obtain

cos (By—By) cos(8,— 0) =0, sin(B,+ By) sin (6,—0,) =0,
which are satisfied if
cos (6,—60,)=0 and sin(B,+8)) =0,
or sin (6,—6,)=0 and cos(B,—B,)=0,
or cos(B,—B1)=0 and sin(B,+5)=0.

The first case gives 8,— 6,=90°, B,= — B, and these results express that the
ellipses described are similar, their major axes at right-angles and the
directions in which they are described are contrary.

The second pair of equations gives 6,—6,=0° or 180°, B,=90°+ 2,
which is merely a different manner of expressing the same result.

From the last pair of equations we have B8,=— 8, =+ 45°, or the streams
are circularly polarised in opposite directions—a special case of the former
result.

Thus the intensity of the stream made up of the two components is only
independent of any retardation, that the one has undergone relatively to the
other before recomposition, when the one component stream is, so far as
relates to its polarisation, what the other becomes when it is turned through
an azimuth of 90° and has its nature reversed as regards right- and left-hand.
Streams thus related are said to be oppositely polarised.

19. On the other hand the interference will be perfect, that is, the
variations of intensity will be the greatest that the difference of intensity of
the components admits of, so that if these be equal, the minima are absolutely
zero, when the coefficient of 2c,c, has unity as its maximum value.
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The maximum of Pcosd—Qsind is ¥P*+ @ so that the condition for

perfect interference is

cos? (B, — B) cos? (6, — 6,) + sin? (B, + By) sin? (6, — ) =1

= cos* (0, — 6,) + sin? (6, — 6,)
or cos? (8, — 6,) sin® (B, — B,) + sin? (0, — ;) cos? (B, + B1) = 0.
This is only satisfied if
sin? (g, — 6,)=0 and sin*(B3,— B) =0,

or cos? (6, — 6,)=0 and cos*(B;+ B) =0,
or sin? (8, —B)=0 and cos?(B;+ B.)=0

From the first pair of equations we have B,=p,;, 6,=46,, that is, the
streams are identical as regards their polarisation.

The second case gives B,=90°—p,, 6,— 6, =90°, expressing the same
result.

The third case gives B,=8,=45° so that the streams are circularly
polarised and of the same kind—a particular case of the former result.

Thus for perfect interference the polarisations of the two streams must be
identical.

20. It now becomes necessary to determine the analytical representation
of a stream of natural or unpolarised light*.

Experiment gives as the distinguishing characteristic of a stream of
common light, that it can be resolved into two streams plane polarised in
perpendicular planes; that the intensities of these streams are independent
of the orientation of their planes of polarisation; and that the stream
resulting from the recomposition of these components has the same property,
whatéever may be their relative retardation.

Now since this stream compounded of two streams that are plane polarised
in rectangular planes, behaves in all respects as common light, and since each
constituent is represented by a vector that is perpendicular to the direction
of propagation, it follows that it must be possible to obtain an analytical
representation of a stream of common light, in which no vector with a
longitudinal component occurs. On the other hand a stream of monochro-
matic light with a polarisation-vector that is entirely transversal, must be
polarised, whether elliptically, circularly or plane; whence it results that a
stream of common light cannot be absolutely monochromatic.

Representing then the stream as the superposition of trains of waves of
monochromatic light, let

U, = C, COS Bnel(rrﬂ'am) — Ane‘-(Tn'Hln),
Up = — 1€y SIn BpetTnten) = — | B gt(Tntan)

* Stokes, loc. cit. Verdet, (Buvres, 1. p. 281; Ann. de Uécole norm. supér, 11. 291 (1865).
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be the components of the polarisation-vector for the nth constituent in
directions making angles 8, and 90° + 6,, with the axis of z, where the axis of
2 being in the direction of propagation of the stream T, =27 (ot — 2)/A,,, and
Bn is less than 90° and positive or negative according as this constituent is
left- or right-handed.

Then the stream of common light may be represented by the two plane

polarised components
u =2 (A, cos b, + (B, sin §,) e Tntan
v =73 (A,sin 0, — (B, cos ,) e Tntan),

Now let the second component stream receive a retardation of phase &
relatively to the first, and let the stream of common light thus modified be
resolved into two plane polarised components with their vectors in azimuths
¢ and 90°+¢ with respect to the axis of z: then for the first of these
components the polarisation-vector is

U=75,{A,(cos by, cos ¢ + sin 6, sin pe~*3)
+ ¢B, (sin 6, cos ¢ — cos B, sin pe4)} e:Tntan),
and since the intensity is the sum of the intensities of the monochromatic
constituents
I, =3 (4, cos* 0, + B, sin® §,,) cos? ¢ + = (A,2sin? 8, + B, cos? §,) sin* ¢
+ sin ¢ cos ¢ {22 (4,2 — B,?) sin 6,, cos 6, cos 8 — 224, B,, sin 8}
=3P+ Q)cos’ ¢+ 4 (P — Q)sin®¢p + sin ¢ cos ¢ (R cos § — S sin J),
where P=X(4,2+ By = 2¢.d,
Q=23 (4,2 — B,?) cos 20, = Zc,’ cos 28, cos 26,,,
R =73,(4,— B,?)sin 26, = Zc,? cos 23, sin 26,,,
S=2%4,B, = Jo.*sin 28,'
But if the group of monochromatic constituents be equivalent to common

light, T4 must be independent of ¢ whatever 8 may be, and for this to be the
case, @, R, S must separately vanish.
The effect of a change of coordinate axes is to write 6,—y for 6,
(n=1,2,3,...): this will leave P and S unaltered, while
Q becomes Zc,? cos 283, cos 2 (6, — x) = Q cos 2y + Rsin 2y,
R becomes Zc,?cos 23, sin 2 (6, — x) = R cos 2y — @ sin 2y.
Hence the conditions that the group may be equivalent to common light
are satisfied for any set of axes, if they be so for one set, and it is a matter of

indifference with respect to what plane of polarisation the retardation & is
supposed to be introduced.

The conditions given above are then sufficient, as well as necessary, to
characterise a stream of common light.
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21. We may now find the condition that two polarised streams of a
definite character may be together equivalent to a stream of common light.

Representing the first stream by the components
w =cos B3¢y, cos (T +ay), v =sin B Zc,sin (T, + ay)
in directions making an angle ¢ with the axes of # and y respectively, and
employing doubly accented letters to denote quantities that refer to the
second stream, the stream that results from the superposition of these trains
of waves is characterised by
P= 2cn/2 Six 207;”2,
@ = cos 23’ cos 280'Z¢,, + cos 28" cos 260" Z¢,?,
R = cos 2@’ sin 26’ 2¢,% + cos 28" sin 267 3¢,
S = sin 28'3¢,? + sin 28”7 ¢,
Writing that the intensities of the two components are as £2:1, the
condition that their mixture is equivalent to common light gives
cos 23" cos 20’ + k*cos 287 cos 260” =0, cos 28 sin 20" + k* cos 28" sin 26” =0,
sin 28’ + k*sin 28" = 0.
Transferring, squaring and adding, these equations give A*=1, and since %*
must be positive, k#2=1. Thus the streams must have equal intensities.
Since B and B” are supposed not to lie beyond the limits of + 90°, the
last equation gives
B// Rl Bl or B/I s IB/ ; 900,
the upper or lower sign being taken according as 8’ is positive or negative.
Now clearly any solution may be expressed analytically in two ways, in which
the values of B are complementary and the values of @ differ by 90°, since
either principal axis of the ellipse characterising the stream may be that for
which the azimuth is 6. Accordingly the second solution may be rejected as
being merely a different method of expressing the first, then substituting
B’=—p" in the first two equations, they give
co0s 20” = — cos 20, sin 207 = —sin 26,
and hence ¢ and 6” differ by 90°. The equations are also satisfied by
B//=~ Bl= i 450,
which is only a special case of the foregoing.
Thus common light is equivalent to any two oppositely polarised streams

of half the intensity, and no two polarised streams can be together equivalent
to common light, unless they are oppositely polarised and have their intensi-

ties equal.

22. Returning now to the case of a stream of light of the most general
character, it is clear in the first place that the quantities P, @, R, S are
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restricted in value and so related that P? can never be less than @2+ R*+ S2;
for
P (@4 B+ 8)
= 22¢m%, {8102 (Bm — Ba) €08 (Om — 05) + c08*(Bm + Ba) sin? (0, — 6,,)},
the summation extending to all values of m and =, and this expression
is always positive, and only vanishes if
sin (B — Br) €08 (Om—0,) =0 and cos (Bm + 3,)sin (0, — 6,) =0.

These conditions, as we have seen (§ 19), express that the polarisations
of all the monochromatic constituents are identical, so that the stream
is elliptically polarised with elliptic constants given by

tan 20 = R/Q, sin2B8=S/P,

the polarisation being left- or right-handed according as S is positive or
negative.

In general then P2 exceeds @*+ R*+ 82 but it is always possible to find a
positive quantity H, such that

(P_H)2= Q2+R2+Sz’
and consequently the stream may be regarded as compounded of two groups,
for one of which the constants are H, 0, 0, 0, representing a beam of common
light, while for the other the constants are P — H, @, R, S giving a stream of
elliptically polarised light with elliptic constants determined from
tan 20 = R/Q, sin2B=S/(P - H).

If S=0, the second group is plane polarised, and if @ =0, R=0, its polarisa-
tion is circular.

A stream of the character just described is said to be partially polarised.

23. As examples of the above investigation, let us take the following
cases :

(1) A polarising prism and a crystalline plate, set so as to give a stream
of elliptically polarised light, are made to revolve together uniformly and
rapidly with regard to the duration of impressions on the retina.

Let w = c cos Betrt-retal  y’= — yc8in Perrt-xetal
represent one of the monochromatic constituents of the stream and 8 the
azimuth of its first axis at a given time, so that 8 = u + vt.

The components of this constituent along the axes are

u= {c cos B cos (u + vt) + csin B sin (u + vi)} e t-x2+a
=4c(cos B + sin B) elrtnt-rztaty}
+ 3¢ (cos B —sin B) e {r—Nt-rzta—u,
v=—13%c(cos B + sin B) gt {r+Mt-xzta+u}
+ ¢ $¢ (cos B — sin B) g {n=r)t-rzta-u,
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If the light be approximately monochromatic, 3 will be practically the same
for all the constituents, and the stream will be composed of two oppositely
circularly polarised streams represented by

w= }(cos B +sin B) Sce i+t -rztatu,
v, =— 13 (cos B + sin B) Sce e+t -rztatul
and U= % (cos B —sin B) Jce ln-nt-xzta-u}

= ¢} (cos B —sin B) Jcelr—rt—rzta-u}
We thus find P=3¢, =0, R=0, S=sin28%c¢ and the group is equivalent
to a stream of common light of intensity (1 F sin 28) 2c¢? together with a
stream of circularly polarised light of intensity + sin 283¢® and of the same
character as regards right- or left-hand, as the original stream would be, if
the polariser and plate were stationary. The upper or lower sign must be
taken according as 3 is positive or negative.

If the plate were set so as to give plane polarised light, we should have
B =0 and the light would be completely depolarised.

(2) A plane polarised stream is transmitted through a thin crystalline
plate, that is made to rotate uniformly and rapidly.

Let 28 be the relative retardation of phase introduced by the plate, and
the azimuth of the plane of polarisation of the least retarded stream within it
at any time ¢, measured from the primitive plane of polarisation: then the
emergent stream may be represented by the components

u = 3¢ (cos? fe® + sin? fe=) ¢+ (nt~rz+a)
= 20 cos Sea(nt—xz-l—a) hE L%EC sin Set {nt2v)t—xz+a+2u}
5 L%EC sin 891 {(n—2v)t—xz+a—2u}’
v = Z¢ sin 0 cos @ (¢ — ¢~2) g(nt—xz+a)
= }Z¢ sin Sgt (n )= estattild _ 56 gin S tn-2)i-esta—2u),
polarised respectively in planes parallel and perpendicular to the original
plane of polarisation.

Thus the stream is composed of three groups: one polarised in the

primitive plane and represented by
u, = Z¢ cos det(nt—rzta),
and two circularly polarised streams of the same intensity
Up= L‘%EC sin 86‘ {(n+2v)t—xz+a+2p.}’ Uy = %Zc sin 86" {(n+2v)t—xz+a+2u},
uy = 1}Scsin S¢t =W t-rxata-w} gy = _ L3¢ sin Set {r-2)t-xeta-2,
It is hence equivalent to a stream of common light of intensity 3c?sin?§,

combined with a stream plane polarised in the same azimuth as the initial
stream and of intensity Sc?cos? d.



CHAPTER IIIL

INTERFERENCE.

24. WE have seen that a train of waves may always be replaced by two
trains polarised in perpendicular planes, and that the stream is equivalent to
common light, provided the two component streams have the same intensity
and no fixed relation exists between their corresponding monochromatic
constituents.

In the case of common light, the modifications of the constituents of the
one component must during the passage of the stream be identical in
character with those of the corresponding constituent of the other, so long
as no phenomena of polarisation supervene; for the characteristic property
of common light is that all directions transverse to that of propagation are
of equal value. Hence in considering the phenomena of common light, it is
.sufficient to take into account only one of the polarised trains of waves.

The phenomenon of interference lies in the forefront of physical optics
and has already been appealed to for the purposes of illustrating the periodic
character of a stream of light and of obtaining the form of the functions that
characterise a train of luminous waves. We must now take up the subject
In greater detail, in order to explain the appearances that result from the
interference of streams of light, and to determine the conditions under which
interference is possible and the limitations to which it is subjected.

25. When a number of trains of waves of the same simple harmonic
type are propagated in one direction, the resultant train is of the same type;
for

34, 68 {?g e a,,}
27 . 2w L !
=cos =~ (ot —2) 34, cos @y, —sin Eh (wt—2)SA4,sina, -

=Acos{2%(wt—z)+3},

where A2=(ZA, cos a,)+ (ZA,sinay),
tan 8 = (S 4, sin a,)/(S4, cos ay).
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In the special case of two component trains, the amplitude of the
resultant is given by

A= A2+ A2+ 24,4, cos(a, — a,)

and is equal to 4, + 4, according as the phases of the two components are
the same or differ by half a period. In the latter case when the intensities
of the components are equal, the amplitude of the resultant is zero and the
component trains neutralise each other.

When the component trains travel in the same direction, the intensity is
necessarily the same over the whole wave-front, but this is no longer the
case, if they be inclined to one another at a small angle. The phenomenon
then observed on a screen placed in the region common to the two streams is
that known as interference fringes.

Suppose that we have two small sources of light, that are placed near one
another and are of such a character that the corresponding monochromatic
constituents of the streams emanating from them agree in amplitude and
phase; and let us determine the effect produced on a screen parallel to the
line joining the sources and at such a distance that the waves arriving at
any point of it from the two sources may be regarded as sensibly plane and
parallel.

Let S, and 8, be the sources and X the point on the screen at which the
effect is to be determined, then assuming
for the present that the light is rigorously
monochromatic, the phases at X will be
accordant or completely discordant, accord-
ing as
S, X ~8,X=nxn or (2n+1)r/2.

With centre X and radius XS, (S, being
supposed nearer X than S) describe a circle
in the plane X8,S,, cutting S,S, produced
in @ and XS, in P: then O being the
middle point of S,8,, 0’ being the point on
the line through X parallel to S,S, that is
Sy equidistant from S, and S,, we have

TR © S P(S,X +XS)=58.5Q=20X.85,

20X.8,8,. 0X.8,8,
SX+X8 7 00 °

S8 X-8X =

- if X be near to 0.

Taking the point O as the origin of a system of rectangular coordinates of
which the line 0S8, is the axis of z and the normal to the screen is the axis
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of z, then if the coordinateé of X be @, y, 2 and 8,8,= 2¢, the points at which
the phases are accordant are given by
2cz/(y* + 22t = na,
and the points of complete discordance of phase are given by
2cx/(y? + 22 = (2n+ 1) A/2.

Thus the points of accordance or of complete discordance lie on similar and
similarly situated hyperbolas and the screen will be intersected by a series
of bright and dark bands, that will appear nearly straight and perpendicular

to the plane taken as that of @z, since the curvature of the hyperbolas is very
small at their vertices.

The linear width of the bands in the plane of xz (from bright to bright,
or from dark to dark) is :
A =2nz/(20).

26. Let us now consider the effect of interposing a plate of some
medium between the screen and the sources of light.

Let S,PQX be the ray from S, to X, meeting the plate in the points P
and @; and through @ draw QR parallel to the screen meeting S, P produced
in R.and the line through P perpendicular to the screen in R’: call d the
thickness of the plate, p its refractive index, and B its inclination to the
screen.

Fig. 10.

Then if ¢ and r be the angles of incidence and refraction at the point P,
and we suppose the angles ¢ and B so small that the cubes and higher powers
of their sines may be neglected, we have

PQ =djcosr=d {1l + sin*3/(2u?)},
PR’ =dcos (B — r)/cos r = d — d sin® B/2 + d sin ¢ sin B/u,
QR = PQ sin (¢ —r)/cos (¢ — B) = d (u— 1) sin/u.
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Now the optical length of path from S; to X is
A= 8P +uPQ+ QX =8X'—- PR+ pPQ=(z— PR')sec(i1—B) + pPQ

*—t(z—d+~}dsin’,8—%sinisinﬁ){1+e}(sini—sin;8)’} \

1A
2
+ pd (1 + oy sin z)

'=,z+(/‘—1)d+%(z—'u';1d)(sini—sinB)’+"—2—#—1dsin2B.

But ztan (t — B) = (¢ —c) + RQ,
or approximately

z(sini—sin,B):(a:—c)+’L;ldsin'i;

whence

( —“;1d) (sini—sinﬁ):(a:—c)+/l';1dsinB.

Substituting in A, we have

w—1

(a: —c+ d sin ,8)2
_k=1, '

o
The optical length of path A, from S, to X is obtained from this expression
by changing the sign of ¢, and hence the relative retardation of the two
streams is

,=z+(,u—1)d+&2;—1dsin°/8+%

A=A A= — 2 {x-{-ﬂ'—ldsinﬁ}.
P Ay, 5
©
Thus the points of accordance of phase occur where
_z-(@p—-Ddfp - p—1,.
z= % N 5 dsin S,

and the central band of the system, which corresponds to n=0, is at the
point

p—1 .
= — dsin B,
% B

and this gives the shift due to the interposition of the plate.

If the plate be parallel to the screen and be traversed by the stream from
S; alone, the shift is approximately (x — 1) d. 2/(2¢) on the side of the stream
that passes through the plate.

27. Since the light from the correlated sources is not strictly mono-
chromatic, the only line of complete accordance of phase is that equidistant
from the sources and there is no place of complete discordance of phase for



26, 27] Progressive Motion of the Molecules 37

all pairs of constituents. Hence on receding from the line of complete
accordance, the coincidence of the bands arising from the different mono-
chromatic constituents becomes less and less complete, and finally all
appearance of interference will be obliterated.

As an illustration of the result of the defect of the monochromatism of
the light, the case may be considered in which this arises solely from the
progressive motion of the molecules of the source as wholes*.

If £ be the velocity of the molecules in the direction of propagation of the
light, and &, be the relative retardation of phase calculated on the assumption
that the molecules are at rest, then the actual retardation of phase is

OI= 80(1 +E/w)'
Now the intensity corresponding to a retardation of phase & is proportional to
2 (1 + cos d),
and the number of molecules with velocities between £ and £ 4 d§ varies as

exp (— BE) d§,
where B=4/(mu?), u being the mean velocity; hence the intensity may be
represented by

I=2f <1 + cos &, cos % .E — sin §, sin ;‘8—;’5) e PEdE

T & 1 (“i-)’
=2\/B(l+cosﬁe 3"’”) mu {1+ cosde  ‘4/ L
Hence the maximum intensity is

udy
Il =7U {]_ -+ e_w (E) }’
and the minimum intensity is
5 (‘ﬁ»)’
L=au{l—¢ ‘%]
Assuming with Michelson that the visibility of the fringes is given by
V=(&- L)/ + 1),

us,
we have V=e (4_':) s

‘and taking the limit of visibility as determined by V'=1/40,

_42«/10;;640
= -

or the limit of relative retardation A(. is given by

_&_2 '\/logAO
27r T U

* Lord Rayleigh, Phil. Mag. (5) xxvir. 298 (1889); Ebert, Wied. Ann. xxxv1. 466 (1889).
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In the case of sodium vapour at 1000° C., u = 1172 metre/sec*, whence since
» =3 x 10° metre/sec, we have

A/ = 180,000.

28. When the range of periods in the correlated streams extends over
the visible spectrum, the limit of visibility depends upon the possibility of
distinguishing chromatic variations: the central band is white and this is
bordered by fringes, that on account of the limitation of the sensitiveness of
the eye to periods extending over less than an octave appear to be sensibly
black ; to these succeed coloured bands, until a point is reached at which the
annulments for waves of different periods are so numerous as not to affect
the colour of the light.

The interference may however be rendered visible.in this case by a
spectroscopic analysis of the light. If the shit of the spectroscope be parallel
to the direction of the fringes and be narrow in comparison with their
breadth, a channelled spectrum is obtained, that is, a spectrum intersected by
dark bands at right angles to its length, the centres of which occur at points
corresponding to wave-lengths given by

A=2A/(2n+1),

A being the relative retardation of the streams and n an integer. As the
slit is moved in a direction perpendicular to its length to places of continually
higher relative retardation, the bands will travel along the spectrum from
the blue to the red end, in the case of an ordinary refraction spectroscope
closing up as they move.

The relative retardation A may be calculated from the number of bands
between two parts of the spectrum corresponding to known wave-lengths;

for if n and n” be the orders of the bands corresponding to wave-lengths
A and A’ respectively,

A=2n+1)A2=(2n + 1)N\/2,
whence if n’'—n=m,
(2n+1)/2=m\N[(A —=N) and A =mAN/(A —N).

* The kinetic theory of gases gives that p=gu?/3, where p ig the pressure and o the density
of a gas: the density of air at 0°C. and under normal pressure is 1/7734, whence if s, be the
density of the gas relatively to air at 0° C. and under normal pressure

,=48500/w/3, . (cm/sec),

and since by the gaseous laws p/(s0) =p,/(s,6,), where 0 is the absolute temperature

2 metre
Y o \/_—48 By8, s6C

By Gay-Lussac’s law the densities of two gases at the same temperature and under the same
pressure are in the proportion of their molecular weights: thus the density of hydrogen relatively
to air being ‘0693, and sodium vapour being monatomic, we have in this case

. 8=23x0693+-2=8.
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The number of bands that can in this way be rendered visible depends
upon the resolving power of the spectroscope.

A second method of employing the spectroscope is to place the slit at
right-angles to the direction of the fringes: the spectrum is then traversed
by slightly curved bands running more or less along its length and approach-
ing one another towards the violet end (fig. 11). The intercepts made by

1

Violet

Fig. 11.
these bands on the lines of constant wave-length of the spectrum are equal
and proportional to the length of the wave. If the slit intercept the central
bright band, the fringes will be symmetrically placed with respect to a
bright line.

29. In order to obtain visible interference, it is necessary that the
streams emanating from the two sources be of such a character that all
the corresponding monochromatic constituents have initially the same
difference of phase: otherwise there would be no line of complete accordance
of phase and the superposition of the systems of fringes due to the different
constituents of the streams would tend to an obliteration of all appearance of
interference.

Now though experiment shows that the streams from simple sources of
the same nature, such as soda flames, are constant as regards their con-
stituents, there is no reason to assume that the phases of these constituents
are invariably related to one another. Were this the case, it would be
possible to obtain interference fringes with streams of light from two distinct,
though similar sources, which is found to be impossible. In order then to
obtain interference fringes, it is essential that the streams should have come
initially from a single source and should traverse paths that are optically
nearly equivalent.

30. We will now consider four principal methods of obtaining inter-
ference fringes that may be classed together as being simple in theory
and as having certain distinguishing characteristics.

The first method was devised by Fresnel* in 1816, in order to demon-

* Fresnel, Guvres Completes, 1. 150, 327.
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strate the fact of the interference of light by an experiment that was free
from the objections brought against an earlier experiment of Young by the
opponents of the wave-theory.

In Fresnel’s experiment, light from a narrow slit falls upon two plane
mirrors, inclined to one another at an angle of very nearly 180°: in this way
two streams are obtained that partially overlap, and in their common part
the phenomenon of interference is observed.

In order to calculate the position and width of the fringes, let us suppose
that a plane through the line of intersection of the mirrors is the plane of yz,
the axis of y being parallel to this line, and that the plane is so chosen as
nearly to'pass through the image of the luminous point in the plane bisecting
the acute angle (20) between the mirrors.

Let the origin be so chosen that the coordinates of this image are £ », 0
and let the screen on which the interference is observed be the plane
z=a+b.

If o be the distance of the line of intersection of the mirrors from the

origin, the equations of the mirrors may be written
wsin(ﬂ—w)+(z—a)cos(0—w)=0}
zsin (0 + w) +(z—a)cos (0 + w)=0

The coordinates of the luminous point are

%y =asin 20 + Ecos 20, y,=7, z,=a+acos20 — Esin 26,

and those of its image in the first mirror are

x, — 2 8in (6 — ) {wosin(B—w)+(zo:a)cos(0—w)} =@ sin 20 + £ cos 2w,

Yo,

2, — 2 ¢0s (8 — w) {7, sin (0 — ) + (2, — a) cos (0 — w)} = a—acos 2w + £ sin 2.

Hence, the propagational speed of the light being taken as unity, the
undulatory time of passage from the source to the point (#, y, a+b) is
for the stream reflected at the first mirror

Vi={(x — asin 20 — £ cos 20)* + (y —n)* + (b + a cos 2w — & sin 2w)*}}
={(b+acos2w)’—2(zcos 2w+ bsin 2w) £ + (2 — asin 2w)* + (y —n)* + £

wcos?m+bsin2wf+%(w—asin 200+ (y—n)y+ &

=b+acos2m — rape—y sy b+ a cos 2w

For the stream reflected at the second mirror, the undulatory time of
passage V, between the same two points is obtained from V, by changing
the sign of w: hence the relative retardation of the streams, measured in
length, is F

sin 20 (b& + ax)

AR V_1=2 b+ acos2e ’
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and the points of complete accordance of phase are given by

bE+ ax

D RIN e
b+ acos2w

nA,

and the linear width of the bands is

b+ acos 2w

Ak 2a sin 20

The phenomenon is in reality not so simple as here represented, as the
streams being limited in extent, it is modified by variations of intensity near
their edges or in other words by diffraction. When the incidence on the
mirrors is nearly normal, the phenomenon is only affected by variations of
intensity near the adjacent edges of the streams, the other limits being too
remote to have any effect: but in the ordinary arrangement the light falls
on the mirrors at nearly grazing incidence, and though the intensity is
thereby increased, the streams are so narrow that the disturbance due to
diffraction becomes very marked.

Let us now consider the result of a small motion of one of the mirrors
parallel to itself. Suppose that the first mirror is moved towards the
luminous point through a distance e in the direction of its normal: then
assuming for simplicity that the luminous point is so placed that £=0, the
coordinates of its image in this mirror are

asin 2w+ 2¢sin (0 — w), 7, a— acos 2w+ 2¢cos (0 — w),
and the value of V; becomes
[{x — asin 20 — 2¢sin (6 — w)}*+(y — n)* + {b + a cos 20 — 2¢ cos (0 — w)}*]

bcos(ﬂ-—a))+acos(6+w)+%(x—asin2w)2+(y-—n)2_
b+ a cos 2w b+acos 2w ’

= b+ acos 2w —2e

to obtain V3, we have merely to change the sign of w and write ¢ =0, whence

asin 20 .2 + e {a cos (0 + w) + b cos (0 — w)}

A=V~ V=2 b+ a cos 2w

Hence as the mirror is moved towards the source of light, the interference
fringes move across the screen in a direction from the moving towards the
fixed mirror and the displacement of the fringes is proportional to the shift of
the mirror.

This method was employed by Fizeau and Foucault* for obtaining
interference with a large relative retardation between the streams. Adopting
the first of the spectroscopic methods of analysing the phenomena that have
been described above, they obtained bands when the displacement of the

* C. R.xx1. 1155 (1845); Ann. de Ch. et de Phys. (3) xxvi. 138 (1849).
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mirror was such as to give 141 bands between £ and F of the spectrum,
corresponding to a relative retardation of 1737 wave-lengths for the
ray E.

31. In a second method of obtaining two correlated streams of light,
Fresnel employed a biprism*. This instrument is a glass prism with a very
large obtuse angle and, as far as regards light incident on its flat surface,
may be regarded as made up of two prisms of very small refracting angles
joined together by their bases. Hence a stream of light incident on the
plane face of the prism is divided into two beams that are slightly bent
towards one another, so that they overlap, and in the common part of the
two streams the interference fringes are perceived.

Let the plane through the edge of the prism perpendicular to the
opposite face be taken as the plane of yz, the edge being parallel to the
axis of y; and suppose that the flat face is towards the luminous source
which is in the plane of zy and very nearly in the axis of y.

If a be the distance of the edge of the prism from the origin and a,, a; be
the acute angles of the prism, the equations of its plane faces are

z=a—xtana, and z=a +«tan a,.

Let ¢ be the distance of the flat face of the prism from its edge, z=a 4 b the
equation of the screen of observation, and suppose that the ray from the
source (&, n, 0) to the point (z, y) of the screen meets the faces of the half of
the prism on the side of positive # in the points (z;, ¥1, a —t) and (@, ¥, 25)
respectively. Then the undulatory time of passage through this half of the
prism is

Vl=’\/(x1—E)2+(y1—1;)2+(a-—t)2+/1.'\/(x2—xl)2+(y2—yl)3+(z2—a,+t)’
+V@—zP+ (Y —y)+(@+b—z)y
Sa—-t+p(zz—a+tt)+(a+b—2z)

(@ =€)+ (5 — ) (@ =2 + (Yo —3) | (@ —2)+ (Y —3)
+%{ a—t i z—a+t LI 7S }

Za+b+(u—-1)t—(u—1)z,tan o
+1} {(371“'5)2'*'(3/1_"7)2_*_# (w2—$1)2';'(3/2“ y1)2+(w_w2)2+(.7/ —3/2)2} !

a—t b

with the conditions

aV’l_x]"'E Ty — Ty 3V1_yl—ﬂ h— Y2
Y S M Ao P R g e
a_V;=_(#_1)tanal_Mml"w2 AL, ALz =% h=Y_o.

t b

* Fresnel, Buvres, 1. 330.

oz,

Byaids 0% b ?
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whence

Vi=a+b+(u—1)t—(u—1)tan a,. 2
e [{’-ﬁ—(‘;g_—t)-p‘—‘} (2, — z) + b {(p—l)tan al+§(wl—w,)}2
+{p« (@ — t)+l"+l"_b}(yl %)21
=a+b+(,u.—1)t+§b(;c—1)2tan“’al+;—Lb(/.c—1)ta,na1.(w1—w2)

= (= l)ta,nal T+, {}"(a+b) (p=1)t} {(& — 2)' + (1 — 9.)}.

: —z—(uw—1)btan a,
guk w’=f—sy(a+(£;—(;z—l)t e (
(-2)—(p—=1)btana,

mwla+b)—(u-1)¢t "7

T (a+g)) 3(/#_1”

Vi=a+b+(u—-1)t+3b(n—1)tan? o
E—xz—(u—1)btana
p(a+b)—(n—1)t
—(p=1Dtana [5 L E;(‘Z;(IS: (1;1)_1;?;1;1 {na —(p— l)t}]
plé—z—(u—1)btana)*+ (n —y)*
2 pla+b)—(p—1)t g

which becomes on reduction

3 b {pa—(u— 1) t} (w — 1) tan®a,
p(a+b)—(n—1)t
_ by + pEx + (p— 1) tan o, [ubE + {pa — (n — 1) t} 2]
w(a+b)—(u—-1)¢
p_E+r+2+y
2 u@+—(-Dt’

The undulatory time of passage V, to the same point of the stream that
passes through the other half of the prism is obtained from V, merely by
writing —tana, for tana,: hence the relative retardation of the streams,
measured in length in air, is

b {pa — (v —1) ¢} (u — 1)*(tan?a, —tan®a,)
pla+d)—(u—1)t
(;1, 1) (tan a, + tan o) [ubE + {ua — (p — 1) t} ]
pla+b)—(p—1)¢ ’

—t)+t},

T — &y =

+ pub (p—1) tan a

--

Vi=a+b+(u—1)t—

A=V,— V1=1}

|
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and the width of the bands is
YLy pla+b)—(p—1)t
{wa—(u—1)¢} (x—1)(tan o, + tan a,)°

As an instrument for the production of interference fringes the biprism is
more convenient than Fresnel’s mirrors, as the latter are rather difficult to
adjust, but as a measuring instrument it has the disadvantage that the
phenomenon is complicated not only by diffraction, but also by an almost
unavoidable imperfection in its construction. This arises from the fact that
in polishing the faces of the prism it appears to be impossible to prevent a
slight curvature near its edge, which is the very part through which the
interfering portions of the streams pass. The result of this is that the
deviation produced by the biprism, as calculated from the measured width of
the bands, depends upon its distance from the source of light and is entirely
different from that obtained from measurements with a spectrometer.

32. A third method of obtaining interference fringes is by means of
Billet’s* divided lens. This is a convergent lens of short focal length,
divided by a plane through the principal axis into two halves, that can
be separated from one another in a direction perpendicular to the plane
of section by means of a screw. A second screw serves to adjust the sections
to parallelism. The advautage of this instrument consists in the interfering
streams being entirely separated during part of their course, so that either
can be acted upon independently by the interposition of a retarding plate or
otherwise: on the other hand the field is illuminated by the narrow stream
that passes through the space between the halves of the lens and this tends
to complicate the phenomenon.

In order to determine the relative retardation of the streams at a point of
the screen, let us take the plane of xz through the principal axes of the two
parts of the lens, the axis of z being parallel to and midway between them,
and let the luminous point be in the plane z=0 and near the origin. Then
an investigation exactly similar to that given in § 31, leads to the result that
at the point (2y) of the screen (supposed perpendicular to the axis of 2), the
relative retardation of the streams that emanate from the point (£, 5, 0) and
traverse each one half of the lens is

(b—t+£”—_l—F)’g‘+(a+£“—lF)w

1 M Ty
¢ pu—1 pu-—1 4
a(b—t)—F(aer—t)—F’—L{l ——r—a——;;—(b—t)}

1
where 2¢ is the separation of the halves of the lens,

t is the thickness, F' the absolute value of the focal length of the lens,

a, b are the distances of the source and the screen from the side of the
lens nearest the former,

A=

* Ann. de Ch. et de Phys. (3) Lx1v. 315 (1862); Traité d’Optique, 1. 67 (1858).
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and 7, r, are the absolute values of the radii of the surfaces nearest the
source and the screen respectively.

33. It has been assumed in what precedes that the dimensions of the
source are so small that we may regard the light as coming from a luminous
point. In practice the source is an elongated slit and it remains to determine
under what conditions such an extension of the source is permissible and in
what degree the phenomenon is thereby modified *.

Suppose that the slit, or in the case of Fresnel's mirrors its image in the
plane bisecting the acute angle between them, is initially in the plane of zy
with its centre at the origin and its central line coincident with the axis of y,
and that it is then turned (1) about the line bisecting its length through an
angle ¢, and (2) round an axis through its centre normal to its new plane
through an angle §. When this has been done, it is necessary in the above
formule for the relative retardation to write

@ —sin ¢ (u sin @ + v cos 6) for a
and % cos @ — vsin 0 for &,
where  and v are the distances of a point of the slit from lines bisecting its
width and its length respectively.

The intensity at the point (2, y) of the screen due to an element du.dv at
the point (u, v) of the slit will be proportional to

.9
[1+cos%{a+,6’x+(ycos€—,8’sin6sin¢.x)u

—(ysin 0+ B'cos @sin ¢ . z) v}:l dudvt,

where the values of a, B, v, 8 are given by the following schedule :

Mirrors Biprism Divided Lens
- S i (p—1)* (tan® o, — tan® a,) ab 0
a+b
8 2a sin 20 (p—1)(tana, + tan a,) @ gg G -
acos 2w + b a+b ab— F(a+b)
2b sin 2w “(w—1)(tan o, +tan ;) b 9 b
7 acos2w+b a+b ab— F(a+0b)
g 2bsin 20 (u—1)(tan a; + tan a,) b =de Fb
(a cos 2w + b) (a+ by {ab—F (a +b)}?

neglecting the thickness in the cases of the biprism and the divided lens.

* Fabry, These de Doctorat, Marseille, 1892; J. de Phys. (3) 1. 313 (1892).
+ In the case of the biprism, —a’sin@sin¢ should be added to the coefficient of u and
(1~ 1)?(tan%a,; — tan®ay) b*

: these terms are however very
(a+b)?

a’cosfsin ¢ to that of v, where a’=%

gmall.
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Assuming that each element of the slit acts as an independent source of
light—the condition most favourable for brightness*—the intensity due to
the whole slit is proportional to

2 (2 2 v b 5
fzf k[1+cos—x{a+3m+(rycos€—,8 sin @sin¢.z)u

—(ysin @+ B cosfsin ¢ . x) ’U}:] dudy

=kl {1 + V cos 2%(a+ Bm)} v
where '

sin — {(fy cosf —pB'sinfsin ¢.z) k} sin — {(ry sinf + B’ cosfsind.z) I}
V= -
x {(«ycos 6 — B’ sin Osin ¢. x) k} 5 T {(ysin 6+ B cos @sin ¢ . z) 1}

k being the width and I the length of the slit. Hence the intensity fluctuates
between &l (1 + V') and according to Michelson’s estimate the visibility of the
fringes is measured by the absolute value of V.

When there is no tilt of the slit towards the interferential apparatus,
¢ =0, and if besides =0, the visibility is given by the absolute value of
sin (wyk/N)/(myk/\) and is independent of the length of the slit. The fringes
will then vanish when % is of such a magnitude as to make %k a multiple of A
and the maxima of distinctness will occur when tan (myk/\) = myk/\, the
corresponding value of the visibility being the absolute value of cos (myk/)).

The roots of the equation tan (mwyk/\) = (7yk/\) may be calculated by the
following method due to Lord Rayleight: assume

aykA=(m+1/2)m —y=U~—y,
where y is a positive quantity that is small when myk/\ is ]arge, then
substituting this value, we find coty = U—y, whence
i o ) y_Zy Ly

y=g(1+ it )-5-E-5 -

and solving this equation by successive approximations, it will be found that
146
105
It is thus determined that the maxima of distinctness occur when
vk/A=0, 14303, 24590, 34709, 44747, ...,
the corresponding values of the visibility being
1, 7217, <128 SRPLs " 078 wis

* Lord Rayleigh, Phil. Mag. (5) xxvr. 81 (1889).
t Theory of Sound, Vol. 1. § 207 (1894).

wyk & WP L T | I
T—U—y—U—U1—§U3—15U5 U7
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when yk/A = 0, the intensity is zero, but so long as vk/\ is small the distinct-
ness of the fringes will be considerable. Now the linear breadth of the
bands (from bright to bright or from dark to dark) being

A=2B,

the condition for maximum distinctness is that & must be a small fraction of
BA/y or of aA/b in the case of Fresnel’s mirrors and in the cases of the
biprism and the divided lens when the thickness is neglected: in other
words the angle subtended by the breadth of the slit at the interferential
apparatus must be a small fraction of that subtended by the width of the
bands at the-same point.

As the width of the slit is gradually increased, the distinctness of the
fringes will gradually decrease: they then vanish and reappear again in the
complementary position, since sin (wryk/\)/(7yk/\) changes sign on passing
through the value zero; the distinctness then increases up to a maximum,
that is about a fifth of the prime maximum of distinctness, and so on.

An interesting method of observing this phenomenon is to allow white
light to pass and to subsequently analyse the mixture by a spectroscope with
its slit placed at right-angles to the interference fringes. When the source
of light is a narrow slit, the ordinary fan-like appearance already described is
obtained, the bands being continuous along the whole length of the spectrum.
As the source is gradually made wider, the bands become less distinct, the
visibility decreasing most rapidly at the violet end, until a region without
bands takes its rise at that end and passes along the spectrum to the red end,
to be followed by a second such region and so on, the bands on the two sides
of the bandless space being complementary.

In the general case in which the slit is tilted towards the interferential
apparatus, the visibility depends upon the order of the bands, and when =0
is independent of the length of the slit at the point #=0, its value then
being the absolute value of sin (7wyk/A)/(7yk/X). On moving away from this
point the fringes become less and less distinct, vanish when z=2X/(8l sin ¢)
and then reappear as a set of fringes complementary to the former and so on.
At a given point of the field, the visibility is only independent of the length
of the slit if

4 x

tan0=—§wsin¢=—a-sin¢,

where d=acos 20 + b for the mirrors,
=a+b for the biprism,

= (@+5)~% for the divided lens,

and the visibility at this point is then the absolute value of
sin (moyk sec 6/N) [ (mryk sec G/A).
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It thus follows that if the slit be inclined with its upper part towards the
interferential apparatus, the effect of rotating it in its own plane from y
towards « is to move the point of maximum distinctness in the direction of
positive .

34. In 1834 Lloyd* gave a method for obtaining interference fringes,
that depends upon the interference of a direct stream of light with a stream
from the same source reflected at nearly grazing incidence at a plane mirror.
Though this method is not of great practical importance, it deserves mention
on account of its theoretical interest.

If £ be the distance of the source from the plane of the mirror, the
relative retardation of the reflected and direct streams at the point of the
screen distant # from its line of intersection with the plane of the mirror and
on the same side as the source, is 22£/d, so far as it depends upon the
distances traversed, where d i1s the distance of the source from the screen,
which is supposed at right-angles to the plane of the mirror.

Assuming then that no change of phase is introduced at reflection, the
position of the bands is given by

2xEld = n)/2,
where 7 is an integer, its even values giving the places of the bright bands
and its odd values those of the dark bands.

In this case it is clear that at most only one-half of the system of fringes
is visible and that only in a plane through the edge of the mirror, as other-
wise the plane of symmetry, in which the central band lies, falls outside the
region common to the two streams.

If however the phase of the reflected stream be accelerated at reflection
by an amount umr, the position of the bands will be given by

2ak]d = (n -+ 1) M2,
and while the linear breadth of the bands remains unaltered, the system is
shifted away from the mirror by an amount

pAdJ(4E) = pA 2,
where A is the linear breadth of the bands. Lloyd deduced from his experi-
ments that such a shift actually occurs and that it amounts to A/2, whence it
follows that u =1 or that the acceleration of phase is equal to .

The effect of an extension of the source in Lloyd’s experiment is in some
respects essentially different from that determined in the former cases.
Suppose that the source is a slit of light, with its plane initially parallel
to the screen and its central line parallel to the mirror, and that it is
then turned round the line bisecting its length through an angle ¢ and

* Papers on Phys, Sc. p. 149; Trans. R. Ir. Acad. xvi1. 172 (1834).
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next round the normal to its new plane through its centre through an angle
0. If v and v be the distances of an element of the slit from the lines
bisecting its breadth and its length, we must write

d —sin ¢ (usin @+ v cos 8) for d,
and ¢+wucosf—vsin ¢ for £,
where ¢ is the distance of the centre of the slit from the mirror, and

proceeding as in the former case we find that the intensity at a given
point of the screen is proportional to

27 (2¢x
kl {1 + Vcos 5 (—d—)} :
where
. 27 (@ c . & . 2 (@ . c c
T sin == {8 (cosB +Es1n08m ¢)k} sin —= {3 (sm 0 — 7008 0 sin ¢) l}
2%{5 (cos 0 +%sin05in ¢)k} 2%- {g (sin 0 —;— cos 6 sin ¢) l} ’

k and ! being the breadth and the length of the slit.

In order that the visibility may be independent of the length of the slit,
it is necessary that :
tan @ = ¢ sin ¢/d,

which holds for any part of the field, and when this is the case

V =sin %(gk sec 9)/{2—;: (%ksec 6)},

or if n be the order of the bands, so that z/(d\) =n/(2¢),
V =sin (mnk sec 8/c)/(mnk sec /c).
The arrangement most favourable for distinctness is when ¢ =0, § =0.

Thus the case of Lloyd’s mirror is characterised by the fact that, even
with the most favourable orientation of the slit, the distinctness is dependent
upon the order of the bands, the prime maximum of visibility occurring when
k is a small fraction of ¢/n. The effect of a progressive widening of the slit is
the same as in the former case.

This dependence of the visibility upon the order of the bands and their
periodic disappearance may be easily observed with monochromatic light by
leaving the width of the slit unaltered and moving the eyepiece, with which
the bands are observed, away from the source, keeping it all the time in the
doubly illuminated field.

35. 1In the cases hitherto considered, when white light is allowed to pass,
there is an achromatic band, that is situated at the centre of symmetry of
the system, where the interfering streams have traversed equal paths: the

W. !
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achromatism of this band is comnplete. There will, however, be an incomplete
achromatism, the band being achromatic only in the same sense as a telescope
is achromatic, in the case in which there is coincidence of the fringes due to
waves corresponding to the most brilliant part of the spectrum; and if in
addition the width of the elementary system be a maximum or a minimum
for some wave very nearly at the centre of the spectrum or in other words
has the same value for two waves of finitely different frequencies, this
coincidence of the fringes will occur for several bands, giving rise to an
achromatic system*.

The relative retardation of phase of the interfering streams for light of
wave-length A at a point whose coordinate is # may be regarded as a function
of # and A : whence writing 8 =¢ (2, 1) and expanding by Taylor’s theorem,
we have

8—8.,=%i—:8w+a¢8k +1}a¢(3x)2 ?s sx+45w(3x)z

0
where & = ¢ (0, Xo).
Hence the condition for an achromatic fringe at the point «, is
0p/or, =0,
and further the condition for an achromatic system at this place is
2
ajogxo =0

when both these conditions are satisfied, 8§ becomes very approximately a
function of z only throughout the region in question.
The following are cases of some importance:—

(1) When the fringes are viewed through a prism with its refracting
edge parallel to the bands, each of the separate systems may be regarded as
shifted through a space dependent upon the wave-length : then if 2¢ be the
distance between the sources, and d be their distance from the screen,

5=2. 2o+ POV,
and the condition 98/on, = 0 gives
MNEF ()= {2+ F(\)) =
or the position of the achromatic fringe is given by
z==F () + M F" (No).
Thus there is an abnormal shift of the central band, which is in addition to
* Lord Rayleigh, Phil. Mag. (5) xxvim. 77, 189 (1889). Cf. also Cornu, J. de Phys. (2) 1. 293

(1882). Mascart, ibid. (2) vir. 445 (1889), (3) 1. 509 (1892); Phil. Mag. (5) xxvii. 519 (1889);
C. R. cvmr. 591 (1889). Macé de Lepinay, J. de Phys. (3) 111. 241 (1894).
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the normal shift introduced by the prism, since F’(},) is negative. This was
first discovered by Potter* and the explanation was given by Airy+.

(2) When one of the streams passes through a dispersive plate
o = ﬂz}
d=2r {F()\.)-}- FI Y,
where F(\) is the retardation in wave-lengths introduced by the plate.
The achromatic fringe is here determined by

Fo)-2 Z=0 o a= ;l—c AF” (Ao).

This case is important as illustrating the difficulty of obtaining the refractive
index of a plate by a measurement of the shift of the fringes caused by its
introduction into the path of one of the interfering streams. With mono-
chromatic light no band has a distinguishing characteristic that can afford a
means of determining the number of complete bands that have been displaced
through a given point by the interposition of the plate: while with white
light, the motion of the centre of symmetry depends upon the dispersion of
the plate and cannot be calculated until that is knowni.

~ (8) When the distance between the sources of the interfering streams is
a function of the wave-length

2r F(\)
8 = —>\'— . Cl_ &
the position of the achromatic band is # =0, and there will be an achromatic
system if
MF (o) = F (M);
the achromatism of this system will be complete, if F'(A) «A.

This condition can easily be realised with Lloyd’s mirror by the following
arrangement suggested by Lord Rayleigh§ A series of real diffraction
spectra are formed by white light from a slit, that falls successively on a
grating and an achromatic lens: the central white image and all the spectra
with the exception of that which is to form the proximate source of light, are
intercepted by a screen. Then since the deviation of any colour from the
central white image is proportional to A, the condition for an achromatic
system of fringes will be realised by an arrangement of the mirror, such that
its plane passes through the position that would be occupied by the central
white image.

A less perfect fulfilment of the achromatic condition is obtained by
replacing the diffraction spectrum by one formed by a prism, adjusted so that

A F” (>"o) =F ()‘o)

* Potter, Phil. Mag. 11. 83, 276 (1833).
t Airy, ibid. . 161, 451 (1833). Hamilton, ¢bid. 1r. 191, 284, 371 (1833).
T Stokes, B. 4. Report, 1850, part 2, 20; Math. and Phys. Papers, 11. 361.

§ Lord Rayleigh, Phil. Mag. (5) xxviiL 86 (1889)."_'“_‘,_ b
\BRAR Y™
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for the brightest part of the spectrum. Assuming Cauchy’s law of dispersion,
we may Wwrite
F(\)=A4 — Bx>,
and the condition for an achromatic system gives 3B = A\, whence
F\)/A =4 (3 —r\Y3)/As

As an illustration of the effect produced by the employment of the
prismatic spectrum, let us determine the increase in the number of bands
that can be observed, when the light has wave-lengths A, and A,+&\*.
When complete discrepance first occurs for wave-lengths A and A,,

FO)a Fw) @ 1
e Bio Lis B ahae
1 PO N2 A

g = FOON~ 3_>W, N3 3\ Ay—-1/3"

whence if A=A\, + &\,
2 2\
R o b ( )( +3%)
i3
§ 2

148 /ay -% M (8")’ ’

M\ (2 oON (‘o‘h)}{ 28 45
() {s”xo ) -5 ta(n) - }
Ao\ (2, 1480 2
G b+ om-w ()«
ANt T 1 8\
-5(%) {“ﬁ,‘w ) +}
This gives the order of the band at which complete discrepance first occurs
for waves of length A\, and A, + &), the adjustment being made for A,. When

no prism is used, so that F'(A) is constant, the corresponding value of = is
Ao/(281), so that the effect of the prism is to increase the number of bands in

the ratio 2\, : 306A.
(4) A fourth case is that in which not only the separation of the sources
but also their distance from the screen of observation varies with the wave-

length of the light : in this case
8=

and

27 F (7\)

R

and the condition for an achromatic system is that
2o,
Mo (p )

This case may be realised with Billet’s divided lenst; for since the focal

* Lord Rayleigh, loc. cit.
1 Macé de Lepinay and Perot, J. de Phys. (2) 1x. 376 (1890).
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length depends upon the wave-length, the various coloured images that form
the proximate sources of light are at different distances from the screen, and
they are also at different distances apart, as they are situated on lines
through the source and the optical centres of the two parts of the lens.

To determine the position of the achromatic system, we have (neglecting

the thickness of the lens)

27 2eax

T X ab-F(a+b)

a and b being the distances of the lens from the source and the screen.
Hence the distance of the screen at which the achromatic system is formed
18 given by

b

abz(“b)a(;{m’
= S0 F)/0N,
whenes b= oY,

Since this distance is independent of the separation (2¢) of the halves of lens,
it is always possible to adjust the separation so that the position just
determined falls within the region common to the interfering streams.



CHAPTER 1V.

INTERFERENCE PRODUCED BY ISOTROPIC PLATES.

36. IN the cases of interference considered in the last chapter, it is
necessary that the dimensions of the source be strictly limited, and the
phenomena are characterised by the fact that the fringes are visible through-
out the region common to the interfering streams, whatever may be the
distance of the screen or of the observing instrument from the interferential
apparatus.

There are however cases of interference in which the limitation of the
source is unnecessary and the fringes are then localised, requiring a definite
focal adjustment of the instrument with which they are observed, if they are
to be seen distinctly.

This distinction between the two classes of interference phenomena must
not be insisted on too strongly; for in the case of the former class it is
possible theoretically to obtain localised fringes with an extended source,
while in the cases now to be considered interference bands, visible at all
distances within the region common to the streams, can be obtained,
provided the stream of light be limited by a properly orientated slit placed
either before or after the interferential apparatus.

37. Suppose that light from a luminous point S («, ¥, 2’) is divided into
two streams and that these, after traversing different routes, meet again at a

Fig. 12,

point P(z, y, z): then if the suffixes (1) and (2) refer to the two streams,
their relative retardation, measured in length in air, is at the point P



36, 37] Condition of Visibility of Fringes 55

where V denotes the undulatory time of passage between the two points, the
propagational speed of light in air being taken as unity.

But if the initial and the final media be air and a, B, v and o', B, v’ be
the direction-cosines of the final and initial straight portion of a ray, the
principle of least time gives for the variation of the undulatory time of

passage
3V = adz + B8y + 4oz —a'da’ — B8y — /82’ ..cornnnnnninl, (2),

whence the variation of the relative retardation is

88 = (— o)) 8z + (B — By) 8y + (va — m) 8z
—(ay — )82 — (B — BN &Y — (v — )82 eeennniil (3),
which is zero if
S : 8y :8z gyt B +B e tm,
8 8y 182 '+ B +B i+
If then, as is genera.liy the case, the two waves issuing from S have very
nearly the same form and position at P and their radii of curvature are large
compared with their relative retardation, it follows that this relative retarda-
tion will remain unaltered when the initial and final points are displaced
along the bisectors SS” and PP’ of the angles between the initial and the
final directions of the two rays that start from the one point and cross at the
other point.
Let @, b/, py, ¢ be the parameters of the initial straight part SA4, and
a, by, p1, ¢, those of the final part B,P of one of the rays between S and P
and let similar quantities with the suffix (2) denote the parameters of the
initial and the final parts S4,, B,P of the second ray; and suppose S
displaced to S8’ on the bisector SS'.

The two rays from S’ that meet at P are for the first part of their course
very near to SA, and S4, respectively and have for their bisector SS". If
then a,’+ 8a,/, b+ 8/, py' + 8p/, ¢ + 8¢.’ be the parameters for the one and
a) +da;, b + &b/, p, +8p,, ¢’ + 8¢, be those of the other,

Sa, + 8a, = 8b, + &b, = 8p," + 8p, = 8¢y’ + 8¢, =0.

The new parameters for the final portions of the rays are

a+8a,, b +38b, pi+p, ¢ +3q,
@, +8a;, by+8b,, P+ 0ps, Gt 8¢,
where 8a,, da,, ... are of the form ‘
8a, = 4,8, + B,8b/ + P,8p/ + Q.8q/,
Sa, = A,8a; + B,8b, + P,8p, + @, 8¢,
4,, A,, ... depending upon the interferential apparatus and being given
when that is known. But the relations connecting the parameters of B, P to
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those of SA4, are only slightly different from those connecting the parameters
of B, P and S4,; we can therefore write

da,= A,8a, + B,8b, + Plspzl #* QIS%,
=— 4,8z, — B,8b' — P,8p, -- Q,8¢, = —8a,;
similarly 8by + 8b, = 8p, + Op. = 8¢, + 8¢, =0,

which express that the rays at P that emanate from S’ have the same
bisector as those at the same point that start from 8.

It follows that the relative retardation is completely determined if the
position of PP’ be given, without its being necessary to define the position
of P on PP’ or of S on SS’".

If z=az+p, y=>bz+q be the equations of PP’, then
A =3 (t, B eal L Sk L L (4).

Now to different points of the source correspond different directions of
the line PP’, and the condition for the distinctness of the fringes at P is
that A must be stationary for all points of the source that contribute to the
illumination of this point: if this condition be satisfied for the point P, it
will be sensibly so for the neighbouring points.

Suppose that the fringes are observed with an optical instrument, the
focal adjustment of which can be altered while its optic axis remains fixed
in space, and let us take the axis of z along the optic axis, the origin being
some point in the final medium distant D from that on which the instru-
ment is focussed. Then the values of the parameters corresponding to the
optic axis are

a=b=p=g=0,
and these parameters will be small for all neighbouring directions.
w—f g 2§
- AR i e g B e LR Wl WA o 5
: < —& y-n D-¢ (%)

be the equations of a line near the optic axis, then the values of the
parameters are

wl—_f b=yl n =Df—w1§ 9=Dn—3/1§

and the equation

| sa=(G)o+ G)o+ G+ (G).e
gives
=) 5=+ &), 575+ (5. Bt + (), 5= o
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the suffix (0) denoting that in the partial differential coefficients the para-
meters are replaced by their common value zero. These coefficients are
therefore constant, and 6A may be written in the form

8 = 575 (4~ PY)a + (B @)y~ (4~ PD) £ — (B QD)) ...(S).

At the point on which the optical instrument is focussed, #; =y, =0, and
hence the condition of visibility is

(A—-PD)E+(B—QD)n=0......c.cncenvnnnnn... 9),
and if this condition be satisfied, the orientation of the fringe at this point
is given by

Yfor=—(A=PE(B=Q8)eccrveririiinnnnann.. (10).

Now £ and % being independent variables, the condition of visibility
cannot in general be satisfied, unless a linear relation is established between
them by limiting to one plane the final directions of the rays through P,
as may be done by the introduction of a slit either before or after the
interferential apparatus.

Suppose the slit introduced between the apparatus and the observing
instrument in the plane z={¢ and let ¢ be the angle that the final plane of
the rays through P makes with the plane of «z, then 7/€ = tan ¢, where

tan g = — (A = PD)[(B= QD) cercecvverrennns. 11):

thus the orientation of the slit depends upoun the focal adjustment of the
observing instrument, but is independent of the plane of the slit; on the
other hand the orientation of the fringes given by (10) is independent of the
focal adjustment of the instrument but depends upon the distance of the slit
from the point observed.

If however the interferential apparatus be such that

A/B=P/Q=m 88Y .ce0orverrrrrirrnnarannnnn (12),
the condition for visibility becomes
(A—PD)y(mE+1)=0.cccvverirninnennrniennnns (13),

and without any limitation of the stream, the interference is visible, localised

at the point given by
Dt [P it bhree s kO RN s § o (14),

while by limiting the stream in such a way, that the final directions of the
rays intersecting on the optic axis of the observing instrument lie in a plane
making an angle tan=!(— m) with that of 2z, the localisation is destroyed and
the interference becomes visible at all distances.

In this case y,/2,=—m and the bands are parallel to the plane, to which
the final direction of the rays must be limited, in order that the localisation
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of the fringes may disappear : however, if the slit be in the plane of localisa-
tion, 7/, is indeterminate and no bands are visible *.

38. Having obtained these general propositions respecting the visibility
of interference fringes, we may now proceed to the consideration of the
phenomena of interference produced by isotropic plates. In the first place it
is necessary to calculate the intensities of the reflected and the transmitted
light, when a train of-plane waves of monochromatic light () falls upon a
parallel plate of index u. The resultant reflected train is then made up of
an infinite number of components, of which the first is reflected at the outer
surface of the plate, while each of the remainder has been reflected an odd
number of times within it. Similarly the first component of the resultant
transmitted train passes through the plate without reflection and each of
the remaining components passes out after an even number of internal
reflections.

So far as it depends upon the distances travelled in the plate and in the
surrounding medium, which we shall suppose to be air, the relative retarda-
tion of two successive components, measured in actual length in air, is

A=2udsecr—2d tanr . sSint=2udcosS” ....co.ucun. (15),

where d denotes the thickness of the plate, 7 is the angle of incidence, and
r is the corresponding angle of refraction. Representing the polarisation-
vectors by complex quantities, this retardation is expressed by the introduc-
tion of a factor exp (—¢8) where 8 =2wA/A= «A is the relative retardation
of phase.

At each reflection and refraction, the polarisation-vector is altered by a
certain factor: this shall be supposed to be b for reflection and ¢ for refrac-
tion in the case of progress to the plate from the surrounding medium, and
to be e for reflection and f for refraction when the light proceeds to the
surrounding medium from the plate. Further we may suppose that at these
reflections and refractions there occur corresponding accelerations of phase,
represented by B, v, 5, ¢ respectively : these will be expressed by the factors
exp (¢B), exp (vy) .... »

Now between the factors of reflection and refraction and between the
corresponding changes of phase there exist certain relations, that Stokes has
determined from an application of the principle of reversion.

Let O be a point on the interface of two transparent, homogeneous and
isotropic substances and let 7O be the direction of propagation of a wave in
the first medium incident on the surface, OF, OR the directions of the
normals of the reflected and refracted waves and OR’ the normal of a

* Macé de Lepinay and Fabry, J. de Phys. (2) x. 5 (1891). Fabry, Thse de Doctorat,
Marseille, 1892; J. de Phys. (3) 1. 313 (1892).
+ Camb, and Dub, Math. J, 1v. 1 (1849) ; Math. and Phys. Papers, 1. 89.
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reflected wave corresponding to an incident wave propagated in the direction
RO and hence also that of a refracted wave due to a wave propagated in the
direction FO. As we are dealing with one of the plane polarised com-
ponents of a stream of common light, we may assume that the polarisation-
vector of the incident waves is perpendicular to the plane of incidence and
then by symmetry the vectors of the reflected and the refracted waves will
be in the same direction.

Let z be measured from O negatively backwards along O and positively
forwards along OF, OR and OR’, and let it denote the equivalent length of
path in vacuum : then writing for shortness

27 (ot —2)A=T,

the polarisation-vectors for the incident, reflected and refracted waves may

be represented by
GT', be(T“"ﬁ)‘, ce(T+1)L,

and it follows, from the principle of reversion, that the reflected and the
refracted waves reversed must produce simply the incident wave reversed.

Now in order to represent this reversion, it is sufficient to change the
signs of ¢ and of 2, or which is the same, those of B8 and . The reversed
reflected wave then gives rise to waves with polarisation-vectors

b2e(T-B+B)s gnd beelT-B+y)e
propagated respectively along O and OR’, and the reversed refracted wave

gives rise to waves propagated in the same two directions, for which the
polarisation-vectors are respectively

cfe(T-r+é)e and cee(T"H"?)'-_
Hence we must have

b2 “+ Qf‘e(d"?)‘ = 1’ and bce(“l—ﬂ)‘ + cee(ﬂ"/)‘ — 0)

or be@—F-nk 4 ¢ =0,
Whence equating real and imaginary parts, we obtain
b=q, ¢f=1-0, B+9n=2y, e=—-b .ccoceceen.... (16).

Returning now to the light reflected from or transmitted by the parallel
plate, let us suppose for the sake of obtaining a result that will be of use to
us later, that the plate is slightly opaque, and let the polarisation-vector be
reduced in the proportion of 1 to 1 —gdz in traversing a distance dz within
the plate: then writing for shortness exp(—gdsecr)=g, 1 to g will be the
proportion in which the vector is reduced by the defect of transparency in a
single transit.

Measuring now z positively forward along the directions of propagation
of the reflected and the transmitted streams, and denoting the maximum
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value of the polarisation-vector of the incident train by unity, the symbolical
representation of the reflected train is

{beﬂt S cef'g2€(‘/+ﬂ+¢—3)t § e21l 921; €1l(211—8)t} ex(wt-z)t
0
., Cefgtelrinte—ty (wt-2)¢
= {beﬁ + i—_——_ 32925(2"-6)‘ €~ *

e 926(21,—3)‘
il = bzgae(%,—s)z
if we may suppose that the slight opacity of the plate does not invalidate
the relations (16).

In like manner the expression for the transmitted stream is

=) ) E{x (wt - 2)+B}

(1 . bﬂ)g e{x(wt—z)+7+¢}¢
ies b2g26(27]-3)t g

Hence the intensity of the reflected light is
o (L= g + dgisin (32 = )
(1 — b%2) + 4b%g?sin®(8/2 — )
and that of the transmitted light is
(1 - be)z g*
(1 — b%g?)* + 4b%¢* sin® (8/2 — 7)
The corresponding intensities in the case of a perfectly transparent plate,
obtained from the above expressions by writing g=1, are
4bsin? (8/2 — 1) d (L=
A=y +4bsin*(8/2—7) 0 (I—_b)y+4bsin*(8/2—7n)

..(21).

39. It has been assumed in the above investigation that the reflection
and refraction takes place at a definite surface, up to which the media on the
two sides retain their homogeneity without any change. That such a state
of things really exists is in itself extremely improbable, and indeed the
observed phenomena of the reflection and refraction of polarised light appear
to indicate that the passage from one homogeneous medium to another is
through a very thin transition-layer, within which a rapid variation of
properties occurs: if the thickness of this layer be comparable with the
wave-length of light, we shall see that a change of phase at reflection and
refraction will result. So long as the distances with which we are concerned
exceed a few wave-lengths, no great error will probably be introduced by
ignoring the transition-layer, but that our results cannot be applied to the
case of extremely thin plates is shown at once by the fact that the expression
for the intensity of the reflected light does not vanish with the thickness, as
1t should of course do.

It has also been supposed that the disturbance within the plate is fully
represented by waves with transversal polarisation-vectors. If the existence
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of a transition-layer be denied, the changes of phase must be attributed to
undulations with a longitudinal vector, that are called into existence at
reflection and refraction and would be themselves capable of producing trans-
versal waves on encountering a reflecting surface. These longitudinal waves
must be of the nature of superficial undulations becoming insensible at a
very short distance from the surface, and they may therefore be left out of
our calculations, so long as the plate that we are considering is not very thin.

Now the case of thin plates is the very one to which we want to apply
our calculations, and for such plates, as we have just seen, our formule no
longer hold. We may however obtain a result that agrees very well with
observed facts, if we neglect any changes of phase at the reflections and
refractions, as well as the transition-layers, or the superficial undulations, to
which they appear to be due. Writing then =0, we have as the intensities
of the reflected and the transmitted light

(1 — g?) + 4g°sin® (3/2) S (1-0)g° (22
0 — gy + 4bg* sin? (8/2) 0 —bgry + dogr s 3)2) 22
in the case of a semi-transparent plate, and
40? sin? (8/2) =L (1 -0 3
(1 —b%)? + 4b*sin? (5/2) (1 — b2+ 4b%s1n? (8/2) "7

when the transparency is perfect.

be

It follows then that the reflected light becomes a minimum and in the
case of perfect transparency vanishes, when 8 = 2nsr, or when
P HETIPESITN bt odb oo Hooors e S e A (24),
n being an integer.

40. Suppose now that the light is not strictly monochromatic, but is
made up of a number of constituents with periods only slightly different from
one another. If the thickness of the plate be very great compared with the
wave-length, then & will vary enormously for a very small change in A, and
sin (8/2) will assume all values from —1 to +1. This being the case, the
intensity of the reflected light, that of the incident light being taken as
unity, may be represented by

1 (ogrstgsntt o
m 1o A= pgr abgrsine ¢
_1—(1_b2g2)2_b2(1_g2)2 j»-;r dg
& T o (1 —b%¢*)cos? &+ (1 + b%g*)?sin? &’
provided we may assume that the intensity of the constituent streams varies
but slightly with the wave-length. Similarly the intensity of the transmitted
light is

Gl - dg
T o (1 —bg*?cos? &+ (1 + b*g?)?sin® &
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Now writing tan £ = (b/a) tan {, we see at once that
f o g

a?cos? {4+ b*sin*¢  ab’

Hence the intensities in the two cases are
1— (1 s begﬁ)a - b (1 ped gz)z L & (]_ =S bz)a bzg4.
1 - by 1 — bty
(1 L. bz)z gz
1-b4g* ’

the result that would be obtained by summing the intensities of the different

components into which the incident stream is divided by the reflections and
the refractions*.

and

41. We have now to justify the application of our formule to the cases
that actually occur, in which the faces of the film are not necessarily parallel
and in which the light incident upon it consists not of a train of plane waves
but of a number of distinct streams coming from the various points of an
extended source placed at a finite distance from the plate.

Suppose that the film of index u is included between two media of index
4, of which the upper one is a thick parallel plate, while the lower boundary
of the film is either a spherical surface of very large radius or a plane not
necessarily parallel to the faces of the plate.

Let S be a point of the source and let us determine the relative retarda-
tion at some point P of the streams, that emanate from S and have been
reflected at the outer and the inner surfaces of the film respectively.

In the case of the stream externally reflected, the ray through P lies
entirely in one plane aud is projected on the upper surface of the film in the
straight line S4,44,P, the points 4,, 4, A, denoting the places at which a
change of direction occurs: on the other hand the ray internally reflected lies

B

Fig. 13.

in general in two planes and its projection on the upper surface of the film is
the broken line SB,B,BB;B, P, refraction or reflection taking place at the
points indicated by B,, B,, ....

Let 7 and 7’ be the angles of incidence and refraction at 4,, then ' is the
angle of incidence at 4 and »’ and 7 are the angles of incidence and emergence
at 4,.

* Kirchhoff, Vorl. iiber Math. Optik. p. 164.
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Let %, n')

/7
Ty, T2

-

, r be the angles of incidence and refraction at
T3, T3

©

bR

Ty, U J A
and 6, 6,, 6, the angles that SAP, SB, BP respectively make with some
fixed straight line on the upper surface of the film.

Denote the heights of S and P above the surface of the thick plate by ¢
and O, the thickness of the plate by A and that of the film measured normally
to the faces of the plate by ¢&. Then

A =c(sect, —sect) + C (sec i, —sect) + u'h (secr, +secry —2secr’)

+ ut(SeCTy+SECTs) cvvervnraninnnnnn. (25),
with the conditions g

0 =c(tan < cos @ — tan ¢, cos 6,) + C(tan ¢ cos 6 — tan ¢, cos 6,)
+ k(2 tan ' cos 6 — tan r,’ cos 8, — tan 7, cos 6,)
—t(tan r; cos 6, + tan r5 cos B,)...............(26),
0 = ¢ (tan ¢sin § — tan ¢, sin 6,) + C (tan ¢ sin 6 — tan ¢, sin 6,)
+ h (2 tan 7’ sin 6 — tan r,’ sin 6, — tan 7y sin 6,)
—t(tan r,5in 6, + tanrysin 6,) ...............(27).

Multiplying the last two equations by sinzcos @ and sin<sin @ respec-
tively and adding them to the former, we obtain

1 —sin 2 sin 7, cos 8 cos 6, — sin ¢ sin %, sin @ sin 6, 2
A=c : — cost
COS 7,

+O’(

1 — sin ¢ sin 7, cos @ cos 6, — sin 1 sin 7, sin & sin &, :
COS 7, o z)
1 —sin 7' sin ;" cos 8 cos &, — sin 7/ sin 7, sin & sin 6,
cos 7y’

+u'h (
1 —sin 7’ sin 73, cos 6 cos 6, — sin ' sin 7, sin 0 sin 6,
cos 75

—2co8 'r’)

1 — sin 7 sin 7, cos 8 cos 6, — sin 7 sin 7, sin @ sin 6,
COS 7

+,ut(

1 — sin 7 sin 7 cos 8 cos 8, — sin 7 sin 7, sin 8 sin 92) (28)
Scs Re (2.3)):

where r is the angle of entry into the film corresponding to an angle of
incidence 7 on the first surface of the plate, so that sin r = sin ¢/u.

Hence

A=c1—cose1 Ol——cosq ,h<1—008€1' 1—cose3’)

COS 17, COS 7,4 cos 7y’ cos 1y’

\

1—cose 1 —cos Es)
COS 7y COS 73

+,ut<2cosr+
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where ¢ denotes the angle between corresponding parts of the rays, so that
for instance
COS €; = COS 7 COS 7 + Sin 7 sin 7, cos (6; — 6).

When the angles e are very small, which will be the case when ¢ is very

small, we have neglecting ¢
A=2utcosr.

To the same degree of approximation, the stream that is reflected (2p — 1)
times within the film is retarded relatively to that reflected at its upper
surface by an amount

Ap=2u(t + 1,4 ... + ;) cosry
where ¢,, ¢, ... denote the distances below the upper surface of the points at
which the reflections at the lower side of the film occur. Since however the
importance of the successive components decreases very rapidly as their order
becomes greater, we may, provided the thickness varies only very slowly,
write the above expression for the retardation as
Ap=p.2utcosr,

where ¢ is the thickness at the point of reflection of the externally reflected
stream, and in that case the intensity of the reflected light is given by the
expression already obtained for the case of a parallel plate. If however the
incidence be very oblique and the variation of the thickness be not very
small, there may be a considerable departure from the theoretical simplicity
assumed in the above investigation *.

42, If now we pass to another point of the source, we obtain for the
intensity at P an expression of the same form, in which » and ¢ have new
values, and since there is no regular interference between streams that start
from different points of a source, the resulting intensity is the sum of all
such expressions for those points of the source that contribute to the illumina-
tion of P.

In general then there will be no visible interference at P, unless at this
point A has the same value for all the points that send light to P, or which
is the same, for all points of the upper surface of the film, that are included
in the area traced upon it by the rays through P, that meet the object glass
of the optical instrument, with which the interference is observed.

The condition of visibility then is
dA = 24 cos rdt — 2ut sin rdr
=2ucosrdt — 2t tan rcostde =0 ......ocenennnnnn. (30),

for all points of the film utilised.

43. As a first application of these considerations, let us take the case in
which the film is a parallel plate. Then dt =0 and the condition of visibility

* Macé de Lepinay, J. de Phys. (2) 1x. 121 (1890).
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is that d¢ =0, which expresses the fact that the interference is localised at
infinity.

The bands are arcs of circles and have this peculiarity that the order of
the band decreases as the angle of incidence increases; for at normal

incidence
Ay=2ut = m\,

where n, is not necessarily integral, and at an angle of entry r
A =2ut cosr=mn],
whence Ay— A =2ut (1 —cosr)=4utsin® g = (n, — n) A,

To determine the angular width of a band, corresponding to a change of

n into n — 1, we have
2ut sin rdr = A,

3 A
whence e g dadi
t " sin2e
Thus the bands are very broad at normal and at grazing incidence, and their
minimum separation, corresponding to the minimum value of cos . cosec 23,
occurs when \
u
u=—1
These bands were first observed by Haidinger with plates of mica*.

tants =

44. An interesting case of these bands occurs when the plate is less
dense than the surrounding medium and the angle of incidence is very
nearly that corresponding to total reflection: they are then known as
Herschel’s bandst. This case may be realised by employing a parallel plate
of air bounded on one side by the face of a prism.

Denoting by r and ¢ the angles of incidence and refraction at the plate of

»

\L‘

Fig. 14.

* Haidinger, Pogg. Ann. Lxxvit. 219 (1849); Wien. Ber. x1v. 295 (1854). Mascart, Ann. de
Ch. et de Phys. (4) xxm1. 126 (1871). Lummer, Wied. Ann. xxmr. 49 (1884).

1 Herschel, Phil. Trans. xcix. 274 (1809). Mascart, C. R. cvim. 596 (1889); Phil. Mag. (5)
XXVIL 524 (1889); J. de Phys. (2) viir. 445 (1889): (3) 1. 509 (1892). Lord Rayleigh, Phil. Mag.
(5) xxvir. 197 (1889).

W. 5
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air, and by p and @ the angles of incidence and emergence at the surface of
the prism, the angle of which is 4, let ry, 7/2, p,, 6, be the values of these
angles, when the light meets the plate at the critical angle. Then

A'=12¢icos t="mh " BSE. A%, il (31),
sint = psinr 1= pusinn,
sin = p sin p STNY0 =t S, et o it 8 (32).
A=p+r=p+7r
Since the differences 6 —8,, p—p,, 7 — 1, are very small, these equations
glve
0 — 6, = p(p — po) €Os po/cos B, = — u (r —1,) cos p/cos 6,
sint=1+u(r—ry)cosr,=1— (é — ,) cos 1y cos Gyfcos py ¢ ...... (33),
cos?t = 2 (6 — 6,) cos r, cos Gy/cos p,

€os 7, cos 0,
Cos p,

whence A? =2 =8¢

(G By ] (34), -

and the angular width of the n** band in monochromatic light A, correspond-
ing to a change of » into # + 1, is given by
_ N\ COS P,
g 4¢  cos r,cos 6,

........................... (35).

Hence the width of the »™ band is approximately proportional to the order,
to the square of the wave-length and to the inverse square of the thickness.

Let us now consider the phenomenon in white light*. Since cos 6,
cos p, and cos r, vary but slowly with the wave-length, we may write

A=mA=h(@ =0 ..ccovvrrinrnninnirinen, (36),
where & may be regarded as constant, and §, is a function of the wave-length.
Now dé, il s ]

" cos 6, cos 7,

and since the coefficient of du may be considered as constant, , is a linear
function of u,and we may write

Now the bands will be superposed for all colours for which the wave-
length is near a certain value chosen arbitrarily, if the differential coefficient
of the deviation with respect to the wave-length be zero, the order n being
supposed to be constant. The deviation of the fringes of the same order
relatively to more remote colours, whether of greater or less wave-length, is
then in the same direction, and the band may be said to be achromatised for
the colour of concordance.

* Macé de Lepinay, J. de Phys. (3) 111. 163 (1894).

)
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The condition for achromatism for light of wave-length X is

T L (38),
and the deviation of the band achromatised for this radiation is
I L T U s e i e, (39),
the order of the band being given by
MN=Rh (@ =0 =h SO eieeeriiainieinininnns (40).
Eliminating A between these last two equations, we obtain
AR T R RN 1 (41),

and the width of the bands is 2 J/b/h, which is practically constant.

Thus in white light the coloured bands are nearly equidistant, though in
monochromatic light their width varies as the square of the wave-length.

45. Let us next consider the case in which the film is contained between
a thick parallel plate of thickness 2 and a plane surface inclined to the
faces of the plate at a small angle a*.

Let us take as origin the point in which the edge of the wedge-shaped
film is met by a plane through the optic axis of the observing microscope
normal to the thick plate, and let 4 be the angle between this plane and one
perpendicular to the edge of the film.

Then denoting by R the radius-vector to the point in which the upper
surface of the film is met by the ray that emerges from the thick plate in
the direction of the optic axis and by a the distance of the same point from

the edge of the wedge,
t=atana=Rcosy . tana,

.. dt =tan a (cos YdR — R sin Yd+r) = t (cos yd R — R sin Y dvy)/a.
If C be the height above the top of the thick plate of the point P on which
the microscope is focussed
R = const + C tan ¢ + h tan 7,
. dR = Csectidi + h sec’r’dr’ = (C sec? + h cos < sec® r'/u’) di
= (Dseci+h cos isec®r’[u) di,
where D is the distance of P from the top of the plate measured along the
optic axis of the microscope.
Hence the condition of visibility (830) becomes
M COST tan r cost

PG Rt a7 Dsect + h cosvsectr' [y ax;
or writing dR=§¢, Rdy=n,
: a sin r sec®r cos?¢
Ecosyr—psinyr = o DE e ied B g (42).

1"'/#'
* Macé de Lepinay, J. de Phys. (2) 1x. 121 (1890).
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Now £ and  being independent variables, this relation cannot in general be
satisfied, unless the final directions of the rays that pass through P be limited
to one plane by the introduction of a slit: the points at which the rays are
reflected at the upper surface of the film will then form an element of a
line, and if this make an angle ¢ with the trace of the plane of incidence,
n/€=tan ¢ and

D=-—

hcos’t  a cos*tsinr cos ¢
gy e e A e R
whence it follows that the plane of localisation depends upon the orientation
of the slit.

If the fringes be visible with an extended source, the value of D must be
independent of ¢ : this occurs

(1) when 4 =0° or 180°, the plane of localisation being then given by

hcos®t @ cos*zsinr
pcostr —p costr

=

the upper or lower sign being taken, according as 4 = 0° or 180°;
(2) when r=0° or the incidence is normal ; the fringes are then localised
at the point
D=- h//",’
that is at the apparent upper surface of the film;

(8) when »=90° or the light meets the film at the critical angle. The
plane of localisation is then at infinity.

We may notice that the expression — A cos?s sec®r’/u’ gives the position
of the first focal line of the pencil, that emanates from a point on the lower
surface of the thick plate and has its axis on emergence along the optic axis
of the microscope.

46. As a final application of the formule, let us take the case of
Newton’s rings formed by reflection from a thin film included between a
thick parallel plate and a convex surface of the same substance of very small
curvature*,

Take the point of contact of the surfaces as the origin of a rectangular
system of coordinates, the upper surface of the film being the plane of zy,
that of @z being parallel to the plane normal to the plate through the axis
of the microscope, with which the rings are observed, and the axis of « being
directed towards the luminous source.

Let (z, y, 0) be the cartesian and (R, ¥») the polar coordinates of the
point, in which the top surface of the film is met by the ray that emerges

* Macé de Lepinay, loc. cit. Cf. also, Feussner, Marburg. Ber. (1880) 1; (1881) 1; (1882) 1;
Wied. Ann. x1v, 545 (1881). Wangerin, Pogg. Ann. cxxx1. 497 (1867); Wied., dnn. xL. 738 (1890).
Sohncke and Wangerin, Wied. dnn. x11. 1, 201 (1881); xx. 177, 391 (1883), Gumlich, ibid. xxv1.
337 (1885). Flux, Phil. Mag. (5) xx1x. 217 (1890).
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from the plate in the direction of the optic axis of the microscope : then if
(z+ &, y+m, 0) be the coordinates of a point near to «, ¥, 0, we have

2t = R?¥p,
p being the radius of the spherical surface, and
2dt—“—1%ﬁ—§%(§cosx[r+nsm\;r)— R(fcos«[r+nsmx{:)
and £=(Dsect + hcostsecr’/u’) di,

D having the same meaning as in the last case.
Hence we have for the condition of visibility
2u . sin 7 sec?r cos?¢
R (§cos ¥ + 9 siny) = D+ h cos?v sec® r'/u/ &

and introducing the relation 7/£=tan ¢, the plane of localisation of the
fringes is given by

...............

h cos’i R sinrcos’t cos ¢

=—=. e+ o : 44),
4 § - ocostr " 2u  costr ' cos(d—4) %
an equation that gives the same results as were obtained for the case of a

wedge-shaped film.

47. 1In the case of curved interference fringes, the retardation of phase &
is to be regarded as a function of #, y and X, and the equation

in which X is regarded as a constant, determines the form of the fringes as
seen in homogeneous light.

If the light be white, the bands will be in general coloured, but those
points will be achromatic for which
dd
g ] B rhite s bans bufien SGGEISs win 46).
=0 (46)
.This condition gives a relation between # and y, and determines a curve
that may be called the achromatic curve, but inasmuch as the value of & is
not constant along it, this curve is not an achromatic band. The achromatic
bands are a system of infinitely short lines, that exist only at the points of
intersection of the achromatic curve with the lines & = const.

In the case of Newton’s rings, the thickness of the film at the point
(#, y) measured from its thinnest point is

1R R AT g el g s i e T 47),
whence $ = é;{ @D (28 + PDECOBE ;oeaigndio o il oo v (48),

and the achromatic curve is
(P AT (TR R3S S B AR o RO (49).
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It is thus wholly imaginary, if @ and b be both positive and finite: but if
a = 0 there is an achromatic point =0, y=0.

The result is however different when the rings are viewed through a
prism. We may then suppose that each monochromatic system is shifted as
a whole parallel to the axis of z by an amount dependent upon the wave-
length of the light. The apparent coordinates being £ and 7, so that

E= 2 =N, Ty BT R i« + o5 s o el nllel (50),

the equation of the rings as seen through the prism is

el T o RO (51),
and the equation of the achromatic curve is
{E+T ) =N )P+ =23 {f ()2 — afb............ (52),

which represents a circle with its centre on the axis of £
If a =0, the curve is real and passes through the point
E+f(x’0)=01 7)=0:

that is, the image of the point of contact (z=0, y=0) in light of wave-
length A,. At the point

E=—f)+ 20" (N), 7= 03
in which the circle again meets the axis, the bands are parallel to the
achromatic curve and are specially developed.

As a increases from zero, the radius of the achromatic circle decreases, the
centre remaining fixed, so that the two points in which the circle cuts the
axis are on the same side of the image of #=0, y=0. When a is such that

afb =7 {f" M),
the circle reduces to a point, given by
z=E+f (M) =Nf ' (N), y=79=0,

and since there are two coincident achromatic points on the axis, the
condition is satisfied for an achromatic system. We then have

a/b =22
so that t=a + bz = 2a,

and hence for an achromatic system, the thickness at the point must be due

half to curvature and half to imperfect contact at the place of nearest
approach of the surfaces*.

48. It has already been stated that a defect in the monochromatism of
the light leads to the final obliteration of the interference fringes as the

* Lord Rayleigh, Phil. Mag. (5) xzviir. 203 (1889).
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relative retardation of the interfering streams increases, and the visibility of
the phenomenon has been determined in the simple case of a source emitting
radiations that are grouped about some principal period with intensities
given by Maxwell’s law.

Another instance of a somewhat different character is afforded by
Fizeau's* celebrated experiment with Newton’s rings viewed at normal
incidence in the light from a soda-flame. Roughly speaking, this light
may be said to consist of two systems of radiations, the wave-lengths of
which differ from one another by about one-thousandth of that of the one
with the lower frequency. When the film is very thin, the difference of
phase is sensibly the same for both systems, so that the maxima due to
each coincide and the rings will have their greatest possible distinctness.
As the thickness of the film is increased, the rings will move in towards
their centre, becoming less and less distinct, and when the distance between
the surfaces of the film is of such a magnitude that the relative retardation
of phase for one radiation exceeds that for the other by half a period, the
maxima of the one will be superposed on the minima due to the other and
the rings will be no longer visible. A further increase in the thickness of
the film will cause a reappearance of the fringes, the distinctness of which
will increase up to a maximum, corresponding to the case of the relative
retardation of phase for the one radiation being a complete period in excess
of that for the other.

If the light from the soda-flame had the simple character stated above,
these phenomena would be repeated indefinitely and the visibility of the rings
would be the same at the successive maxima of distinctness: this however is
not the case, and it becomes important to determine the manner in which
the visibility of interference phenomena depends upon the radiations from a
complex source and to investigate whether the variation in the visibility
as the relative retardation increases affords a means of discovering these

radiations.

49. Suppose then that f(A)d\ is the intensity of illumination due to
streams, the wave-lengths of which are comprised between A and A+ dA, and
that A is the relative retardation in actual length in air introduced by the
interferential apparatus: then the intensity due to these streams is

2 (1 +oos 7 A ¥ (1) et (53),

and if the radiations from the source are grouped about some principal
radiation, the total intensity is obtained by integrating this expression
between the limits A, and A,—the wave-lengths of the extreme constituents

of the complex stream.

* Fizeau, Ann. de Ch. et de Phys. (3) Lxv1, 429 (1862).
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Let M 1=(1+2)A,, the values of x corresponding to A, and A, being
—a, and @, respectively, then writing £ (\) dA = ¢ (#) dw and A =p),, we have

I=2fx2 (@) dw+2f“’ cos 2mp (1 + 7). () d

=2P+20cos 2mp — 28 .5IN 27Peeueniieiniinininininnninns (54),
where
A £ S
Pi= ¢(x)de, C =f cos 2mpx. ¢ (x) dz, S =f sin 2mpz. ¢ (z) da.
-2, —-a, —2,
If the interval a; + 2, be small, the variations of C and S with p may be
neglected, and the maxima and minima of the intensity occur when

C'sin 27p + S cos 2mp =0,
the value then being

S8 b Vol s RS O e St s 8. (55),
whence the visibility of the fringes is given by
Vi = (14 8Y/ P2 eveeeenivisvaniieiuns ...(36).

If now the radiations from the source form several groups such as that
just considered and the values of # for their principal radiations be «;, @,, .
then replacing by a, + 2z and ¢, (an+2) by Y, (2), we have ‘

vey

C= Efcos 27p (an + 2) Yrn (2) dz = 2 C), cos 2mpaty, — 28, sin 27pa,,

S=3 fsin 2mp (an + 2) Yy (2) dz = 2.8, cos 2mpa, + 2 C), sin 27pay,

and the visibility is given by
(ZPyV? = (3 (CinCh + SmSn) cos 2mp (ay — o)

+ 2 (CnSp = OnlSp) Sin 27p (ot — @m)}eeevnvennnn. (57).
When each group is symmetrical,
CPyRV =3P, PV Vi cos 2P (otn — G )eeeeceeensnanse (58),

and if the groups be alike, except for a constant factor ~ that may represent
intensity,

Vo 3 b, 08 27 (2 — alm)
i (Zhy

where V) denotes the visibility for a single group.

e ) (59),

The most interesting case is that in which the intensities in the groups
are distributed in accordance with Maxwell’s law, or ¢ ()= exp (— k%?2).
When the coefficient % is very large, the exponential diminishes very rapidly
and the important terms are those near the principal radiation, for which
z=0: taking the limits of integration as + o,

Vi=exp (— wﬂpz/kg)............., ................. (60),



49, 50 Analysis of Spectral Lines 73

and in the case of two groups, for which the intensities are as 1 :, the
visibility is

=pt [1 + 72+ 2rcos 2mp (@ — @)
V=e® TRor e e (61).

50. Conversely suppose that the visibility is found to be represented by

o 1472+ 2rcos2nX/D
—9-Xy(?
V=2 \/ an PN il e b (62),

X being the retardation in length, and let us determine the radiations
present in the streams.

The form of the expression shows that the source is double; that its
components have the intensity-ratio 1 : », and that in each the light is
distributed according to the exponential law expressed by its first term.

From a comparison of (62) with the expression for the visibility in the
case of a double source of which the constituents are known, we have, if A
be the mean wave-length, ,
—dl X/D
but A, and A, being the wave-lengths of the principal radiations

- =A== MT) EA =) AT,
and hence on a scale of wave-lengbhs the distance between the principal
radiations is ‘

Again comparing the exponentials, we have
wp* [kt = (X /C) log, 2 = (p\/C)* log, 2,
Uhalsnd
A iog,2 log, 2’

But if € be the “ half-width ” of the spectral line—the value of # that makes
¢ (2)="5—

k=

_log. 22
r O’

and on a scale of wave-lengths the “ half-width ” of the spectral line is

ke=+log,2, or

log, 2
Ae= - U = O 22 6 ........................ (64).

Hence the expression for the visibility gives the ratio of the intensities of
the components, their width and the distance between them; but the order
in which they are arranged in the spectrum remains indeterminate*.

* Michelson, Phil. Mag. (5) xxx1. 256, 338 (1891); xxxiv. 280 (1892); Travauz et Mémoires
du Bureau Intern. des Poids et Mesures, x1. 129 (1895).
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Fabry and Perot* have however succeeded in determining this by
Fizeau’s method (§ 48); but instead of using Newton’s rings, they employed
Haidinger’s fringes formed by the light transmitted through a parallel plate
of air contained between two thick plates of glass, the adjacent surfaces of
which were lightly silvered. By thus increasing the reflecting power of the
faces of plate, the dark bands are made much blacker, while the bright rings
are rendered very fine, and in consequence the rings produced by radiations
extremely near to one another can be easily separated by a progressive
increase of the thickness of the plate.

51. In order to determine the expression for the visibility, Michelsont
employed the refractometer described in Chapter II, deducing the form ot
the function from his measures by a graphic method. A reference to the
description of the apparatus already given will show that, so far as inter-
ference is concerned, the streams comport themselves as if they were reflected
at the first and second surfaces of a film of air contained between the image
of the mirror M, in the silvered surface of the glass plate G, (which image is
called the plane of reference) and the surface of the mirror M,, since when
the silver coating of G, is very thin, the change of phase on reflection at it
amounts to 7 whether the reflection takes place in air or in the glass}.
There is here clearly no question of multiple reflections within the film, and
the dark bands will occur when

2t cost=(2n + 1) A/2,
and the bright bands, when
2t cos t = nA.

When M, is parallel to the plane of reference, the fringes are concentric
circles localised at infinity, while if M, be inclined to this plane and the
plane of incidence be perpendicular to their line of intersection, the fringes
are straight lines, parallel to this line and localised on the surface of the film.

For the determination of the visibility Michelson adopted the first of
these two cases of interference. The mirror M, was first adjusted to
coincidence with the plane of reference, in which case the two streams
have traversed equal distances, and it was then displaced through 1 mm.,
giving a difference of path of 2 mm. and the visibility was estimated, and
so on.

These eye estimates of the visibility having been checked and corrected
by previous observations of fringes having a visibility that could be calcu-
lated, a curve was drawn by taking the differences of path as abscisse and
the visibilities as ordinates, and the equation of the curve was then found by
trial.

* Fabry and Perot, Ann. de Ch. et de Phys. (7) x1w. 459 (1897); xvi. 115, 289 (1899); xxII.
564 (1901); Astrophys. J. xim1. 265 (1901).

+ loc. cit. p. 115.
+ Edser and Stansfield, Nature, Lvi. 504 (1897).
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The following examples will serve as specimens of the results obtained by
Michelson*. In the figures the curves drawn in full on the right represent
equations adopted as the expressions for the visibility : the figures on the
left give the character of the spectral lines deduced from the curves of
visibility.

(1) The visibility-curve of the red hydrogen line (A =656 x 10—*)
practically agrees with

V = 219 cos *7/30,

the form cosr/D being written for ¥'1 + 72+ 21 cos 2rX/D/(1 +7), so that it
is practically the same as that due to a double source, the components of
which have the intensity-ratio 7 : 10.

01 02 03 04 10 mm 20 30 mm
Fig. 15.

The distance between the components of the line is
?% X (656 x 1074)* =14 x 108 mm. = 0'14 divisions of Rowland’s scale.

The width of each component on the same scale is 0-099.

(2) For the red cadmium line (A = 6'44 x 10~*) the visibility-curve agrees

with
V =] 2'(X‘/138)2 3

this then is a remarkably simple line of breadth 0013 on Rowland’s scale,
and the red cadmium line thus affords a spemally homogeneous source of

light.
1-0

05

01 100 260 mn
Fig. 16.

(8) The orange-red oxygen line (A =616 x 10~) gives for the curve of
visibility

V = 2-(x347 {0'36 + 032 cos 27 —— e

369 + 016 cos %

X X
+016cos27r48 173}

* loc. cit. p. 138,
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This expression indicates that the source consists of three simple and similar
lines, the intensity-ratios of which are 2 : 2 : 1, the last being at the end of
the series: the width of the lines is 005 and their distances apart are
141 and 0°78.

0 10 20

Fig. 17.
(4) The green thallium line (A =535 x 10~¥) gives
i
V= % cos "2/160 {45 Ve+V2+4V.V,cos2nm %} ]

V,=2- (X121 V7, Q- (Xn88)%,

© 01 100 200mm
Fig. 18.

The light thus consists of two sources, for which the intensity-ratio is 2 : 1,
and each of these is a doublet, the elements of which are determined from

V,=2-(X2%)c0s-2/160 and V,=2-(X188)%cos-2/160.
Thus the components of each doublet have the intensity-ratio 5 : 1 and for
each the distance between the components is 0:018 on Rowland’s scale; the

width of each component is for the one source 0005 and for the other is
0:007 on the same scale. The distance between the doublets is 0:113.



CHAPTER V.

DIFFERENTIAL EQUATIONS OF THE POLARISATION-VECTOR.

52. BEFORE proceeding further, it is necessary to determine the differential
equations that the polarisation-vector must satisfy in the case of an isotropic,
dispersionless, transparent medium, that is, one in which waves travel with
the same speed, whatever their period and their direction.

It has been shown in Chapter II that the phenomenon of interference
indicates that the result of a superposition of trains of waves of light is repre-
sented by a summation of their separate effects without any modification of
the waves themselves. Since then in a train of waves the vibrations of the
polarisation-vector are in the plane of the waves, provided they are identical
over the whole extent of the wave-front, the components of the polarisation-
vector d must satisfy the equations*

u=ZSpn(wt—7), v=3xn(0t—7), w=3P,(0t—7)......... ),
ultom+wn=0 .....ccciiiiiniiiiiininann.. (2),

where ¢n, Xa, ¥n are periodic functions, o is the propagational speed of light,
1, m, n denote the direction-cosines of the normal to the wave-front and

r =l + my+ ne.

Eliminating the arbitrary functions and the direction-cosines, we obtain

aaTu" !V, %it” = 'V, %it" P P AT 3).
Writing now | o= g%:' =2 % * -aaL: ,
we have d=— %(aa?l+g-§m+%l—:n)=0
by (2). Hence the condition
s_gu+g;+%w pifb s S v o @),

* Voigt, Kompendium der Theoretischen Physik, Bd. 11. 554.
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which expresses that the polarisation-vector has no convergence anywhere,
may be regarded as equivalent to (2), and the differential equations required
are given by (3) and (4). These equations may clearly be written in the
symmetrical form

d=—curl®w, & =curl €eccoeeerrereererenaannnn. (5),

where the components of the vector e are given by
0% 07— SNy
(o Byt =1 (5% 5 870) T T S (6).

53. As a first application of these equations, let us determine the nature
of the vibrations when the waves are unhomogeneous, that is when they are
no longer identical over the whole front. Using bars (—) over the letters to
denote complex quantities, let us assume as a solution of the equations

u=ad, v=PBd, w=ud, d=Aexp{i(z+my+nz+st)...... (7),
where S R (8),

2 et e b ‘
la:+'my+nz=7 {wcost+ycosj+zcosk
+ w (2 cos I 4y cos J + z cos K)}......... 9);

a, B, 7 are then the complex direction-cosines of the vector d,

cos 1, cos j, cos k are the direction-cosines of the normal to the planes
of like phase,

cos I, cos J, cos K are the direction-cosines of the normal to the planes
of like amplitude, and

v 1s the coefficient of extinction of the waves along this normal.

Then equation (4) gives

&l - O oy 0. s s L s S5b e du Tk Tl (10),
and from each of equations (3)
S= 0 (D T ) cierereeerrranenenirsnnenes (11).

Separating the real and imaginary parts of this equation, we have
PV=w*(1-1*), O0=wv(costcost+cosjcosd+coskcosK)...(12),

Q) being the propagational speed of unhomogeneous waves of period 7: since
Q is real if the waves be propagated without change of type, v < 1.

Also since we are assuming that v+ 0, it follows that
costcos ] +cosjcosJ +coskcos K =0...ceuunennn... 13),
which expresses that the planes of like phase are at right angles to those of
like amplitude, and this being so

s Y (14).
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Taking the axis of 2z in the direction of the wave-normal and the axis of z
along the normal to the planes of like amplitude, we have

7. v22m _ RS2
l=LTV, m=0, R= =,
and a:q:ul:—w

It follows then that the vibrations are elliptical and no longer in the plane
of the wave; but though this is so, they are still of the nature of transversal
vibrations, for the equation du/dx + 0v/oy + 0w/0z=0 is still satisfied, and
this is the distinguishing characteristic of such vibrations.

54. An important question in the problem of wave-propagation is that
of the direction in which any peculiarity of phase or amplitude is propagated
in a stream of light and the speed with which it travels. In a simple train
of waves there is no distinguishing mark by which any portion is identified,
and consequently the determination of the velocity of light is generally
effected by measuring the propagational speed of some peculiarity impressed
upon the train: this will only give the wave-velocity if the singularity travel
at the same rate as the waves.

We will now consider this point, taking the case of a medium that is
characterised by equations (3)*.

Let U, V, W be three functions of the rectangular coordinates of any
point in the medium, such that

U= a, V= s, W= Olg’e s oiaie sisisisiolnein s e ofonion s (15),

in which the parameters a;, a,, a; are given all possible values, form a system
of conjugate or orthogonal surfaces: and let us take U, V, W as new
coordinates.

In order to transform the equations (3) to this new system of coordinates,
we note that Vu is the divergence of a vector, the components of which are
Oufoz, av/ay, ow/[0z, and therefore the volume integral of V% taken throughout
any regwn is equal to the surface integral of the vector over the boundary of
the region, that is, to [(du/on)dS, where n is the normal to dS drawn
outwards. Let us apply this theorem to the small rectangular parallelopiped,
the faces of which are parts of the six surfaces U, U+dU, V, V+dV, W,
W+dW.

If adU, bdV, cdW be the lengths of the edges of the parallelopiped, the
pair of faces, forming part of the surfaces U and U + dU, contribute to the
surface integral the amount

0 (bc ou
{ aU}dUdVdW

* Poincaré, Théorie Mathématique de la Lumiere, 11, p. 114.
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and similarly for the other two pairs of faces. Hence since the volume of the
parallelopiped is abc dU.dV .d W, we have at once

Y RS AT AL

and the equations (3) become in the new system of coordinates

SRS

and two similar equations.

Now let us suppose that the surfaces W=a; are a system of parallel
surfaces: then ¢=1 and ab is proportional to the section at any point of a
small tube of normals to the surfaces; and if these surfaces be the wave-
fronts we may write

u=Aexp{t(nt—xW)}
where n = 27/r, £ =27 /A and 4 is a function of (U, V, W, ¢).
Substituting this value in (17) and writing ab= o, we obtain

{a;? +an ‘”2‘4} 5 (Z %)*%(%%)*%V("%)

do 04
A — W - 2o BW'_KZAG ceeeeeeni(18).

Since n = xw, the terms involving A cancel, and if the differential coefficients
of A be all finite, we may neglect the terms that do not involve the large
quantity « and we obtain

o 04 04
% =
Vo 04 04 RV

e T S e

and as o is independent of ¢,

laAa 0(4 /o
1040 By o i

whence ANe=Ff(U, TV, W—eat)....i.0nliglk (20).

Thus any singularity of phase or amplitude is propagated along the normal
to the wave-front with the speed w, and since the amplitude varies as 1/4/a,
the intensity is inversely as the section of the beam of light.

or

55. This result that the peculiarities of phase and amplitude travel with
the speed of the waves, depends upon the assumption that the wave-velocity
is the same for all waves whatever their period may be and cannot be applied
to the case of dispersive media. The effect of impressing any distinguishing
mark on a train of waves is to destroy its simple harmonic character, and if
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the constituents of the altered stream travel with different velocities, it by no
means follows that the group thus formed is propagated at the same rate as
the original train.

If the original train be characterised by the vector
=0 COS (ML= K6E). ek e ossninesone osaonas (21),
we can represent the group by the vector
u' = a;c08 {(n +8my) t — (ke + Sie) 2+ ey} + a5 c08 {(n + 3ny) t — (i + Sc,) @ + )

A L (22),

where 8n,, n, ... and &k, O«s, ... represent small variations of n and . This
may be written in the form

cos (nt — kxz) Za cos (Sn.t — 8k .2 + a)
—sin (nt—xz) Sa sin (Sn.t —8k.z +a)......... (23).

Now 7 and « are connected by some relation, such as n=¢ (), where the
form of ¢ depends upon the nature of the medium : hence

oy Smy  _dn
Sz—sé;—...—%— U(Say) ....................... (24),
and the resultant group is represented by
F(Ut—z)cos nt —xkx+ x (Ut —a)}.evveeenennnnnnn.. (25).

Thus the peculiarities of phase and intensity travel with the speed
U =d (kw)/dx,

and this differs from the wave-velocity o unless waves of all periods are
propagated with one and the same velocity*.

56. Taking now the methods employed for the determination of the
velocity of light, we see that the measurements depending upon astronomical
aberration give the true wave-velocity , but that it is the group-velocity U
that is found by the methods of Romer and Fizeau, since they both depend
upon the rate of progress of a peculiarity of intensity.

Foucault’s method requires further considerationt; in this experiment
the subject of measurement is the deflection of a stream of light produced by
the rotation of a mirror during the time of passage of the waves from the
revolving to a fixed mirror and back again.

Now the motion of the mirror impresses a variation of wave-length along
the fronts of the waves as they leave the mirror, making it greater on the side
of the stream that is reflected at its receding part. Consequently if the
medium be dispersive, that side of the stream will travel faster than the

* Lord Rayleigh, Nature, xxiv. 382; xxv. 52 (1881).
+ Lord Rayleigh, loc. cit. Schuster, Nature, xxx1ir. 439 (1886). Gibbs, ibid. p. 582. Gouy,
€. R. c1. 502 (1885).

W. 6
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other, and there will be an a&rial rotation of the waves during their passage
between the mirrors. Since the waves are inverted by reflection at the fixed
mirror, the side of the stream that leaves the receding part returns to the
preceding part of the revolving mirror, and the aérial rotation of the stream
is in the opposite direction to that of the mirror.

Hence if D be the distance between the mirrors, € the angular velocity of
the rotating mirror, § that of the aérial rotation of the waves, the angular
deflection of the stream is

x = 1D (RO 0 0. sy 5 s srab st o Pk BERT (26).

Denoting by z distances measured along any wave-front in a direction
perpendicular to the axis of rotation of the mirror, we have

=l dz. =10 NG O A N (27);
but ‘dk/dz is the angle between corresponding elements on two wave-fronts in

the same phase, and this angle is due in part to the rotation of the mirror
and in part to the aérial rotation of the waves; hence if = be the period

DA (DB 0 7 = (B ) Do s s i (28),

x4 O =@ i (29);

whence 20+ 6 = :gz—(@ = 2—(? @ Tt M g S A (30),
il -

saif el W G R (31).

Thus by this method it is the group-velocity U and not the wave-velocity
that is determined.



CHAPTER VI

HUYGENS PRINCIPLE*.

57. 1IN the last chapter it was assumed, when considering the propaga-
tion of a stream of light, that infinite space is filled with an homogeneous
medium, in which no foreign substance occurs, except such as exists at
a centre of luminous disturbance, and we must consider the effect that is
produced by the introduction into the ether of media that differ from it in
their optical properties. In this way we $hall determine, in what degree the
wave-theory accounts for the rectilinear propagation of light and thence leads
to the laws of geometrical opties.

Let us consider a portion 7' of the ether bounded by a surface S, on the
outside of which luminous sources and different bodies may be distributed
in any manner, and let us determine the disturbance at any point within this
space T.

Let U (z, y, 2, r) be a function of the coordinates (z, y, 2) of any variable
point and its distance » from the given point, this function together with
its first differential coefficients being single-valued, finite and continuous
for all points of 1" and of its bounding surface S: then denoting by d total
differentiation and by 0 partial differentiation with respect to =, y, 2, r we
have the identity

LZ_(BL]') U , U or B“’U_*_ 0*U ox
daz \ oz orox o oroz or’

i Lo 15T, 1 00 e _ 1003
i dx (r dx) r 0x® ' 7 Oroxor 1° ox or’
whence £ =
1000 d o0\ ©° 1 (d 0
zdw (7' aa:) VZU {dr( ) a—g}ﬁﬁ{ﬁ_bf'}

* Kirchhoff, Berl. Ber. (1882) 641; Wied. Ann. xviit. 663 (1883); Ges. Abh. Nachtrag, p. 22;
Vorles. iiber Math. Optik, p. 22. Beltrami, N. Cim. (3) xxv1. 233 (1889) ; Rend. Lincei (5) 1. [1]
99 (1892); 1v, [2] 29, 51 (1895). Maggi, Annali di Mat. (2) xv1. 21 (1888). Potier, C. R. cxiL
220 (1891). Bruhnes, Mém. des Fac. de Lille, 1v. No. 16 (1895); J. de Phys. (3) 1v. 6 (1895).
Caxrvallo, C. R. cxx. 88 (1895). Gutzmer, Crelle’s J. cxiv. 333 (1895). Morera, N. Cim. (4) 1. 17
(1895).
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which may be transformed into

%%(U aa?)+2 C%g)+-r1-(a;g-wu)=o ...... (1),

Now draw a cone from the pole to the element dS; its cross-section at a
distance r is 7?sin 8dfd¢, but this is also equal to

°(3)
on

where # is the normal to the element drawn inwards; then

f%([]_ ou df ffd (U r- )dr .sin 0adg
-/ ( 7 —r%7)sin 9d0d¢-(U—7~%g>offsin 0d0d$
2(5)

=f(U-r%g>faTds—4nUo

ds,

A
cosrn.dS or ¢

0 U or .
=fa7 _)—ds—4nUo ........ R @);
1 BU 10U U,
e L4 i Yn
e f G2 f{ ! } ~ [T as
oU ox
where Up=3 = B O e 3)

Multiplying then (1) by dT' and integrating over the whole space 1, we

obtain b f {a,. ( } U { } ......... ().

If ¢ (2, 9, 2, t) be a function of #, ¥, 2, ¢ that satisfies the equation

%t% =102V 2D o SE Rl LT A R ey (5),
and if U be what ¢ becomes when ¢ — r/w is written for £, then
aU_ el '
—at7= o* a‘rj=mzszy Uo=¢(-'vo: Yos 2o, t)=¢o:
whence the volume-integral in (4) vanishes, and we obtain
4= [ { Ot T (t""/ “’)} L Rue . IR ),

in the first term of the second member the d;ﬁ'erentlatlon with respect to
the normal being operative only on the radius-vector r, while in the second
term ¢ —r/w is written for ¢ after the differentiation.
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This equation still holds, if the luminous points be within the space 7T
and the pole at which the effect is required be without it, provided we regard
n as the normal drawn outwards, that is, into the portion of space in which
the pole is situated, and ascribe to the function ¢ the ordinary properties
of a potential function at infinity. For in this case the integrations have
to be extended over the whole of space outside S, and hence the surface-
integrals consist of two parts, of which the one is extended over S and has
the value just determined, and the second is-extended over the surface of
a sphere of large radius and vanishes on account of the second of the above
assumptions.

58. Let us next suppose that the closed surface S either includes the
luminous points as well as the pole, or else includes neither the one nor
the other.

Consider the first case and imagine a closed curve drawn on S dividing
it into two parts, S; and S,, and through this curve a surface S, described
so as to include the pole between S; and S; and to exclude all the luminous
points. Then, denoting by Q the integrand .on the right side of (6) and
supposing the normals to S, and S, to be directed inwards, that to S; to be
directed into the space containing the pole, we have

G f Qds + f QdS=—[ Qdas+[ ads,
Sy A S

whence QdS + QdS 0,
8

or the surface-integral over the closed surface S is zero.

Similarly for the second case: we imagine the surface S; drawn through
the closed curve on S, so that the pole alone is contained between S, and S;;
then, as in the first case,

- f QdS — f ds=[ ads+ [ ads,
8, S, S

S5
whence QdS+ | QdS=0.
8 8,

From this result it follows that the surface-integral is the same for any
two unclosed surfaces S and S’ having the same bounding curve, provided
neither the pole alone, nor the luminous points alone are included in the
space between these surfaces. For

fnds+f QdS =0,
BTy

if the normals to the elements have the same sign, when they are directed
either within or without the included space. Hence if we regard the normals
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to the two surfaces to be positive, when they are similarly directed with respect
to corresponding elements

f Qds =[ 0ds.
S S

59. Let us assume that we have a single luminous point and let us
call » the distance of the element dS from this point and 7, the distance
of dS"from the pole at which the effect is required.

Then if we assume
A
== em(wt—rl)
$()=7

where « =27/\, we have

T =ro)=2

T,

e (w—7ry— To)’

1
()
_a_ (- 7.0/‘0) £ 4 o e (wt=ri=10) _ (4 i aﬁ’ gk (wt=1=r0)

and
on T ” on 7T, ON

since in forming this expression r, alone is to be regarded as variable.
On the other hand in forming
Bn (2 — 70/ )
we have to differentiate ¢ (f) with respect to n, and after differentiation to
write ¢ — r,/w for ¢: hence

1
)
¢n (t i 'ro/ﬁ)> — é 71 e"‘("’t—rx—'fo)_ LK ._A_ 8_7'1 e“‘(“‘t'rx’_ro)'
7o T, On 7T ON
Thus
/Al 1 '
D o0
— é \7'0 é ] ux (@t —7,—70) A arl aro i (wf = 7, — 1)
e r on 7, oOn e +mrm, (57—1 57;)9 S

Since A is a very small quantity, the first term in the expression for  is
of very slight importance in comparison with the second, and we may write

O EAE (%—; w %—2) ORI L. ).
If now the surface of resolution be a wave-surface,
oryfon=1, or,/on = — cos 6,
where 6 is the angle between the normal to diS and the line joining the
element to the pole, and if the primary disturbance at diS be represented by

A 2
T ORS (@E =) SE RS, (R UL (8),
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the actual disturbance at the pole due to the element dS is given by
2r A R
Q=——X—1—'17‘)(1+cos 9)sm—x~(wt-—r1—ro) ............ 9),

which is Stokes’ law of the secondary disturbance*.

60. We now require the value of f QdS over a surface that is not closed,

and this may easily be determined in the case in which Q has the s'pecial
value (7) and A is very small.

With the luminous point and the pole as foci draw a series of spheroids
7+ 7= § = const., determining a series of curves on the surface S, and define

F (&) by the equation
4 9
F=¢ 'rl—'roé;(rl—ro)ds’

the integration being extended over the part of the surface between the lines
§=27 and §{=¢ and the + sign being taken according as Z S ¢, so that
F (£) increases with ¢ whether it be greater or less than Z, if for example

0 (r,— ) be positive. Then if d{ be taken positive,
7,7, On

dF 4 0

_dg dg_frﬁ'—o a——n (7'1 —_— 1"0) dS,

in which the integration is extended over the region of the surface between
the curves corresponding to the values ¢ and ¢+ d¢.

Let & and & be the least and the greatest values of ¢ on the surface S,
then f Qd8 is of the form
SdF
I berad | —m{d :
e f B dfe ¢

whence, integrating by parts,

dF ¢ a2 F
dmpy=— [d_g e‘“f]s_oeﬂ'} &t f . B S b TR PR (10).
Consider first the term :
& @°F
—gs €6 d,
f ¢ A8 3

and let us divide the interval ¢, to {; into partial intervals, such that in some
2 2
d—g remains finite, while in the remainder ng becomes very great of the

' p 5 SER 2 : :
order x. Now we may neglect the intervals in which e remains finite;
for if &’ — ¢’ be one of these intervals, we may assume that within this

: a:F
(gg always either increases or decreases, so that the sign of g

* Stokes, Camb. Phil. Trans. 1x. 1 (1849); Math. and Phys. Papers, 11. 243.

interval
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remains the same; otherwise we have only to subdivide the interval into
smaller parts for which this is the case. Integrating then by parts

g" gll gll
f BF o gpm [1 &F wg] »3 EF _ar

¢ dg e’ e ¢ AT
2
and the integrated term may be neglected, since e*"‘f is <1 and % is finite
3
so that the ratlo —=/k is very small; also since i has the same sign

dé’

throughout the region of integration
S d3F S"d*F @*F"  d&F
—-ucg’ w il
f dvs dc f dgs dé‘ dé‘z dé‘z s
and this quantity is finite, so that its quotient by « may be neglected.

dgs

Hence the integral in question may be neglected except at parts of the
2
surface at which 02? becomes very great of the same order of magnitude as «.
4 o(n—
But we have it &= e ol
iy 4 9(r—r)
7% on
surface that can contribute anything to the integral are those at which

d¢=0.

7'0) ds,

is finite and continuous: hence the only portions of the

<t
Consider next the term [@Ee “‘S} 3
d¢ A
excluding the case in which d{= 0 at any point of the surface, the maximum
and minimum values of { lie on the bounding curve of S and if we farther
assume that for no finite portion of this curve ¢ is constant, the lines ¢, and
¢, only touch this curve, in which case f dS and hence also fr r ¢ (rlan o) ds
0f1

i1s at these limits an infinitesimal of a higher order than d§. Whence for

al—z,, = 0 and the integrated term of f QdS vanishes.

Let us now consider in what cases d{=0 at a point of the surface S. Let
9(z, y, 2)=0 be the equation to the surface, and z, ¥, z the coordinates of a
point on it, at which d¢=0 for a displacement of the same on the surface,
then

each of these points

o or, 0on 09
5T B, R

of _or  or,_,0g L e
e + e L@ or < cos 7y + cos rqy = M cos ny
e

gg on ?;0 Lgﬁ o8 7,2 + 08 ryz = M cos nz,

cos & + cos ryz = M cos nz
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where L is an undetermined multiplier and M =L, / (Q(—’)o il (E-jg)O 4 (ag)e.
) Oy 0z

The conditions for the vanishing of d{ can then be satisfied in two ways,
either

- M=0 and cos?@=—COSTy, COS Y =—COSTeY, COST1Z=— COSTy2,

9¢ 9% ot og og o

or JllaéOandég:%:a—g::a—‘—Z:a%:a‘g.
In the first case the line joining the Iuminous point to the pole cuts the
surface at the point (z,y, 2); and in the second, the spheroid {=const.
touches the surface at this point.

Hence 1t follows that deS extended over the surface S vanishes when

k is very great, except in the following cases :

(1) when for a finite portion of its bounding curve r, + 7, = const.,

(2) when the line connecting the luminous point and the pole cuts the
surface,

(3) when there is contact of any order between the surface and the
spheroid 7, + 7, = const.

The last case however does not really form an exception: for, as we have
seen, deS depends only upon the bounding curve of S and hence in the

cases in which the spheroid touches the surface, we can substitute for S
another surface with the same contour, for which this is not the case.
The value of f QdS extended over the surface, when the line from the

luminous point to the pole cuts it, may be determined in the following
manner. Complete the surface S by a surface including the source and not
cut again by the line in question: then the normal to the complete surface
being everywhere directed outwards, we have

f QdS = 4md,

the integral being extended over the whole surface : but for the part com-
pleting S, we have

f QdS = 0;
hence f QdS = 47,
8

the integral being extended over S and the normal being directed away from
the luminous point. When the normal is directed towards this point, so as
to make an obtuse angle with the line joining it to the pole, we have

fSQdS T M ke SR (11).
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The case, in which the line from the source to the pole passes through the
bounding curve or infinitely near it, is at present excluded, the value of the
integral being then indeterminate.

61. Let us apply these results to the case in which some foreign sub-
stance is present in the ether.external to the luminous point and to the pole
at which the effect is to be determined.

Exclude this body from the region of integration by a surface S drawn
infinitely near its surface and let o be a surface excluding the luminous
point: then the normal being reckoned positive when it is directed into the
region of integration, we have i

S f 0do + [04s,

in which equation the value of Q is changed from what we had before on
account of the change in the values of ¢ and ¢, occasioned by the intro-
duction of the body.

If, as we are free to assume, the surface ¢ be a very small sphere, the
introduction of the body into the field will cause a comparatively small
alteration in the values of ¢ and ¢, on the surface of o, except in certain
cases, such as that in which the body is a concave spherical reflector with
the luminous point at its centre, and since the sphere is very small, the
influence of this change on the integral over its surface is also very small.
If then &, denote the value of ¢, before the introduction of the body

dea: 47 d,,

and Ay = 4D, + f 7Y LRI S Ay (12),

from which equation ¢, can be in general determined, if ®, and the values of
¢ and ¢, on S be known.

Let us now suppose that the body is opaque and has a black surface that
reflects no light : then on the side turned towards the luminous point, the
disturbance is the same as if the body were not there and on the side turned
away from the luminous point there is no disturbance at all. Hence in (12)
the integration is to be extended over the part of S alone that is turned
towards the source of light and is bounded by the tangent cone to S from the
luminous point, and in  the values of ¢ and ¢, are the same as they would
be if the body were absent.

It follows then that for points outside the cone, deS =0 and hence

¢, = D,, or the presence of the body is without effect : while for points within
the cone on the side of the body opposite to the source,

f QdS = — 4o,
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from (11), and 4y = 47Dy — 47D, =0,
or there is no light at such points.

We are thus led to the laws of geometrical shadows. This result has
however been obtained on the assumption that the wave-length is infinitesi-
mal and we have excluded the cases in which the line from the source to the
pole passes very nearly through the boundary of S and in which a finite
portion of this curve is on one of the spheroids 7, + 7, =const. We then have
the phenomena of diffraction.

62. As a further application of the analytical expression of Huygens’
principle, let us determine how the vibrations of the polarisation-vector
change as we pass along a ray, that is, in what manner ¢, depends upon z,,
where 2z, is the distance of the point considered from a wave-surface, this
distance being measured along a normal to the surface*.

S

Fig. 19.

Let S represent a wave-surface, P the point at which the effect is to be
determined, PQ the normal to S, and O, C, the centres of principal curvature
of the surface at the point Q.

In the system of curvilinear coordinates U, V, W employed in § 54, let
the surface W = const. represent the wave-surface, then the primary disturb-
ance on the surface S may be taken as

) =Ae@-T i, (13),

4 being a f'unction of U, V, W, all the differential coefficients of which
remain finite: taking this surface as that of resolution, the effect at P is
given by
=~ m(wt-W)fé T S 14
¢, (2) i ¢ ' r(l+cos€)e ds (14),

r being the distance of P from the element dS and 8 the angle that the
radius-vector makes with the normal to the element.

* Poincaré, Théorie Math. de la Lumigre, 11. 174.
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Let us now take @ as the origin of a system of rectangular coordinates,
the tangent plane to the surface at @ being the plane of zy and the principal
sections of the surface at this point being those of zz and yz: then if ¢ be
the angle that the element dS at the point (z, y, z) makes with the plane

of zy,
dS = dzdy/cos ¢,

and ¢0 (t) -~ i—,;_ eu((mf"m ffé_(l-ﬂs_e)

7 Cos ¢

Now by drawing a series of spheres round P as centre, so as to determine
a number of curves on S, it is easy to show by reasoning analogous to that
employed in § 60 that the above integral extended over any part of S is zero,
unless this part has contact of any order with one of this system of spheres:
it follows then that we may confine the integration to a small area including
the point @, the dimensions of which are actually very small, though large in
comparison with the wave-length .
The factor AL} ol

r cos¢
sensibly the same value over the whole of this area, and we may therefore
assign to it the value that it has at the point ), where
=) Pz s caBl GO =N S A= 7{ B
A 1+cosd 24,

so that — ——— becomes =,
r Cos¢ 2,

e dady ........ ..(15).

will not in general vary very rapidly and will have

On the other hand the' variations of exp (—wr) are rapid, for the
differential coefficient of this expression contains « as a factor and 1is
consequently very great: it thus becomes necessary to determine its value
for points on the surface near to Q.

Let f,, f, be the principal radii of curvature at @, then the equation to
the surface is approximately

Fab,. e
2f1 21y
whence =Nzt £+ (2— 205 20+ w2+ py?,

_Sh-a o _fima,
#l_—‘zflzo, M2 = 2fzzo’

hence ¢0 (t) = 2%_ Aoem(wt— W—z) ffe—tx(#m‘z-l—l‘-zﬂ‘l) dxdy‘
0

where

Let us now write £ =2 +/x, n =y +/x, and take, as we are at liberty to do,
the form of the area, over which the integration is to be extended, as a small
rectangle with its edges parallel to the coordinate axes: then since the
dimensions of this area are very large compared with the small quantity A
the limits of the integration for £ and » are + «, and we have

b)) =g dueet= -0 [ g [ ety ....(16),

@

t
27z,
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and since f et du=(14) \/;"r,
we have fw e dE=(1F ) «/—W
Lo + 2u’

according as u is positive or negative.

Let us suppose in the first place that the points are in the order Q, P,
0,, C,, then y, and u, are both positive, and

®o (t)— ——A gix(wt=W=2)) 7(1_—_"_)2
Ha e
————;:—/;_— ix(wl= W—2z,
\/(fl—zo)(fe—z.,)A“ (o B, gt o (17).

Secondly, if the points occur in the order @, C,, P, C,, u, is negative and
My 18 positive, whence

b (t) = Aoe«wt- wozpT1+)(A—0)

2 V- o fhe

Sife At
}\/(ZO 1)(f2——zo)A°e‘ (olacBis 2) P T (18)

Finally, when P is further from the surface than both C; and C,, both g,
and u, are negative, and

¢

%) (1 +0)?

2 \//"1//'2

\/(zo fl)(zo )Aoe(t W= o) R i) (19).

Now the actual effect being represented by the real part of the above
expressions, we see that on traversing a ray from a wave-surface the phase
changes suddenly by /2 on passing through either of the centres of curva-
ture, and in calculating the retardation it thus becomes necessary to subtract
A/4 from the actual length of path on crossing either of the points*.

The points €, and C, are called the focal points of the ray and near them
the disturbance becomes very great. When the focal points coincide, the
retardation is obtained from the actual distance by subtracting A/2 on
traversing this common point.

63. In considering the application of Huygens’ principle to the determi-
nation of the effect of a black screen of any form placed in the vicinity of a
luminous point, we excluded certain cases and to these we must now turn
our attention.

* For an experimental verification of this result see Gouy, 4nn. de Ch. et de Phys. (6) xx1v.
197 (1891).

\
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Suppose that we have a luminous point €' with a perfectly black screen
near it: round the screen draw a closed surface at all points infinitely near
that of the screen itself and divide this surface into two parts by the line of
contact of the surface with a tangent cone having its vertex at C. Let us call
the part of the surface turned towards the luminous point S’ and that turned

Fig. 20.

away from it S”, and let us complete these surfaces by another surface S, in
such a way that C is entirely enclosed by the surfaces S+.8” and S+.S”
while the point O at which the effect is to be determined is excluded.

2

Then if ¢ denote any one of the components of the polarisation-vector or
an allied function satisfying the relation

az_({, = e VAGEE. & R M T (20),

and ¢, be the value of ¢ at the point O, ® the value that ¢ would have at
any point, if the screen were removed, we have at all points of S and S’

op 0P
p=® P @1),
and at all points of S”
S s
¢=0, S =0 e (22),
and taking S+ 8" as the surface of resolution, Huygens’ principle gives
1 1
=-— == MOVAISE.. o S s e 2
b=, QA= f as (23),
since the integral extended over S” vanishes, where
0 = 0 P Tl Sle=tlu), - T (24),
on 7 7

the normal being reckoned positive when it is directed on the side of S on
which the point O is situated.
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This expression for {) may be simplified, if the only part of the surface of
resolution, at which ¢ and 0¢/0n do not vanish, be plane*.

W rite
l a (b (t = o/w) va 1 f‘ﬁn (t e 'I'ol/m)
271'.[ X QW T i dS’

on T
so that 2=V + x-

Both +» and y satisfy the differential equation for ¢ and it is easy to
show that they also satisfy the surface conditions, if the surface be plane.
For writing

’ 26,
¥ 27r on 1, a5
then 4" is the potential of a double layer, the density being + ¢ (¢)/27: such
a potential shows a discontinuity at the surface equal to 2¢(¢). On the
other hand yr—+" is continuous at the surface, as it remains finite when
r,=0, and hence yr shows a discontinuity equal to 2¢ (¢), whence if the
surface be plane 4 takes at the surface the same value as ¢ and consequently
the same holds for y.

pnisi, lot X == o f’;—(t—) ds,
so that i is the potential due to a surface covered with an attracting mass,
of which the density is — ¢o(t)/2m. Then y—» and its differential coefficients
are continuous at the surface, and since y’ is continuous, x is so as well.
Also

0F 2 9GS0

on_ om an
and 0x//on is discontinuous and changes suddenly by 2¢, (f) on crossing the
surface : hence since 0 (y —’)/on is continuous, dx/on shows a discontinuity
at the surface equal to 2¢,(¢), and therefore at the plane surface

0 0

% )=22.
Thus the differential coefficient of y at the surface is the same as that of ®,
and the same must hold for .

Hence both y» and y satisfy all the conditions, and taking the axis of 2
in the direction of the normal, we have for the special case under considera-
tion

rebo (£) = f g i(t—o—’”"/—“’)ds ..................... (25).

Let ¢ (t)= e“‘(“"“”l“‘) .............................. (26);

* Schuster, Phil. Mag. (5) xxxvir, 543 (1894).
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then retaining those terms alone that contain « as a factor, we have

¢0 (t) emwt 1 % e_“(7x+”o+'s) dS

rm, 0z
Sk i FR f W) 4 @,

since 7, 7, 07, [0z vary but.slowly over the part of the surface that contributes
sensibly to the value of the integral.

A point in the aperture or very near to it being taken as origin, let
a4y, %, 2 be the coordinates of the luminous point and #,, %, 2z, those of the
point at which the effect is considered : then, if

pli=x’+ Y+ a5 pl=xt + Yt + 2,
.m'1+yy1+1 a? + 92

we have R e =~ I
1 pl P1 2 Pl

xa, + Y 122442

710=p0... 0 yJ0+§ ./ ,
Po Po

the dimensions of the aperture being supposed to be small, and writing
8 + p, + p1=— € we obtain

i, 21 apo e (wi+te)
¢0(t) I T )\'Plpo 0z &
%, a:o Y, Yo\ _2*+9f
f f i B e e L PRERER (28).

64. Let us first suppose that the terms involving the square of the
coordinates of a point of the aperture vanish: this will occur when

po=p=0o or when p,=—p,.

When p,= p,= w0, the source of light is at infinity and the waves incident
upon the aperture are plane: the secondary waves from the aperture are
parallel and interfere at an infinitely distant point. On account of the
optical equivalence of paths between the conjugate foci of a lens system,
this case may be realised with a spectrometer, in which both collimator
and telescope are focussed on lnﬁnlty and the diffraction screen is placed
between them.

When p,=—p, and p, is negative, the wave incident on the aperture is
spherical and concave to its direction of propagation, and the ecentre of the
sphere is on the screen of observation. This case is obtained upon a screen
by placing the aperture between the screen and a lens adjusted to give upon
it an image of the radiant point.

When p,=—p, and p, is positive, the incident wave is spherical and
convex to its direction of propagation : the diffraction phenomena are virtual
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and apparently formed on a screen through the source of light. This is the
case of an aperture held in front of the eye or of the object-glass of a telescope
adjusted for distant vision of the source of light.

In these cases we have what are known as Fraunhofer’s diffraction
phenomena,

When the term (22 + y?)(p, ™ + po?)/2 is not zero, we have Fresnel's dif-
fraction phenomena : these occur near the limits of the geometrical shadow of
the screen, and in the main correspond to the case in which the line from the
radiant point to that at which the effect is required passes very nearly
through the edge of the screen. In the case of this kind of diffraction we
have often to deal with apertures that are very large, but as the only effective
part of the aperture is that near the point in which it is met by the line from
the radiant point to the pole, we may still employ the values of r; and 7, ob-
tained above and may extend the limits of integration as far as we please
from the limiting line of the aperture, provided we go far enough.

65. The above results have been deduced from the formula
dr e, = f QdS,

in which the integration is extended over the apertures in the diffraction
screen, but we might employ a formula, in which we have to integrate over
the opaque parts: for describing a small sphere ¢ round the luminous point,
Huygens’ principle gives

= f Qds + f Qds + f Qds,
o S S~

where the second and third integrals are extended over the parts of the
surface surrounding the screen, that are turned towards and away from the
radiant point respectively.

Now the introduction of the screen has only a very slight effect on the
values of ¢ and 9¢/on on the sphere o, and since this surface is very small we
have

f QdS = 4nd,,

where @, is the value of ¢, before the introduction of the screen; also since
¢ and 0¢/on are zero at all points of 87,

0dS =0,
SII
whence

47, = 4D, +f QdS.
S/

Suppose now that we have two cases, that only differ from one another by

w. 7
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the interchange of the opaque and transparent portions of the screen: then
in the one case we have

bbis f Qds,

the integration being extended over the apertures and the normal to dS being
directed away from the radiant point : in the second case we have

Ay = 4D, + f s,

the integration being now taken over the opaque parts of the screen and the
normal to dS being directed towards the luminous point. But the opaque
parts in the second case being transparent parts of the first case, and the
normals in the two cases being oppositely directed, we have

[eas=-[aas,
whence
by =Dy — ...
Now @, is the value of ¢, at the point under consideration when there is
no screen. In the case of Fraunhofer’s diffraction phenomena this is zero,
except at the image of the radiant point, and therefore at all other points

b=~ .

Thus the intensity at all points, except at the image of the radiant point,
is the same in the two cases and the pattern has the same form when the
diffraction screen is generally transparent and studded over with opaque
discs, as when it is generally opaque and perforated with exactly correspond-
ing apertures*. .

In the case of Fresnel’s phenomena this is not so, for then ®;# 0 and the
disturbances corresponding to ®, and ¢, have different phases and give rise
to interference, that modifies the intensity and changes the character of the
pattern.

* Babinet, C. R. 1v. 638 (1837).



CHAPTER VIL

FRAUNHOFER'S DIFFRACTION PHENOMENA *,

66. THE formula relating to the case of Fraunhofer’s diffraction phenomena
may be written in the form

419
$oll) == o f f W FAD dady. ... (1)
where = . %0

AP 255 oIV
£ and 7 being the coordinates of the point considered on the screen of
observation relatively to the image of the radiant point as origin.

Before proceeding to apply this formula to the diffraction patterns
produced by apertures of special form, let us first consider some general
properties of the solutiont:

(a) If the wave-length vary, the aperture being given, the composition
of the integral is unaltered, provided £ and 5 be taken inversely as . Thus
a diminution of A leads to a simple proportional contraction of the diffraction
pattern, accompanied by an augmentation of brilliancy proportional to A2

() If we write ma for # and ny for y, the wave-length remaining
unaltered, then writing &/m for & and n/n for 7, ¢,(¢) becomes mnd,(¢) and
the intensity becomes m2l : hence the linear dimensions of the diffraction
pattern are inversely as those of the aperture and the brilliancy at corre-
sponding points is as the square of the dimensions of the aperture.

Thus it is possible to deduce from the pattern due to any aperture, that
given by an aperture formed from it by an alteration of the absciss® and the
ordinates of its boundary in any given ratios: thus the pattern due to an
. elliptic boundary may be obtained from that given by a circular hole.

The shrinkage of the diffraction pattern consequent on the increase in
the dimensions of the aperture has an important bearing on the theory of
optical instruments. According to geometrical optics, the images of two

* Schwerd, Die Beugungserscheinungen, Mannheim, 1835.
1 Lord Rayleigh, Encycl. Brit., Article * Wave Theory,” Vol. xxiv. p. 430.

7—2
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L]

radiant points are regarded as distinct, however close they may be: in other
words, the pattern due to each is supposed to be infinitely small, or which
is the same, the wave-length is assumed to be infinitesimal. The fact that
the wave-length is finite imposes a limit on the resolving or separating power
of an optical instrument,.

In order that the image of a radiant point may be sharp, the illumination
must become insensible at points very near the geometrical focus, and this
can only be effected by discrepancies of phase among the secondary waves
from the elements of the aperture. Whatever may be the discrepancy_of
phase that is required to cause a marked reduction in the illumination, it is
clear that the larger the aperture the less it is necessary to deviate from
the principal direction in order to obtain the specified discrepancy and
consequently the smaller will be the image*.

(c) If the wave-length and the scale of the aperture increase in the
same proportion, the size and form of the pattern remain unchanged.

(d) Suppose that there are n equal, similar and similarly situated
apertures in the diffraction screen, and let ax, by (h=1, 2,...n) be the
coordinates of corresponding points of the n apertures, and suppose moreover
that these apertures are covered with retarding plates, & being the
retardation of phase introduced by that covering the kth aperture. Then

()= -2 I»Lp %0 g 5 [ [ P@E O -y ... (2),

the integration being extended over a single aperture. Writing

K =3 cos (par+gbr—28;), == S sin (par + qby, — &),
1 i

c=ffcos(pw+qy) dady, s=ffsin (pz+ qy)dzdy,

41
we have ¢bo(t) =— Npip e 8p 2e(c+us) (K+iZ)et . onnnnnnnnn.. (3),
and the intensity is
ANl

apo) 2 1 g2
¢+ %) (K2 + 322
=55 pips (2) @+ (K439
AR T A N ot P iy e B 4),
where 7, is the intensity due to a single aperture.

If the apertures be arranged so that their corresponding points are in
lines parallel to the axis of # and equidistant from one another, then
ap=(h—=1)o, 0,=0,
and if in addition

Su=(h—1) 3,

* Lord Rayleigh, loc. cit.
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n
we have K+ 3 =3 et-1(pr-3) = (gnpr-8) _1)/(¢(po-8) _ 1),
1

whence
21 e s (PO =8\ /. (pa—38 o g
K2+ 32=sin ——5—)/sin 5 = sin?nu/sin’ u, say,
\
sin® nu
and U s A T s S e e R e TS A 5).
n?sin?y @)

The maxima and minima values of the second factor of the right-hand
member of this equation occur when

SIn nw M Sin % COS nu — oS U Sin nu

: = 0,
7 sin ¥ 7 sin® u
giving the two equations
sin nu 7 SIN % COS N — COS U SIN N
—— =0, — T =0 e (6).
n sin ¥

nsin?u

The roots of sin nu/(nsin u)=0 are given by nu =k, k being an integer
that is not a multiple of n: these values of » annul the expression for the
intensity and thus determine the position of the minima. When % is
divisible by n, the expression takes the form 0/0, the value of which is
found to be unity. '

The maxima of the second factor in the expression for the intensity are
determined by the roots of the second of the equations (6), or of

BN T U= 100 GATIN TS 2ol o e o o ok el st A e (7).

These values of u may be classed in two groups, according as they annul
both tannu-and tanu, or neither of these quantities. The first group of
values are given by u = mr, and to these correspond what may be called the
principal maxima, the value of the intensity becoming

=T

In addition to these maxima, there is a series of secondary maxima
corresponding to the second group of the roots of (6). Now between two
consecutive principal maxima there are n —1 minima: hence since maxima
and minima must occur alternately, there are n — 2 secondary maxima between
two consecutive principal maxima. Writing (7) in the form

sinfnu _ m*sinu
1—sin*nu 1—sin®w’

sin®nu 1
n?sinfy 14+(n?—1)sin?u’

we deduce

so that at the secondary maxima the intensity is
I= 14
T 14 (n*—1)sin’u

(2]
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whence it follows that the intensity at the secondary maxima is in general
less than that at the principal maxima and the more so the greater the
number of apertures.

Thus on certain lines parallel to the axis of y the illumination will be
increased, while on others it will be annulled, and the pattern due to a single
aperture thus appears to be traversed by parallel dark lines, that are the
nearer together the greater the distance of the apertures from one another
and the greater their number.

When the apertures are very numerous and very close together, the
pattern of the single aperture may be very considerably modified, and in
this case the effect of the factor I, in the expression for the intensity is
chiefly shown by a reduction in the intensity of the successive principal
maxima, some of which may actually disappear owing to the vanishing of 7,.

67. Having established these general results respecting Fraunhofer’s
diffraction phenomena, we may now pass to the consideration of the patterns
produced by some of the more important forms of apertures.

In the first place let us suppose that we have a rectangular hole of width
2a in the direction of # and length 2b parallel to y, and that this has
properties such that a disturbance of unit amplitude incident at a distance
from its central line becomes a disturbance of amplitude cosaz, where a is
a constant*.

Such an aperture may be called a simple grating, the length of a complete
period of which is ¢ = 2m/a, so that if there be IV such periods in it, we have
N7 = aa, N being necessarily even.

Then the origin being taken at the centre of the aperture

L ¢ 4 apo tmntf f { ot (p+a) ¢ (p—a)x
() ="3 Xpop: 02 [ re1m + o202} o dardy
LI ol Bpoewt 2{sm(p+a)a+sm(p—a)a}2smqb
2Npopr 02 p+a p—a q
whence, remembering that aa is a multiple of 27
A Op, 4p . singb
¢o(t)=—cm {gpa_aesmpa ~~»qq G
. Nw
o) ﬁi_ 4ab 3py _p sin — (P Fa) sin gb it @
Appr0zpta Nw(p-T-a)‘ T §
and the intensity is
. '
<A 4ab op, p )2 e (p e {sin qb}2 )
N popr 02p ta pr+a) gb

* Schuster, Phil. Mag. (5), xxxvIr. 509 (1894).
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The last two factors of this expression have the form sinw/u? the minima
values of which occur when u=mm (m=1, 2,...) and the maxima values are
given by u =0 and the roots of the equation

u=tan u
which has already been discussed in § 33.

Thus there are two diffraction patterns grouped about the points
given by
pFa=0, ¢=0,

= '2? =
or E=+ E PANS 77— ()}
and these are traversed by dark lines, of which the equations are
m\ po Po
3 ]_ e as = — A
3 i(_N>0>~, n=tmpPN

Within the rectangles contained by pairs of consecutive lines and not far
from their centres the brightness rises to a maximum, but the intensity at
these points falls considerably below that at the centres of the patterns.

If N be very great, the successive maxima along the axis of £ are very
close together, so that the whole light is concentrated near the lines

E=+ pr/fo.

68. In the case of a luminous line parallel to the sides of length 2b of
the rectangle, the intensity may be represented by

fIdyl o fldn .............................. (10),
Po

the integration being extended from a large negative to a large positive
value of 7, the largeness being estimated by comparison with Ap,/b. Since
b is supposed moderately large, the whole diffraction pattern would occupy
but a very small portion of the field in the direction of y, so that we may
without sensible error suppose the limits of 9 to be + 0. We have then for
the expression of the intensity

B " gym o 560 @2 Y
SRSt pipA\02/ \p ta

Y
sin? %(p Fa)

2
(p¥ a)}
the same law as for a luminous point when horizontal directions are alone
considered.

N
i

69. The formule relating to a simple rectangular aperture are obtained
from (9) and (11) by writing @ =0, Nw/a=a in these formule. We see
then that in the case of a rectangular aperture the definition of the image of
a vertical line is independent of the vertical length of the aperture. The
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distribution of brightness* in the diffraction-pattern of the line is shown by
the curve ABC representing the values of u~*sin*u from u=0 to u =2r;
the line 04 is a line of symmetry, the part of the curve corresponding to
negative values of u being similar to 4 BC.

A A

........

Fig. 21.

Suppose now that the subject of examination is a double line, the com-
ponents of which have equal brightness and are at such an angular interval
that the centre of the pattern due to the one falls on the first minimum of
intensity in the pattern of the other. The curve of illumination for the
second line will be 04’C” and that representing half the combined brightness
will be E'BE. At the point B midway between the central points of the
two patterns, the intensity is ‘8106 of that of the central points themselves,
and this is considered to be abont the limit at which there would be any
decided appearance of resolution of the lines. But in the case considered
the angle subtended by the components of the double line at the aperture is
A/2a, 2a being the horizontal aperture: hence, in order that a double line
may be resolved, its components must subtend an angle exceeding that
subtended by the wave-length of light at a distance. equal to the horizontal
aperture.

Let us consider the application of this result to the determination of the
resolving power of a prismt. Let 4,B, be a plane wave-surface of the light
before it falls upon the prism, AB the corresponding wave-surface of a
definite part of the spectrum after the light has passed through the prism.

The path of any ray from the wave-surface 4,B, to 4 or B is determined
by the condition that the optical distance f puds is a minimum, and as AB is

* Lord Rayleigh, Enc. Brit. xxiv. 431; Phil. Mag. (5), viri. 261 (1879).
t Lord Rayleigh, loc. ¢it. p. 271.
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supposed to be a wave-surface, this distance is the same for both points.

Thus
f uds (for A) = f AR ) A g (12).

Now when light of a neighbouring part of the spectrum is considered, we
may, though the path of the ray from A4,B, is changed, neglect this altera-
tion in calculating the optical distance, since in virtue of the minimum

Ao

B,

Fig. 22.

property it affects the result by quantities of the second order only in the
change of refrangibility. Hence the optical distance from 4,B, to 4 is

f(,u--i-' 8w)ds, the integration being along the path 4,... 4, that from 4,B,

to B is given by f(p.+8,u,) ds, the integration being along B,...B. Thus

from (12) the difference in the optical distances is
[ Suds (along B, ... B) — fS,uds (along 4, ... 4).

The new wave-surface is formed in such a position that the optical distance
is constant and hence the dispersion, or the angle through which the wave-
surface is turned in consequence of the change in the refrangibility, is the
ratio of the above difference to AB.

If there be only one dispersive substance, J’ duds =38u.s where s is the

thickness traversed by the ray: hence denoting by s, and s, the distances
within the prism traversed by the extreme rays, the dispersion is repre-

sented by
$—8
225
where a is the width of the emergent beam.
In general s, is small and s, is the aggregate thickness of the prisms at

their thick ends : calling this ¢, the dispersion 6 is given by
U N R T AN (13).



106 The Analytical Theory of Light [cH. vI

But the condition for the resolution of a double line, the components of
which subtend an angle 6, is that 6 exceed A/a. Hence in order that a
double line with components having indices u and u+ 8u may be resolved,
it is necessary that ¢ should exceed the value given by

This expresses that the relative retardation tu of the extreme rays caused
by the change of refrangibility is the same, X, as that incurred on passing
from the principal direction to that of the first minimum of illumination,
when the refrangibility is unaltered.

If we assume Cauchy’s formula p = 4 + B\, then
Op = — 2BA30A.
In the case of Chance’s “extra-dense flint ” the indices for €' and the D line
of lower period are

o= 1644866, ;= 1650388,

also Ao=6'562 x 107% (cent.), Ap= 589 x 10~ (cent.);
.. B=-084 x 10—
4 107 4
il p A 10\

“2B& T 1968on°

For the soda-lines &A ='006 x 10~° and thus the thickness necessary to
resolve these lines is

t =102 (cent.).
The number of times the power of the spectroscope exceeds that required to
resolve the D lines may be taken as its practical measure: thus in the case
of an instrument with simple prisms of “extra-dense” glass, the power is
expressed nearly by the number of centimetres of available thickness.

70. In order to increase the resolving power of a rectangular aperture, it
is necessary to reduce the width of the central band, and this may be effected
by the suppression of the secondary waves from the central part of the
aperture. At the same time, since this has the result of increasing the
brilliancy of the succeeding bright bands of the diffraction patterh, care must
be taken not to carry this suppression of the central waves too far*.

As an example of this result, let us take the case in which the aperture is
reduced to two narrow slits of width 2¢ at its edges: then if 2d be the
distance between the centres of the slits, so that d+e=a, the formula
obtained in § 66 for a number of similar and similarly situated apertures

gives
64 A47%%? apo)’ sin pe\? /sin qb)2
I=———— (=) (/=] (—) cos’pd ..cevuenrens
Npdp? (az ( & ) ( =) cos® pd (15),

* Lord Rayleigh, loc. cit.




69, 70] Resolution of Double Sources 107

or in the case of a luminous line parallel to the slits

_321121)82 0po\? /sin pe\?
B Apopy (’3;) (——pe ) QO PRLL e o (16).

Now d being large compared with e, the fluctuations of (sin pe)*/(pe): are
very slow compared with those of cos? pd and consequently the centre of the
pattern consists of a number of equidistant fine bands of equal brightness, so
that the arrangement is useless for the purposes of resolution.

Michelson* has however shown that by making the distance between the
slits adjustable, the variation of the visibility of the bands affords a means of
measuring the angular magnitudes of small sources of light and of resolving
these sources when double.

If ¢ (21, 1) be the intensity of illumination at the point (z, y,),of the
source, then at any point of the diffraction pattern the intensity will be

J=ff]¢ (21, 1) dzdy,.

Now if the angular dimensions of the source be small compared with A/b+
and we confine our attention to the brightest part of the field, we may write

(o (-

. pe gb
throughout the range of integration, and we obtain
64b%* (0p,\*
df = Npoiod (8%}) f f cos? pd . ¢ (@, yy) doydy, ... 7).

o

’\Q\ \

Suppose that we have two equal symmetrical sources of uniform illu-
mination with their centres at O, and O, in the line of separation of the
slits.  Let

Fig. 23.

00,= 0,B=D0,=0,E=r,
0,0,=2s, OP =2, PQ=y,

* Michelson, Phil, Mag. (5), xxx. 1 (1890); xxx1. 256 (1891).
+ For a discussion of other cases see Hamy, Bull. Astron. x. 489 (1893), x1. 48 (1894); C. R.
cxxvir 851 (1898). Filon, Phil. Mag. (5) xLvi. 441 (1899).
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then integrating from O to B and from D to E

e 6)«%;:2?:6“’ (890) { f Fla—1) {1 + cos 47{—d (i +%)} 5

dod (2, =
+ ~2—7 {1+co (1+-9>}dw}.
2s f(wl E ) " P11 Po )
In the first integral put #; — r=w, and in the second 2, — 2s — »=w, then

64A?b262 0po f { dmd (w | r
7\'2P (2% ( ) I_ —rf(W) Do A (P1+ 1+Po)j 5

+[—-rf({w> {1 + cos 4—77:@ (E +T-:125+%)} dw} ......... (18).

Expanding the first of these integrals we obtain

f (w) dw + cos —;:—d (P ) f (w) cos 4m-dw

4ard (, . Amdw
—sin — —+~— AYSIm ===
A \pr po f -—rf( ) A
in which the first term is half the area of either constituent of the source
and the last term is zero, since f(w) is a symmetrical function. The same is
true of the second integral. Writing then

f " f@ydu=}0, f " F(w)cos 4:‘1”’ S0 IR (19),
we obtain
64.42b%" /0p, dmd (1 ﬁ,) dard (r + 25 xo)}
_______Mp 5 ka ) [Q 1QQ {cos x <P1 + o +eos 3 + =
64.4%%* Bpo) dmds  4md (1*-5;3 Zy -
= Npind ( = {1 + @ cos e cos — e + Po)} ............ (20),
whence we have for the visibility of the fringes
4rds
V= =2 o b i) S K e s 21).
Q cos = : (21)

With a single source the visibility is Q.
Thus with two equal rectangles of height 24, we have
fwy=h, Q=4dhr

o3 f 47rdw X (Sin 4:Zr> /(%dlf)’

! 4‘7rd7_'
V= 7 Aoy cos R
s AP

AP,
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) Again, with two elliptic discs, having axes & and ¢ parallel and perpen-
dicular respectively to the direction of separation of the slits,

f(’w)=a'ﬁT2/w2, Q =rwo,

4rde
4ordw 9 Sy ( Xplr >

4 [®
fanb (T8 oy e =y s pilans T PRS2
Q_mzo 1 — w?/w? cos s dw = 47ng .
‘ M
b (4m'dm'

\ KpT) ik 47rds
drdw N
Apy

and V=2

71. Before passing on to the consideration of a number of rectangular
apertures in the diffraction screen, let us take the case in which we have
only two, one of which is covered by a retarding plate bounded by parallel
faces.

Let us suppose that the apertures are parallel to one another with their
centres on a line perpendicular to their lengths: let 2¢ be the lengths, 2%
the width of the uncovered, 2k that of the covered aperture, and 2g the
opaque space between them. Then if & be the retardation of phase intro-
duced by the plate,

g+2k
oo LT A «(px+qy) (pz <
%o () A popr 2° {f Q+2h)f—l bt +f f 2 dacdyj
4 1 9p, Lmt2smql{ _p(g+h>2s1npﬁ+edp(g+k)_8} 2smpk}
p p

ST em " T g
and the intensity is
s (8/30)2 160* (sm ql
T N et \oz/ p?
+ 2 sin phsin pkcos {6 —p (29 + b+ k)}]......... (22);
and when the object examined is a long luminous line parallel to the length
of the slits,

2

) [sin® ph + sin®pk

_ A4 27po |: 2_7rh_J 271-]0
~ popr ) mE ik Zohe E
2mhE . 27rl.§ 27§ J
+2sin ——— e sin S cos {8 ~ Qg +h+ k)}] ......... (23).

As a first application of this expression, let us suppose that the breadths
of the interfering streams are equal and that the streams are contiguous;
then k=% and g = 0, whence

Aﬂl aPo) 8\po L 2mhE {§ 271'715}
e (82 g sin? e @s* 45 i R (24),
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and the minima are giveﬂ by

f! 7rE_
sin o 0or £= +n7\2h,

and cos(g 2:;lf) 0 or f={+(2n+1) +A}2h’

where A is the retardation introduced by the plate, measured in length in air.

Thus the 2nd, 4th,... bands on each side of the central line occupy the
same position as if there were no retarding plate, while the 1st, 8rd, ... bands
on each side are displaced in the direction of the retarded stream. This
result we shall have occasion to employ later.

The chief interest of the expression (23) lies in its application to the
phenomenon of Talbot’s bands. These are dark lines that are seen, when a
tolerably pure spectrum is viewed with the naked eye or a telescope, half of
the aperture being covered with a thin retarding plate. A peculiarity of
these bands is that they are only observed when the plate is held on the side
towards the blue end of the spectrum *.

Since the object examined is a line of white light, the constituents of
which have been separated so that the different colours occupy different
angular positions in the field of view, the aggregate illumination at any point
M is found by integrating the expression for the intensity so as to include all
the components that have their foci near enough to M to afford a sensible
contribution to the illumination. We may thus with convenience regard M as
origin, so that £ is the coordinate relatively to M of the focal point correspond-
ing to a component for which the retardation of phase is 8, and the required
result is obtained by integrating with respect to £ between — w0 and + .

A different value of A and of & corresponds to each value of £; but in the
integration the variation of A may be neglected, and regarding & as a function

of £ we may put
d=25,+ w§,

where §, and = are the values of & and d8/d¢ at the point M, = being positive
when the blue end of the spectrum is seen on the side on which the retarding
plate is held.
Let us write for shortness
hy=2mh|/(Mpo), k1= 2wk|(Aps), = —2m (29 + h+ k)/(Np,y),
the expression for the intensity becomes

5 %227\%[[” sm‘*’hf f sm”kf
oy PoP1 (az> 2 - df dE

+ 2] sin b, €. sin Llf cos (9, + gu£) é] ......... (25).

* Stokes, Phil. Trans. cxxxvir. 227 (1848); Math. and Phys. Papers, 1. 14. Lord Rayleigh,
Enc. Brit. xx1v. 441, For the case gf Talbct’s lines with a circular aperture, see H. Struve,
Mém. de U'4cad. des Sc. de St Pétersbourg (7), xxx1. No. 1 (1883).
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The last term within the vinculum is equal to

2 cos 80f sin k€. sin £, £. cos g, €. g = cos §,. w (say).

But 2 sin k&. sin k,£. cos g,€ = sin? m £ + sin? wf
sm2h k1+91§_ "_—"I; & 3
© g T
and f_wSIDE;YE df = 7M/72,

in which in every case the positive value of the square root is to be taken;
hence

o= /B o ()

- e S T
=0 if 92> (hy + k),

=7 (b + ky = Vg?) if (hy +ky)? >0, >(hy ~ k),
= 2mh, or 27k, according as h, S ky, if (b, ~ ky)? > g%

Thus writing g, = 2mwg’/(Ap),

_ 44 (9p,)?
== ( Bz) G T e o (26),
when g > (h+k);
4% [op,\* , K
1= (Bz) (et b+ (h+ E—Vg?) 0088} vervnine.n. @,
when ¢ lies between (& + k)* and (b ~ k)*;
Faar (d”") {h+k + 2hcos 8,
Y e N AR Sl oy (28),
_ 447 (0p,\*
or _EE<E) (h+ I + 2k cos &)

according as % or k is the smaller of the two, when g% < (h ~ k)%

Now ¢'=wAp/(2m)—29 —h—k, and it therefore follows that if = be
negative, there will be no bands, since in that case g’ is negative, and numeri-
cally greater than h+%; but that if = be positive, g’ may be made to assume
any value from —(2¢9 + h + k) to + o by altering the thickness of the plate,
since the value of = varies as this thickness, and so long as it lies within
¢ertain limits, there will be bands visible in the spectrum.

Let T,, T,, T, be the values of the thickness of the plate when ¢'=0,

— (h~k), and — (h+ k) respectively; then if T be less than T, or greater
than 27T, — T,, there are no bands; for values of 7 between 7, and T or
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between 27, — T and 27, — T, there will be bands with visibility given by
(h + & —~g?)(h +k), and for values of T between T, and 27T, — T;, there will
be bands with visibility 24/(k + k) or 2k/(h + k) according as & < k.

Now in passing from one band to the next, & changes. by 2 and £ by e,
where e is the distance between the bands, and for this small change of £ we
may regard the changes of & and £ as proportional : hence

e=2m/w,
but when 7' = T,, which is called by Stokes the best thickness,

27
=2 (2+h+k
o )\po(g—i- + k),

so that in this case
e=Ap/(29 + I + k).

The bands are thus spaced in this case exactly as those due to the
interference of two streams of light of the colour considered, coming from
a luminous line seen in focus and entering the object-glass through two
very narrow slits parallel to the line and situated at the centres of the
covered and uncovered apertures.

72. In considering the general properties of Fraunhofer’s diffraction
phenomena, the case of a number of equal, similar and similarly situated
apertures in the diffraction screen was discussed, and it was pointed out that,
when these are numerous and very close together, the pattern of a single
aperture may be very considerably departed from.

The most important instance of such a series of apertures is afforded by
an ordinary diffraction grating, formed by tracing a number of equidistant
parallel lines on a glass plate. These lines, by diffusive reflection of the
incident light, appear to act approximately as opaque intervals; and the
transparent spaces being in this case rectangular, the intensity due to
a luminous line parallel to the cuts on the grating is proportional to

Sinw " PN}
n2 cos? & 2 2
nsinpi“;—d) bl o SO

p=27 (sini+sin8)

a being the width of the transparent, d that of the opaque spaces, and ¢, 6
the angles of incidence and diffraction.
If a be very small compared with d, the last factor in (29) varies very

slowly with 8 compared with the last but one, and this passes through
a large number of principal maxima before the last factor reaches its first
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minimum. The pattern then will practically consist of the lateral spectra
given by 1
sin ¢ + sin 8 = mA/(a + d),
of which several will be visible.
The first minimum of the mth spectrum occurs in a direction given by
sinz + sin 8 = (m + 1/n) A/(a +d),
and in order that two lines of wave-lengths A and X + 8\ should just be

resolved, the principal maximum for the latter must be in this direction.
Hence the condition for resolution* is given by

(m+1/m)A=m(\+ 8\),
or N =T (0] aon0 0 bomb A op b agpargoBans (30).

73. Closely allied in theory to the ordinary grating is Michelson’s
Echelon grating+, which is built up of a number of equally thick plates
of glass arranged in a series of equal steps. Here there are no opaque
intervals in the case of normal incidence, but the stream traversing any
step is retarded in phase by an amount 27 (u —1)#/\ with respect to that
transmitted through the step below it, ¢ denoting the thickness, u the
refractive index of the plates.

—

Fig. 24.

In this case, calling s the breadth of a step and assuming that the steps
descend on the side of positive «, the intensity in a direction & is by (5)
proportional to

. 2
sinnZ (ssin &+ p— 1t) sin<7—rssin8)
A A
e
A

n?Cos*§ { e L L (31),
nsin%(ssin8+u—1t) ssin §
and the principal maxima are in directions given by
sSind+(u—1)E=mN cccveviririninininnnnnn. (32).

* Lord Rayleigh, Phil. Mag. (4) xuvir. 199 (1874).
t Amer. Journ. Sci. (4) v. 215 (1898); Astrophys. Journ. viir. 37 (1898); J. de Phys. (3) viiL.
305 (1899). :

W. 8
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Now the last factor in (31) becomes almost insensible when sin & exceeds
A/s in absolute magnitude, and hence the light is concentrated in the two
spectra, for which m lies between (u —1)¢/A +1. If, however, the retarda-
tion introduced by a step be an exact multiple of A—a result that may be
obtained by a slight inclination of the echelon—there will be a single
spectrum situated at the centre of the field.

A serious disadvantage of the echelon grating is the overlapping of the
spectra of different orders, which renders it only suitable for use with light
that is initially nearly monochromatic. Suppose that the incident light has
wave-lengths between A + &\, then in order that there should be no over-
lapping, we must have

m(h+57\)—(}b+%€Sh—1>t¥(7iz+l)(h—3R)—(p—%b‘x—l)t,

dp
R S Oml =
o1 (2m 2o t+ 1) SA=2,

and writing for m its approximate value m =(u—1)¢/A, we obtain very
approximately

DN L - A

o e MO S PR S
the factor u — 1 — Adu/d\ for most kinds of glass varying between 05 and 1-0.

The first minimum of the mth spectrum is in a direction given by
ssind=(m+1/n)x—(u—1)¢t;

therefore 1f the lines A and X + 8 be just resolved,

: m()»+8)»)—<p.+%"{8h—1>t=(m+1/n)7\—(p,—1)t,

N 1 i A

or - = T T TR LS IR0 Q0 B0JA0 (34).
du n {(w—1)— Ndu/dr}t
n ( == EX, t)

For the dispersion we have

scosb‘(—1§+-(£/"ft=m,

drn  da
dd . (u—1—ndp/d\)t e
whence a -=.( = FOME prsal (35).

74. Another method of treating the question of gratings, that is not
without its advantages, is to deduce the effect of the ruling from the result
of the theory of a “simple grating.”* Any grating may be regarded as the
superposition of a simple aperture and of a number of simple gratings; for
whatever be the law of its ruling, its transmitting properties are expressed

* Schuster, Phil. Mag. (5) xxxviL. 509 (1894).
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by writing the amplitude of the disturbance in the transmitted wave as
a periodic function of z, and this by Fourier’s theorem may be obtained
as a series of terms, of which the first is constant and the others are
simply periodic.

In the case of an ordinary grating with transparent intervals of width a
separated by opaque spaces of width d, the transmitting property is a periodic
function of period a +d = 7, and starting from the centre of one of the bright
spaces, this function has a value unity from 0 to @/2 and from o —a/2 to o,
and a value zero from a/2 to ¢ —a/2. Expressing this function then as
a series of the form

bo/2 + b, cos x|/ + b, cos 2mx/o + ...,

we have

e mrwz , 2 . mma
bm_;ff(z) cos Tdcr—m—w_(l + cos m7r) sin e

and the series is

ar $2Aleywomaral 2marx
S AC SN S e cos .
a a

g mwym

Thus considering only directions perpendicular to the lines of the grating,
the amplitude of the disturbance in a direction & is proportional to

PR s mmra S no (p T 2m7r)
. :) . W B Y YT Y
cos & g__sm»p_l_*_:xl - 4 i - Z ... (86),
o pl wim 2mmw  no [ _ 2mw
T 2m T

where 2/ is the total length of the grating and p = 2w (sin¢ + sin J)/A.

Hence the positions of the lateral images are determined by
p=12mw/a or sint+sind =+ mA/c;
that is they are formed in directions such that the retardation between the
secondary waves from the edges of the grating amounts to mna.
On either side of these spectra the illumination is distributed according
to the same law as for the central image, vanishing for example when
o (sin 1+ sin 8) = + mA + k/n k<m
or when the relative retardation amounts to (mn + k) \.
If B,, denote the brightness of the mth lateral image, B, that of the
central image and B that of the central image when the whole space of the
grating is transparent, we have, since

. nae/ _2mmw
sin ——(p - )

2m g
ng i 2m7r\
2m (p gy
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is very small except near the place p = 2mmx/a,

. mma\ 2 . mma\?2
B L8 B, g Ty TP,
B, ~ cos*s: mre |\ “mwe )
i T
B, (a\?
EwLr
Lo ool

Hence under the most favourable circumstances, less than 1/m?#® of the
original light can be obtained in the mth spectrum.

The mth spectrum will vanish if sin (mma/a) =0 or ma/oc=m'; whence
it follows that if the ratio of the widths of the transparent and opaque
spaces can be expressed as the ratio of two integers, the spectrum of the
order equal to the sum of these integers is wanting.

75. It is at once clear from the above method of investigation, that any
departure from regularity in the ruling of a grating, whether arising from
variations in the hardness of the surface ruled or from irregularities in the
screw with which the spacing is effected, will introduce other terms in the
series representing its transmitting properties and give rise to additional
spectra. These spectra are in general of less relative importance and are by
reason of their faintness known as “ ghosts.”

So long as the defects in the ruling are very slight, their effect on the
spectra escapes notice, but when, as may easily happen, there is a periodic
variation in the spacing with each revolution of the screw, the ghosts may
become relatively important.

As an instance of such periodicity * let us suppose a case in which the
edges of the rth transparent interval are at distances from the centre of the
grating given by

” {r ¥ % +2B8sin(r ¥ 3) %’”} ..................... (37),

the width of the opaque spaces being o (1 —a). Then the function to be
expanded has a period e and is equal to unity when « lies between

a .
0 and o-(—2—+2,851n;),

or between

( a 2 27:'} { a : 277'1
gyr—s+28sin(r—4)=" and o{r+ s+28sin(r+3)—, r<vw,
a : 2
or between a {'y s 28 sin (y — %)7} and «a,

and has otherwise the value zero.
* Peirce, Amer. J. of Math. 11. 330 (1879).
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Expressing this function by the series

o/2 + by, cos (marz/(ya))
we have

.......................

b B x sum of transparent intervals

1

'ya' v (1 —a)a} =2aq,

2 mmwz
bm=§;ff(z)cos 52 SdzF.

= [Y%‘.l sin mT {r + 35 + 28 sin(r +1}-)——}

—%sin——;{r—§+265in(r—1})%’r}]

=-— (1 + cos mar) % sinwfyz{r +%+2/35in(r+%)27’”}.
Now
@Bsine.i = 1 4 B (% — g—7i) + g(em — ey 4
and the nth term of the series is

g = |n
2z e

IS =i |n Y {e(n—28+2) s o— (n—28+2) an}

n+l
2

if » be odd and

Bn rz (_ 1)3—1 L) [n

> e(n—zs+2) E7) AL (n—28+-2) xi}
s—1jn—s+1 {

l\"lﬁ

! +(=1) [n ]
if n be even.

Hence collecting the terms

n=w
e(a+2ﬂsin¢)i= 2 (_ 1)'n i & em

n=0 (L)2

8§=m

=w +
4+ 3 feltmi 4 (— 1y el i) s (= 1) g , y
Lt n=0 |_7_2 In +8
and

§=0 5
sin(a+2Bsinz)=A,sina+ = A,{sin(a+sz)+(—1)sin(a —sz)}
=1

where

(39,
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From this result it follows that

2 A
{f)5, = =% (1 + cos mmr) [ }=.

1
A, sin (Z +r)"lllr
r=0

2 v

= =y-1

) As{r 3 sin | (na+2s) 1+(m+2s)1r7~}
8=1 g 2y o

r=0

1y i [0 =207

sin 7
. (a—1 B
B (1 + cos mm) | 4, sin (e )8
mm 2y . mw
sin ——
2y
sin (2 = 0epe
4! ) » 26)) 2
+’E LN {m(a—1)+y (m+2s)} w
=1 2y . (m+28)7
sin ~—_ -
2y
. (m—28)m
; {m(a—1)+vy(m—25)}7rsm 2
+(=1)sin IR :
2y . (m—2s) 'n'[
ek
=/
Hence the series is
a4+ E mg'.w S B, cos i SRS AT (41),
T m=1 M Yo
where
Bt (a—=1)mm 4 80 2mar +s§°°As sin 2(m + s) 7w
o e . (m+s)7w
sin — sin *——
i
L sin2(m—s
+ 3 (= 1y4, H ..................... (42),
g= S S—— A
! sin 2 ]
with % =0 unless y =ky when it becomes = 2y cos k,
i RIS (Ul 2t e SRR 2 7 (43).
n=0 [n|n+s

From this result it follows that the amplitude of the disturbance in the
direction 8 perpendicular to the lines of the grating is proportional to

© sin Y7 (p F 2__m7r) .

cos & QM e gmgw 1 PBin 2m id

Pl waam + 2mm 7}1‘{( i3 2m7r)

5 Yo Qm \ Yo
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2/ being the length of the grating, which is here supposed to contain an
even number (n) of complete periods. The lateral images are determined by

sin ¢+ sin 8 = + mA/vyo.

Now neglecting the cube and higher powers of the small quantity (2marB/y)
we have
A4,=1- (2""”3)2’ A,=%@, Azz%(?l"LB)2, A, (s>2)=0,
i o 4
and Biy—s =4, sin (ka— 2 (a — 1)/y}
’ Biyey =4, sin {ka — (a — 1))y} 7,

By, =vd,sin kam,

Biynn =—yd;sin {ka+ (a— 1)/} o,

Biyis =vd4,sin (ka+ 2 (a— 1)y},

Bky:m' =0 m' > 2. A

Hence, whenever m = ky, that is in directions given by

' sin ¢ + sin 8= + kA/o,
corresponding to the lateral images given by an ordinary grating of period o
equal to the mean interval of the transparent spaces, we have bright spectra

and on either side of these a series of faint spectra or ghosts, that are the
less conspicuous the further they are from the principal spectra.

76. Another peculiarity exhibited by certain gratings is that of exercising
a converging or diverging influence on the spectra formed by them*. This
has been attributed by Cornu to a regular variation in the spacing of the
lines, and elementary reasoning shows that a gradual increase in the interval
of a plane grating has the effect of a convex lens as regards the spectra on
one side of the central image and acts as a concave lens with respect to the
lateral images on the other side.

Let us suppose that the surface on which the lines are traced is curved,
and that the lines are determined by the intersection of this surface with a
series of parallel planes, one of which is the normal plane at the centre of the
grating, and that the spacing is such that the distance of the Ath plane from
the centre of the series is represented by

I aE i e G 5 o ROABo00 G L e o BB (45).

When the striated surface is irregular, the spectral images are defective,
but when it is approximately a surface of the second degree with a plane of
symmetry parallel to the lines, the images may be very distinct and the

* Mascart, dnn. de U'Ec. Norm. Sup. 1. 250 (1864). Merczyng, C. R. xcvi. 570 (1883).
Rydberg, Phil. Mag. (5) xxxv. 190 (1893). Cornu, dAss. Frang. pour Vavancement des Sc. Nantes
(1875), p. 376; C. R. uxxx. 645 (1875); cxvr. 1215, 1421 ; cxvir. 1032 (1893); J. de Phys. (8) 11,
385, 441 (1893); Séances de la Soc. Frang. de Phys. (1893) 215, 223. Lord Rayleigh, Enc.

Brit. xxiv. 438.
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inevitable astigmatism, though considerable, is of little consequence. In
considering the focal properties of such gratings the curvature parallel to the
lines may be neglected and that normal to the lines has alone to be taken
into account. This is equivalent to assuming that the surface and the
incident wave are both cylindrical, the generating lines of these cylinders
being parallel to the ruling of the grating. The problem is thus reduced to
one of two dimensions.

Let QA4, QP be two rays starting from a point @ and falling on the
concave side of the striated surface AP, the centre of curvature of
which 1s O.

A
Fig. 25.

Let QA =p, OA =a, the angle QA0 =a and the angle AOP = w, then
AP =2asin 0/2 and the angle Q4P =7/2 +a— /2. Hence

QP2 =p* + 4a* sin® /2 — 4ap sin ©/2 sin (w/2 — )
= (p + asin asin w)* — a’sin® asin® w + 4a (@ — p cos a) sin’ w/2.
Now as far as sin‘ @
4 sin? w/2 = sin*w + (1/4) sin
and to the same order

QP*=(p +asin asin w) + a cos a(a cos a — p) sin*  + } a (¢ — p cos «) sint

and QP=p+asinasinw+%cosa(co—sa—é>azsin’w
p
_%sinacosa(cﬁq_l>axsinsw
P P a
1 (sin®acosa /cosa 1 1 /1 cosay lcos’a/cosa 1\? -
+_ ' il ¥t e’ i e AP i e Wl e 4 cind
2{ A ( 3 a)+4ea*(p a ) o ( . a)}a, sin‘w ...(46).
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Again let @' be another point on the same side of the normal 04 and let’
Q' A=p,Q'40=0a'; then QP is obtained from QP by writing p’ for p and
o for a.

Suppose now that A is a point on the central line of the grating and
P a corresponding point on some other line, then @’ will be a focus of the
diffracted light if

QP+ Q' P=QA +Q°A+m\ ...cvnvnvnnnnnn... (47),
m being a positive or negative integer, and the upper or lower sign being
taken, according as the grating acts by reflection or transmission. Taking
the former case we have

a?sin® o

X e, 1 /cos’a cosa’ cosa cosa
(sma+sma)asmm+2 — - —

P a
1 (sinacosafcosa 1 sina’ cosa’ fcosa’ 1 by s
e VAT Y 15 T =5 a*sin® @

P p @ p P
1 sin? a cos & (cos_a_ = ZE) 8 _1 <1 cos a) 1cos2 a (cos ! 1)2
2 P p a 4a*\p a & p o \ig g
sin ¢’ cos d (cos o 1) 1 ( 1 cos a’) 1 cos?a’ (cos o 1)2} e
Ay 7 = —s—— = ——| 5=} a'sn e
p* P a) * 4a*\p a 4 »p P a
e ot Tt ot TR e (S

Now if P be on the kth line
asinw=ck+o'kt+ "k

and writing b = ¢?/0’, ¢ =0%/c”, the equation becomes

(sin & +sin «') ok + 1 (0052 a cos": o __cosa+cos o 4 Sil,li+5i_nq'> s
2 p a b
3 1 (2 rcos®a  cos? a cosa+cos a') sin a (cos2 a (ﬁa_z)
2 (b ( p P a P\ p a
< 7 2 a' 2, d . ’ .
L M PR
P P a
So long as ¢%? is small, this equation will hold for all values of &, if
o (Sina+Sina)=mMN cciiiveeniniiiiiniiinennns (50),
and
cos’a cosa sina_ 1
NI O NI = (51).
cos® a _cosa +sm a ___1_
P a b d

We thus have two families of curves, called by Cornu “focal curves” and
by Baily “diffraction curves,”* that are conjugate to one another and have

* Phil. Mag. (5) xv. 183 (1883).
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the property, that if the source be at any point on one of the curves, the
spectra lie on the conjugate curve. Writing

a/b=tan (¢ +v), (a—d)[(a+d)=tanptany, K ?=a2+40b*
the equation to the curves may be put under the form

IK_ 20t B 52),
7% cos (g i 4)) cos (% aF 1[/‘) ; e

Among these curves there is one, the principal focal curve, that merits
special attention, as it passes through both the source and the spectra, when
the former is at any point upon it. This is the curve for which d = and
its equation is )

cos’a cosa Sina

B =T T e (33),
or p=acos¢ {ES% + cos (a — ¢)} ................ (54),

where tan ¢ =a/b. This latter form of the equation leads to an elegant
geometrical construction of the curve*.
When the spacing is correct, b= o, and the principal focal curve becomes
FSEFHSE T s b shabbdoxianaatd aoadbntatcs: (55);

a circle on the radius of curvature of the grating as diameter. This is the
arrangement usually adopted with curved gratings and it is clear from
(48) that in this case the outstanding aberration is of the fourth order
and equal to

@ : A
- (sin a tan a + sin o’ tan ) sin* wt.
8

If the grating be curved with a very small systematic error in the ruling,
then ¢ in (54) is very small and we have sensibly
p=a cos ¢ cos(a— o),
a circle of diameter a cos ¢ inclined at the small angle ¢ to the normal to the
grating at its central point. :
Finally when the grating is plane, @ = o0 and the principal focal curve is
PI=i=1DICOBICCOSTAREE Bk . L A, R S P o (56),
a cissoid of Diocles with its cusp at the centre of the grating and its

asymptote at right angles to the plane of the grating at a distance b on the
side on which the spacing increases.

77. We will now consider a case that is of primary importance in the
study of diffraction, on account of its application to the theory of optical
instruments, namely that in which the aperture is circular.

* Cornu, J. de Phys. (3) 11. 391 (1893).
t Rowland, Phil. Mag. (5) xv1. 197 (1883). Glazebrook, ibid. (5) xv. 414; xvr. 377 (1883).
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Let the centre of the aperture be taken as origin, its radius being R, and
let us write
a=p cos 0, y=psin 6,
p=ocgcosf, g=ocsinf,
so that e
¢ =V g = 2mr(hp0),
where 7 is the distance of the point of the pattern under con51derat10n from
the image of the luminous point. Then

27w+6’
by (t) = — teeet Xfp %f;o f f ¢:po €03 (9-0) 5 015 16
1

— (ewwt = ap"f f elpacosepdpdg

Apip, 02
orif po=¢
4 9p, 1
= e SiKwlg v  cos 0
¢0 (t) e XPP az 0_' gd;f gt co de
A apo 2
oket 48
vk G
A op, J) (Ra) 4
= — ity o A NED, L ¥
, e e R ) P TIPS TPO IRy (37),
and the intensity is
' A?  (0p, J, (Rao)\? A
= Sooias (82) 2R (—E ) ekl sl (58).

Thus the illumination vanishes in accordance with the roots of J;({)=0,
and calling these ¢, &, ... the radii of the dark rings in the diffraction
pattern are

PG porE:
2xR’  2xR’
The values of the first six roots of J, ({) =0 are
3:831706, 7015587, 10°173468, 13323692, 16470630, 19-615858.

For the maxima we have

Al C)i
ag é. = EJ‘A(C):O:
and thus the maxima occur in correspondence with roots of J, (&) =0, the
first six of which are
0, 5135630, 8147236, 11:619857, 14-795938, 17-959820;
and since when ¢ has one of these values

2J, (§)/E=J, (),
the intensity of the maxima is
AN e
24T 2
A ( 82) =R A(Ro).
* For the properties of Bessel’s and Struve’s functions required in phis and the succeeding
sections see Appendix I,
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The total illumination distributed over a circle of radius # is

o f:ndr: L1 f Itde = (a"° ~R2 f” © g¢

;11 (%p) TR 1 -J2 () = T2 ()

since J,(0) =0, J, (0) = 1.

If » and consequently ¢ be infinite, J, ({) and J; (¢) vanish, and thus the
proportion of the whole illumination that is without a circle of radius 7 is
JE (&) + J2(¢) and smce for a dark ring J; (&) =0, the fraction of the light
that is outside any dark ring is J2(¢). The values of this fraction for the
successive roots of J,(§)=0 are 161, ‘090, "062, ‘047, ..., so that more than
5ths of the whole light is inside the second dark ring*.

78. When the object under examination is a luminous line, the various
elements of which are to be regarded as independent sources, the intensity
may be determined by integrating the expression for the intensity due to a
luminous point. In this way Struvet has obtained by the aid of properties
of Bessel’s functions an expression suitable for numerical calculation. Lord
Rayleigh{ has however shown that the problem may be solved more easily
by a method due to Stokes§, in which the integration over the diffraction
aperture is postponed until that with respect to the direction of the luminous
line has been effected.

Since the intensity due to a luminous point is obtained by multiplying
¢, (t) by the conjugate expression, we have

=i () [[[[otrmmrreesasayasay,

and the intensity due to a luminous line parallel to the axis of y and of
breadth da, 1s

Bon* d PR ) i o
J=dx,fldyl (a@) 47{’[ dqﬂﬂ’e‘“" a1 dody da? dy.

In the present shape of the integral, the integration with respect to ¢
must be reserved to the end, but if we introduce the factor Exp (¥ Bq), where
the sign — or + is to be taken according as ¢ is positive or negative, we shall
evidently arrive at the same result as before, provided that in the end we

* Lord Rayleigh, Phil. Mag. (5) x1. 414 (1881); Enc. Brit. xx1v. 433.

t Wied. Ann. xvi1. 1008 (1882); Mém. de U'Acad. des Sc. de St Pétersbourg (7) xxx. No. 8 (1882).
I Enc. Brit. xxtv. p. 433.

§ Edin. Trans. xx. 317 (1853).
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suppose B to vanish without limit, and when this factor is introduced we may
integrate with respect to ¢ first. Thus

et ] B e

A2 aPo fff A, o
(az g tﬂ—o :82+(J J)z er d‘Zde‘T d.y

L
B+y-yy
the value 7, in which case it is equal to 27 and therefore
' 28dy'dy
L [ 220
LR g
where Y is the common part of the ranges of integration for 3 and y cor-
responding to any values of « and x, and since the aperture is symmetrical
with respect to the axis of y
=2 (8L ([ evo Yamae

2

Now Ltg_, =0, unless the range of integration for 3" include

Ao

‘2

<5po o f f Y (e7% + e #%)(e?” + e7?%) dwda’

A2 (E)p °) Py J Foon px cos px dedr’.
Q

0z)

Now Y is the smaller of the two quantities 2V R* — 2%, 2V R —z” and
therefore

2 2 Ui AT s & faia
J=% (%%’) E%AL UO fo VR — g2 cos pz cos pa'deda’
R (R o8
+f f N R? — 2" cos pax cos px'dwdw’}
0 Jo

— a—p) dp8f f VR —. cospa:coepxdxdx

(ap 4~dpf VR — * sin 2padz

?J

= fif (@9)2@ %” f B (2pR sin 6) cos* 66
0

L (‘:’—P") R2dg1{‘2(§2)§_) ................................................... (59),
where &= pR = 21 1—% E £ being the abscissa of the point considered relatively

to the image of the lumlnous line.
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The points of maximum and minimum illumination occur in accordance
with the roots of :

o #.(2%)_,
ot @
or BH, (2) = 26H, (20),

which, when ¢ is very large, become approximately the roots of the equation
sin (2¢ — w/4) = 2/V7¢.

Since H, (2¢) is essentially positive, the intensity i1s nowhere zero.

79. Let us now examine the case, in which there are two parallel and
equally luminous linear sources, the components of which subtend an angle
at the aperture equal to that subtended by the wave-length of light at a
distance equal to the diameter of the aperture. Since

_ 27 R ENNN
ARSI s,
the corresponding value of §is w. Writing
_TH@H_ 1 @20y (28
L®=3"Ge "3 vy st

the intensity at the geometrical focus of either of the lines is proportional to
L(0) + L (),
and that at the point midway between the geometrical images of the lines is
2L (/2).
Now L(0)=-3333, L(w/2)="1671, L (mw)="0164,
so that the ratio of the intensity of illumination midway between the images
to that at either image is
2L (w/2)
L)+ L(m)
But in order that the lines may be fairly resolved, this ratio should not,
as we have seen, exceed the value ‘8 approximately, and hence it follows that
for resolution the angular interval between the lines must exceed that sub-

tended by the wave-length of light at a distance equal to the diameter of the
circular aperture.

*955.

80. If we now integrate (59) from & to o, we shall obtain the illumina-
tion due to an uniform luminous area bounded by a straight line parallel to
the axis of y, at a point situated at a distance £ from the geometrical image
of the edge. This point will be without or within the geometrical image of
the source according as ¢ is positive or negative, and denoting the intensity
of illumination by I (¢), we have

I(+H+I1(=5=1,
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if the unit of intensity be such that the illumination due to an infinitely
extended plane area be unity.

Hence I(+¢)= Cf }122(;);) d¢

with the condition that for {=0, 7 (+¢)=%. But

(2 o 1 3 g ” sin (2¢ sin )
fo o d;‘_wf R 9daf0 g

and from this it results that C' = 4/, and

S0 1D
1o=2f, e =3 T

1 42 25+3 (2P

AR A )2s+1(1 . 25+ 3)

using the ascending series for Hl.

For large values of the argument, it is more convenient to use the semi-
convergent series for H, and this, retaining only the principal terms, gives

1 1 1 cos(2&+ 7r/4)
hl) = ( 12;3) = A
For very large values of ¢ this reduces to
= 1 Ap, :
IQ)= o= :

and thus at great distances from the geometrical image of the border of the
radiant area the illumination is inversely proportional to the distance £ and
to the radius of the aperture.

81. The case of a diffraction aperture in the form of a sector of a circle
is interesting on account ‘of its application to the heliometer objective*.
The fundamental formulee of the problem were first given by Struve, but the
case was first fully worked out by Bruns in a manner substantially the same
as that given below.

Let 28 be the angle of the sector, then writing Ro = ¢ we have

4 9p, R f $ f i =
R P L 2 cos (8 —¢)
¢ (t) = — e e 02 B 2dz _Be do

A opo B { fﬁ-y e )
= — oot 2 coS Y ] 2 cos Y -
te R §2 dz A e V+ jo e \pj

* Struve, Mém. de U'Acad. des Sc. de St Pétersbourg (7) xxx. No. 8 (1882). Bruns, A4stron.
Nachr. civ. 1(1883). Straubel, Inaugural-Dissertation, Jena (1888).
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v ©
Now f e sV difp = J, (2). Y + 22 %sin . J, (2),
0 1

and sinn (B—0)+sinn(B+8)=2sinnBcosnd,
whence
24 0p, R SIie ;
Nt s s s
$o(t)=—1e a5 0, {BJO (2) + 2% - sin nf3 cos nd'J, (z)} zdz.

But

z = n+2s+1
fono.dz=zJ,, fzJ dz—2zn$2',0 TFE SRS IS Jfas i,

therefore
24 dp, B (
it Ol ST g
¢0(t)— e )\ o 0z ngTl(g)
¥ See n+2s+1
+4 n% ¢*sin nB cos né 320 n+25)(n+ %5+ 2) n+28+1(§)}
= gkwt 2£_ ?B‘l
Apopr 0z g
w0 2n = ]
— = 8—1 Do . il ’
i [4”% @n=T)(@nF1) Son (&) El( 1)1sin (2s — 1) Bcos (25 —1)

B @S SR T @ Z%j(—l)“sin?sﬁcos%ﬂ'”...(60),

and the intensity of illumination is

44 (0p, nee ooty iy . )2
=)‘2P02P1 ( ) Z’ [{SJ(C) 47121 2n(me+x(C)s§](—1)“sm 28/3005289}

B 20 2n

+16 {n . m) Fu (© zgj(—1)""lsin(28—1),3c0s(23_1)0'}2]

The diffraction pattern is thus symmetrical with respect to lines parallel
and perpendicular to the bisector of the angle of the sector.

In the case of the heliometer objective, 8 = /2, and since

3 cos (2s—1) 0’ =sin2nd’/(2 sin &),
1

we have
_ 44 By R, el At in 206',n (§)}
oroe ) 55770+ 0 G ey 200 0f |
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When ¢ =0 or r, the intensity may be simply expressed in terms of the
Bessel’s and Struve’s functions J; and H,: for in this case

) H
b= e[ ey
1

4 op, mR*
W
o gt P f (AT B
A 0dp, 'n'R
W 5‘; T W 1) cecocetcnscrnsscccnne (63),

e;xwl

whence I N—’i; (%’:’) o {J1 &) LTI 1 (64).

When @' = /2, the intensity is given by the simple expression

_ A* (Op\imRt .
nalits, (8z) W choie ) Soietige o 65),
and when 6" = + 7/4

- s () 5 700+

n—1 (4n = 2) Juo(O))®
{2 I i 3) (4n -1*)} } *++(66),

w. _ 9



CHAPTER VIIIL

FRESNEL’S DIFFRACTION PHENOMENA.

82. IN the more general case of Fresnel’s diffraction phenomena, the
disturbance at the point (x,, ¥, 2,) due to a radiant point at (2, %, 2) is

¢0 (t) =—1 x—p;% eH(xwt +38) f{em{ (m+pu) (Z: o) z Hl ( Po )} dxdy,
0f1

or writing
2r /1 1 2 (xy 27 (s yl
T(eds D FEeD-
A (o+P1) A\pe p A \po Pl) i
and remembering that

etz=cosz+asinz=\/%z {J_3(2) + J3 (2)},

v

$o(t) =~— ——A—%’;’ glti® /(m Y} (Jy (my) + o, (my))e~ v dy
x f ()t {J_; (2) + Ty (1)} Az e, ),

the integration being extended over the diffraction aperture*.

The expression for ¢,(t) thus depends upon integrals of the form

= f (U Toa (1) P e siaianssinsi ),

e f (zyr+1 J, (l) e Q... 3),

where v is real and assumes in the case considered the value 1/2.

Now by successive integration by parts, using the formula
f #d, () de= T, ()
l2v—1

we find Y= {U, (Y, 2) + U (y, 2)} €W riiiiiiiinnnnnn, 4),

* Lommel, 4bh. der K. Bayer. Akad. der Wissen. xv. 233, 531 (1884-1886).
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where E e s ST e U e A (5),
0
y being written for k2* and z for l2. In the same way from the formula
0
5 {d, (&)} =2"J,, (2)
. vt
we obtain = Vo, )+ V_ oy (y, 2)} et (6),
where Vo(y 2)=3(=1¢ /o) "2 J s 2(2)ereceerriennnnn... (@?
0

Similarly from the formula

e T @ == ()

ll—nu

we find s { U, (Z—q ; z) +.U, 4, (?Z; : z)} 2k Bt Bt B (8),

and from the formula

f 0, (2) de = — 21T, (2)

1—2v o
o, =— 21_—” {I_’_m (:f—; z) i, (g ! z)} W, ),

where U, (2*/y, z) and V, (2*/y, z) are the series obtained from (5) and (7)
respectively by writing therein z2/y for .

Since (loy+2d, s (lx)=0
for =0, if v be positive, we have if />0

we obtain

kad v
14

f "y (@) e T do =
0 k

where y=kr* and z=Ir; and again since
ey, _y s (lz) =0
for z = oo , if v be less than unity and [ >0,

(U, (5 )+ U (3 2) 62 ...(10),

P A it ¥
Jr (a) T (@)™ 3 do=— o (V_pss (9. 2) + Vopn (3, A} €7'2...(1D),
and if v be not less than 1/2, these equations are also true when 7= 0.

Hence if v be less than unity and not less than 1/2,
kat®

f x (wyd,_ (lw)e™* 2 do = li,; U.(y,2)= V_r1a(y, 2)

+ i {Ui (o, 2)= Vs (3, 2)} ] 65 e 12).
Now consider the integral

f (lx)v v—1 (lm‘) e~ (@+3kyx? dx.
0 A
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(lw)v—1+28
5P+ 1)TC(w+s)’

Since Jv—l (l‘x) = § (— 1)8 Qv—1+
0
we have,

f (12)"J,_, (Iz) e~ 2% g
0

l v—1+28 @
= —(a+Ek)2? ev—1-+e
2D T eI Toral, & e e
=S(-1y Lo T+s)
3 27BN (s+ 1)1 (v+5) 2(a + § bt
l2v—l lz 8
_(2a+k) )‘SI‘(s+1)(4sa+2l»L>
[ &
(2(], PE k") e da+2k
)

where A2 = 4a’ + k“, sin ¢ = k/K.

This equation holds for all positive values of », so long as @ is positive,
however small it may be : it also holds for ¢ =0 provided the integral on the
left still retains a meaning, which is the case if v =} and <. With this
condition we then have

Jo—1 2 w)
v

— e\~ 2)*

f (z)* . (Ia) ¥ dp =

o

l?v—l 53 1r)
= 2 e\2y 2

Again, from (8) and (9)
f (lap->J, (lz) e~ ¥ dr = ékl—— [U (l2 , ) +U,4 (2—2, 0)

b {U, (2 ¥l ) +. U, (l lr)} —Mrﬂ{l
= ﬁ;’ [V_,,H <§, O) +.V_, 4 (g, 0)
- { | ) (lg, lr) +V_,py (lj ; lr)} e—*’"‘*‘:|...( 14),
and if v > —4 and [ £0,

(1)~ T, n (12)]er = 0,
whence

o 1-2» 2
‘ f (1)~ J, (o) o~ dw= {U., (% Ir) + U (% zr)} et (15),
and !
1-2v 2 2
f 2y J, (lo) e bkzada:—-lk—_{U., (2 o)+LU,+1 (lz 0)} a6}

* For the properties of Lommel’s functions Uy (y, 2) and 7y (y, 2) see Appendix II.
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83. Applying these formulae to different cases of diffraction, let us first
consider that in which the aperture is a rectangle of width 2¢ in the direction
of the axis of # and of length 2b in the direction of the axis of .

Taking the origin at the centre of the rectangle, the limits of integration
for z are + a and for y are + b, and since for these limits the integrals o} are
zero, we have

= _..é apo t(kwt+3) ﬁ v
d)==15, (a )e 200/ o (U3 (, 0) + Uy (0, 0)) €7*3
x 28 p /o, (U3 0, o)+ 4T3 @, o)) ™5 AT,
where
u=._21(_:_l_+l)a?, u/:?z (.}. +l) b?
A\pp p A\pe pm (18)
fv=2__.7r(§2+wl)a’ v/=?z<%+y_l>b
A\p P A Po P
and the intensity is
o 4 aPO 2fo \ M
_)ngpf(a ) 16028 x o1 {Uy? (u, 0) + Uy (1, 0)]
xc)u,{U} W, v)+ U2 @/, o)} .o, (19).

Now in Fraunhofer’s special case of diffraction, p,™'+ p;7*=0, so that we
obtain this case by writing u=u'=0: but when u=0,
_sin®v

{U£ (u, v) + U (u, v)} = -Ji YT

and the expression for the intensity becomes that found in the last chapter,
namely,
oat i <§&,) 7b2s1n2'u§1_12v2_
>\-2p02 Pl2 0z 1)’2
In the general expression (19) relating to Fresnel’s phenomena, the last
two terms have the form

M= %b (U (w, ) + U2 (0, 0)} eevvvcnenivnnnen, (20),

and we have to examine the character of this function.

For a given position of the screen of observation, that is for a given value
of u, M is a maximum or a minimum for values of » that make 0M/ov =0.
But

oM U, , , U ot :
) ;{U* Bv& Oy a} 7;7:]Ui(U}+Uz)=—%J}(U)Ug(u,v)...(ﬂ),
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PLATE I1.*
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The regions of the lines that give minima are indicated by heavy ruling : those that give
maxima by light ruling.
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* Plates I. to IV. are, with the permission of the Royal Bavarian Academy of Sciences,
reduced from plates published with Lommel’s papers.
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: J o5 A {0
hence M is a maximum or a minimum when either v*.J; (v) = ,\/ =sinv =0,
3 ™

that is when v=nmw (=0, 1, 2...), or when «—2Uj («, v) =0. Now
W () == 2 ATy @), and Uy (w, 9)=—="2.2 U, (u, 0,

and therefore the maximum and minimum values of M occur in corre-
spondence with either maximum or minimum values of U, (u,v) or of

vy (v)=\/ =cosv. The intensity at the minima is never zero, since
™

U; and Uj do not vanish simultaneously, as may be seen at once from their
expression in terms of Fresnel’s integrals.

In order to distinguish between the values of v that give the maxima
and the minima, we must form the expression ¢>}/0+*: now

oM oU; 0
= Z% {”*J; @, + U % [ty (v)}}

{ B (R0 ML By 10 U;} ..................... (22).

~ul
Hence the roots of »*J, (v)=0 correspond to maxima or minima of M
according as v*J_,Uj or cosv.U; is positive or negative, and the roots of
iUy =0 give the maxima or minima according as v!J}(v)Uj or sinv.Uj is
negative or positive.
If, however, J; (v) =0 and U;(u, v) =0 simultaneously, 0*M/0:*=0, and in
this case
U _, o
o Tt
which does not vanish unless v=0, because for these values of v, »*J_; and
U; have their maximum and minimum values.
Again 9*M/ov*=0, if Uy(u, v)=0 and U; (v, v) =0, while 0°M/0v* does not
vanish, but is equal to
—mtut U= —mou2JyJy o (24).

Hence the roots of U; (v, ) =0, other than v =0, that satisfy either of
the equations J;(v)=0, U; (%, v)=0 correspond to neither a maximum nor
a minimum value of M.

Now when v=0, that is at the centre of the pattern
oM _w [ ‘\/271'
and when U; (4, 0)=0,

oM 3‘\/27r

av‘ Ug(u, O)
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= oy 1
But \/—ZUé(u, 0)=1 ——«/1 Uy(u, 0)=1 —f cos Ju (1 — %) . dy,
2“. 2u 0
and therefore U, (u, 0) is positive and for these values of u, M is a minimum.

When, however, v=0 and U; (u, 0) # 0, then 0}/dv =0 and
oM

i

and M is a maximum when u is between u,, and 4, and a minimum

when it is between wuy,,, and sy (n=0, 1, 2...) Where w,,, 2y, ,,... are the
suecessive roots of Uj (u, 0)=0.

N 2ar
# gg [t U] = - ;;5 Uy (u, 0),

The edge of the geometrical shadow of the screen is very approximately
at the point for which u=w, the shadow lying on the side for which u < v.
Now when « < v we have

Us(x, v)=—% [V; {(_u ;L), 0} +V; {(_u_—:;_v)", O}] sin v

- 2 .
[V; {(u 2 o} A {(i‘:—”) ) oﬂ GO8 1.1 (20)5
hence for points within the shadow that satisfy the equation v;J} (v)=0, that
is for which v=nw (n=1, 2, ...),

Uy (u, v)=—2 [V; {(u B 0} Vi {(2‘*22)2 p 0}] cos n,

U

aad | T ) D % «/ g [V,} {(fi:—b@ o} -7, {(“—Z Wy 0}] ,

and this expression is essentially negative, so that within the shadow the
roots of v!J, (v)=0 give the minima. Further it follows from (26) that the
equations viJy (v)=0 and u~*Uj (v, v)=0 have no common roots when u < v,
and that only one root of the latter equation lies between two consecutive
roots of the former, so that the roots of w=1U;(u, v)=0 give the maxima
within the shadow*.

84. When the diffraction is produced by an opaque rectangle of breadth
2a and length 2b, we have to integrate for « from — o to —a and from « to
0, and for y from — o to — b and from b to . Hence ‘

A

¢0(t)= ”"r‘

0po «/; o
0 ok (wt+8) i .
Pop1 02 i 28 2u V(w9 + Vi (u, 'v)} 47

ad \/2:‘;" {(Vi(, o) + V3 (), ')} e"“% call 30)

* See Plate 1. for a graphical representation of the equations Jj (v)=0, Uz (x,v) =0.
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and the intensity is
=X% @:’) 16a%b* X5 {V; (u, v) + V3? (u, v)}
X ~2~l7 (Ve @/, v)+ Vi (v, )} ...(28).

In this case, since the values of V2 (x, 0) and V3?(u, 0) decrease continu-
ously as u increases, the intensity at the centre of the geometrical shadow
varies continuously as the screen of observation is moved towards or away
from the opaque obstacle without passing through maxima and minima.

The function that we have here to consider is
M= %{Vf (uy v) + Vi (u, v)).
Now if % be constant

oM W{V%avi v, 3V2}=_%’ Vi(Voy+ V),

v u
3
== T @) Vi (0 (29).

Hence for a given value of u, the expression is a maximum or a minimum
when, either

iy (v) = \/5_ sinv =0, or V;(u,v)=0,

and since T)}J% (v)=- aav (1)%,]'_% ), V% w,v)y=—- -

the maxima and minima occur in correspondence with either maxima or
minima values of either vtJ_; (v) or V; (u, v).

To distinguish between the maxima @p" minima we have

oM _ oV, 0 (vid,

Rk { 4, *+ vy — ( f { JyV_y—hd_, V}} ...... (30),
whence it follows that to the roots of vi’Ji (v) = 0 correspond maxima or minima
values of M according as J_; V} is positive or negative and that the roots of
V} (v, v) = 0 determine maxima or minima according as J; V_, is negative or
positive. v

At the centre of the paftern, where v = 0, we have

eM_ 1 fom
“a? qEe— ’L_L E Vi (’LL, 0) ........................ (31),
and since V) (, 0) is always positive, M is a maximum at this point.

When »J, (v) and V,(w,v) vanish simultaneously, &>M/0v*=0; in this
case
oM 27 |
_a_’UT =-—0 =

1 (@) Vo (u, ) =— ;;7? I3 () V3 (,0) ..ovee (32)
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PLATE II
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The regions of the lines that give minima are indicated by heavy ruling: those that give
maxima by light ruling.



84, 85 Rectangular Obstacle © 139

and this 1s not zero, sifice J_; (v) and V; («,v) do not become zero at the same
time as Jy (v) and V; (v,v). To such values of » therefore correspond neither
maxima nor minima of M.

These are the only exceptional cases, for a graphical representation
(Plate II) of the equation Vj (u,v)=0 shows that at all points of this curve
du/dv is always positive: now

v
d’lb 3 .l; V_& o
& = T T e (33),
Vi+ - vl

and since V; does not vanish with V;, V_; will not do so.

For points within the geometrical shadow « > v and

r‘ (21 — m)2 3 2
Vi (u, v) =% l_Vi {@73)—, 0} +V; {(E{—Q, OH coS ¥

; ot % [V,:, {(L; v 0} 552 {(“+”> o}] sin v...(34).

We have then when v =nnw

V.&(“»"’)=%[ {(u i }+V§{(—u—:—v)—2,0}]cosmr

and the expression J_, V, that determines the maxima and the minima has
the positive value ’

1 '\/ 2n|: A {(u v)? } v, {(u_'i'ui)z, OH cos? nr.

Accordingly within the shadow the roots of v»*J_; (v) =0 give the maxima.
Further it follows from (34) that within the shadow, the equations v*J} (v) =0
and V; (u, v) =0 have no common root and that only one root of the latter
occurs between two consecutive roots of the former equation, and accordingly
the minima of M are given by the roots of ¥} (u, v) =0.

.

85. Let us now take the case of the diffraction caused by a train of
waves passing an infinite screen bounded by a straight line. Taking this line
as the axis of y, we have as the limits of integration 0 and o« for # and — »
and + « for 7, and consequently from (13) and (16) we have

4 (p, \/
t)= — o (kwt+8) 2k 4
%) t7\PoP1 (a )e s
2
N/QA{U* +LU;( >+e(2_’°_1)t}...(35),
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and the intensity 1s

m:; (%’2) 3558 [{“S (2lk 4) ‘, U*( )}2
- {bm (2l, 4‘) + U; (l{, 0)}2] ...(36),

or in terms of a new unit of intensity, that is practically the intensity at a
point on the screen due to the uninterrupted wave,

r=fpes (- 3) ¢ 40, (0 o (B 3) 404 o

This formula holds for all points, whether within or without the geometri-
cal shadow of the screen, ! being negative in the first case and positive in the
second case, but it is convenient to alter the expression so that in both cases
l is regarded as positive. Now, since

5 . (j2kys
U*(Tc" ) «/2L2( b ' +2s)’
k ) (I2/2k)y=+
U*(z’ ) mz(‘ )F<z+2s> g

we have

U%{(——]f)g,o}=-lf*<%,0), U;{(—‘—kl)r‘, o}:- U;(%,O),

and writing [*/k=u, the intensity at points outside the geometrical shadow
is given by

I, = {% cos (% - 7—7) + 3U; (u, O)} {1} sin <§ - I) +3U; (u, 0)1»
{cos <§ - I) + $V;(u, 0)} {sm (3 — Z) + 3V, (u, 0)} .(38),

while for points within the shadow we have

I,= {% cos (g -~ —) 31U, (u, 0)} {1} sin (é — Z) +Us (u, O)}
=1V ¢ (0, 0) okl Vi (1, 00 5e i i do ik 3 op 1o P s Lo e B e (39),
u in both cases being regarded as positive. At the edge of the shadow where
[ =0, the intensity as given by the above expressions is
(L)o=(Lr)o=1/4.

Now V2 (u, 0) and Vg (u, 0) both decrease continuously as w increases
and only vanish when « is infinitely great: hence on moving into the geo-
metrical shadow away from its edge we find a regular decrease of intensity.

Outside the shadow the illumination is never nil : for that to be the case, we
should require that

Vs (u, 0)—-—2003(2 4> Vi(1¢,0)=—2sin<g—%),
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or V{rg (’U, 0) + If'-}? (u’ 0) =4,
and this is impossible, since V) (v, 0) and V; (v, 0) are both numerically less
than 1/v2. .

In order to determine the maxima and minima in the space outside the
geometrical shadow, let us write

Pa ;sm(é_;_)pvg(u O); . el-hiz -}cos(———)+%U3(u 0) ...(40),

then ‘(lilzc) } cos <~ - —) +3U; (u, 0)=10Q,
and since  U_y(u, 0)+ U (u, 0) = u [}y (V)]pmo = :Tzu :
%3 =—}sin (g—— E) +1U_; (y, 0)
=%{W;¢—%fo<m 0-3sin(3- P =3 f0/2-7)
Hence i
ot sy o

=%«/Z{co s(3-5) +17 0. o)

and the maxima and minima occur in accordance with the roots of
w T
cos (;2 - Z«) + AV r0)=0" Sl (42).

Now V1 (u, 0) is always negative and less than 1/¥/2 in absolute value and

therefore this equation is only satisfied if cos (2 4) is positive and less than

1/¥2, in other words when u lies between (4n+1) 7 and (4n+ 3/2)7 or be-
tween (4n +7/2) 7 and (4n+4)m, (n=0,1,2...).

Since 4 V3 (u, 0) is small and approaches the value zero as  increases, the

roots of (42) are approximately the same as those of cos (E— %) = 0 which

/ 2
gives
4n+3
U=—p—m, (n=0,1,2;...) Sphecic i Lot (43),
a second approximation to their values being
4n+3 > (4n+3
Ras T + cos nr V;(—Q— T, 0) ............... (44),

and since the intensity of the maxima and minima is

I= {sin (g - g) + 3V (u, 0)}2,
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it follows that the maxima occur when # is odd, and that the minima corre-
spond to the even values of n*.

The locus of a band in space is given by |

2w (xo x])’ (1 1)

—_— = 4 — = (- + e ”

Au\p, P o P
where u has the value corresponding to a maximum or a minimum. Since
Po = 2, this is approximately the hyperbola

2 H 3
%;(Plxo +x120)2— Pa (zo'*'%l) +% =0,

having its vertices very nearly at the source of light and the edge of the
diffracting screen.

86. It has been pointed out in Chapter IL that in the cases of inter-
ference therein considered the phenomenon is considerably modified by the
effect of diffraction. As an instance of the disturbance thus produced, let us
consider the case of Fresnel’s biprism+, the acute angles of which are equal,
and let us suppose that the source of light is a radiant point in the plane
through the edge of the prism perpendicular to its flat face. We have then
to deal with two correlated sources of light—the virtual images of the lumin-
ous point produced by the two halves of the prism—the streams from which
pass through the corresponding parts of the prism.

Let the coordinates of these two sources be (+c¢, 0, z): then since it is
clear that the disturbance at the point (z, %, 2,) due to the source (—¢, 0, z,)
is the same as that at the point (—,, y,, 2,) due to the source (c, 0, z), we
have

s A aPO gtlkwt+8) \/77 (Zk 3

’\/QL[U"‘ +LU§< )+e%j_’i j =

2w

A (Z- 0) +.U; <~- 0)+e(2'~ 1 ] . .(45),

)
l1=27r(0 +£0>, lo=— S 4 —_ﬁ)l
P1 Po A

m= 27ry0 k——<l+—1->
P1 Po/:

* The approximate value of u given by (44) only requires a small correction ¢ determined by

Q+ed€=0, or 2Q+e§\/ﬂ%—P} =0:
the corresponding intensity is P2 (u+e¢), and
dP € (dfP
au b2 aw
t Struve, Wied. Ann. xv. 49 (1882). Weber, ibid. viir. 407 (1879).

where

P(u+e)=P+e— =P+J‘;5Q+is2%%=P+;}eQ.
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and writing w, = 1,2/k, w,=1*/k and adopting a new scale of intensities, we
have as the intensity at the given point

{ {lc s('ﬁ——) +%U5(u,,0)+ cos (l; Z)+ Uy (us, 0)}
- {—é sin (;‘ ) + 31Uz, 0) + 5 sm (2 g) +31U; (u, 0)}2 ...(46).

To determine the maxima and minima of intensity we have to find the

value of 8J/ox, and since 9u,/0x, = a Ny, 0uy/0w,=— a Vu, where a is a con-
stant, we have

I
g——2(P1+1;’2)(a\/u13-——aA/t2 >
+2(Qu+ Q) (ava 52— avi32).. o)
where
’ P=gsin (5-F) +101 s 0)
R e e Tk e e A el (48),
1 (2
Q =§COS (i— Z) +‘%U} (u O)I
: 0P 9@~ 1 "R
and since —u=%Q, 6%=§{\/27—11_P}’

we obtain
7 Y 5 =) 1
g;o= (P,+ P,)(a Vi, Q,—a Vi, @) + (@, + Q) (« Vu, P, — a NV, P)
B L) (BOS-LPMONs T s Al L s s (49),
and the maxima and minima ocecur, when

B e i s S s (50).

Now within the part of the field common to the two streams, as deter-
mined by geometrical optics, [, and I, are both positive, while outside this
region /, and [, have opposite signs, /, being negative on the side of positive =
and positive on the side of negative 2. Hence giving /, and /, their absolute
values we have to write for the field common to the streams

P, = %sin (g" ) + 3U; (un, O)l

Qn= %COS (% = g) ot %U* (Un, O)J
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and for the outer portions of the complex field

P,=3sin (%-—) + 30, (u, 0)

Q=gon(3-F) £ 40, 0

Q= ;co (: ;—Z)T—J_;Ué(ug,'O)

the upper or the lower signs being taken according as the region in question
is on the side of positive or of negative .

On the outer part of the screen therefore and on the side of positive  the
maxima and minima are determined by

u

cos (2 4> +3V3(w, 0) sin (-25 —%) + 3V (wy, 0)
V3 (u, 0) = 3V, (us, 0) ’

and as in the space considered u, has a very large value, we may write
approximately

V3(u, 0)=0 and V;(u, 0)=0,

so that the position of the maxima and minima is given by

o, m_ Vi, 0) 5
tan (7 > VGt 7o e o (53).

P

To the same approximation the intensity is
I= {cos <Zél- - E) +3V; (s, O)}— + {sin (%—‘ - —) + 3 V3 (s, 0)}

=1+ V3 (us, 0) cos (— - I) + V3 (us, 0) sin (u‘ - g)
+ 1V (uy, 0) + 3 V32 (2, 0)envninninnniiiiiinnnn, (54),
and the maxima and minima illuminations are [

=11+ 3V V(s 0) + V32 (us, 0)}2.

The further we recede from the edge of this part of the field, the smaller
V32 (us, 0) and V32(u,, 0) become and the more nearly the intensity ap-
proaches the constant value unity. The maxima and minima become closer
together and since V;(u,, 0) decreases numencally with increasing u, more
rapidly than does V (u,, 0), their position is defined by

14,:(4)1——1)71‘/2, (n=1, DA
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Within the space directly illuminated by both streams
I= {co‘s (ﬁ — 7—r> + cos (%— %) + 3 V5 (w, 0) + 3 V5 (u,, 0)}2

2 4
o {sin (% 2 %) +sin (%2 2 77;) + 3V, 0) + 3V (s, O)}2

= 4cost 4 1(V; (u, 0) + Vi (s, O + 1V (u, 0) + V; (s, O}

+2cos ; ™ cos %:Uf;w (V3 (ua, 0)+ Vi (us, 0)}

+2 cosulzu2 sin u1+';t:—7r (V3 (ua, 0) + V3 (u, 0)).......(55),

and the condition for the maxima and minima is

cos (%—?;‘r) +3 V3 (g, 0)_ sin (%_2)4_%1;&(%’ 0) :
e (%‘?Z)JréV;(u?, 0) sin E-D+imeno (56),
or [COSu, ; u2+i-{V;‘,(u1, 0) + V3 (us, 0)} sin yl_-i-_Zz;'rz
+1{V3(u, 0)+ V3 (s, 0)} cos W‘
X [Sin%zu?%l{V;(ul,O)—Vi(uz, 0)}00313%:_7{ 5
— 13 (s, 0) = V3, 0)) sin 4+ =]

Shis [{V;(uz, 0) i (15, 0) = Vi (s, 0) Vi 1, 0)) sin 4=

+ % {-V’*z (ul; 0) 7 Vi‘g (11'2’ O) = V:g? (un 0) =+ V,}z ('u,.‘,, 0)} cos e ; Yz

+ V3, 0) V3 (ta, 0)— Vi (1, 0) ¥ (a, oﬂ 20

and omitting the small term in the last vinculum, this gives the two

equations
cos_u’%ug = —3}{V; (s, 0) + Vi (u, 0)} sin Ei_;‘?“_"
— {73 (s, 0)+ Vi (un, )} cos 2= (7).
Sin u1;U2= e i {Vi (ul’ O) _..V% (uz’ 0)} cos l_tl.i-_qiz;?.r
+31 {Vi (w, 0) = Vj(ws, 0))] sin ‘ii%‘fii ............ (58),
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of which the first gives the minima, as is easily seen from the expression for
the intensity.

As a first approxmlatmn we may neglect the effect of diffraction, this
gives for the minima

cos™""_0 or w—w=>E@n-2)m, (n=1,2,..)

4
and for the maxima
sin“—l-;—“?=o o —uy=(dn—4)m, (n=1,2,...)
and since Uy — Uy = 57 o,
s A P1+po
we have for the position of the minima
A
= (20— 1)%& LIRS (59),
and for the position of the maxima
. Pt po A
&y = (27?. — 2) %’ Z .............................. (60).

Let the right-hand side of (57) have the value A,m/2 when g, is given by
(59) and let the right-hand side of (58) have the value B,m/2 when z, is
given by (60), then to a second approximation the positions of the minima
are given by

Zo={(2n—1)+cosnmw. A, }p1:P°4,

and those of the maxima by

7, ={(2n—2) — cos nwr. B,} &1—:—@ %

87. When the boundary of the diffracting aperture or screen is a circle,
it becomes more convenient to employ polar coordinates with the pole at the
centre of circle. In this case, supposing that the radiant point is on the axis
of the circle that limits the transparent portion of the screen, we have

n=1y=0 z=ccost, y=cosin®, z=pcosf, y=psinb,

and writing 2—% <}—)1—0 o %) =k, 2% ;‘:—) =1,
the disturbance is represented by
8 O= =50 () owsn [ e gy
e x‘ipl (%PO> o (kot+8) f 5 pdp f :"eczp c0s8 J9
Hp2r 7%0;71 (38_) c(eat+8) 2T f o R0 TR 5 i e (61),
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the integration being from O to r in the case of a circular aperture and
r to o for an opaque circular disc, » being in each case the radius of the
circle.

Hence in the case of the aperture

b (t)=—1 4 (aag’) g (cttd) qrp2 = {U(u v)+ U, (u, v)} e .....(62),

)"POPI
where u =kr? and v=Ir, and
oo A | (dpey? 2N )
= Npps (a_z) (mrr) (E) {02, v)+ U2 (u, v)}......... (63);
while in the case of the disc
dpo
BO)=15 (a") ¢Hleut+d) grpa 2 {V, (4, )+ Vo (u, )} e 2 ....(64),
A (dp, 2\?
and I s (82) () (ﬁ) (V32 @, 0)+ V2 (, 0} ovneen o (65).

88. Taking first the case of a circular aperture, the expression that we
have to discuss is

2
M= (g) LR G ) F UL od o 0B, (66).
From this we obtain at once Fraunhofer’s special case by writing =0
and this gives
= {2J: @)/}
the same expression as that already considered.

In Fresnel’s general case, when v=0, that is at the centre of the pattern

M,= (%) (U2 (u, 0) + Ust (u, 0)) = (Siz/“f)’.

This expression we have already discussed; the maxima occur in cor-
respondence with the roots of tan(u/4)=wu/4 and the minima are given by
u=dmm (m=1, 2, ...), the illumination then being zero. These minima,
that occur at the centre of the pattern for certain positions of the screen of
observation, and the minima in Fraunhofer’s special case are the only ones
that are perfectly black; for U,(u, v) and U,(u, v) only vanish together
when u = 4mr, v=0, and when u =0, J,(v)=0.

For a given value of %, the maxima and minima are given by

u

_-2( ) A0 AR T W R e (67).
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PLATE III.
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The regions of the lines that give minima are indicated by heavy ruling:
those that give maxima by light ruling.
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Hence a maximum or a minimum of intensity occurs when either
s (v)——iJ @)=0 or U,(u, v)_-——f U, (u, v) =0,
and therefore the illumination is either a maximum or a minimum for values

of v that give a maximum or a minimum value to either J,(v) or U, (u, v).

To determine the values that represent the maxima and the minima
respectively, we have

oM 2 (o, .ol
o0 “‘2(a> {Uﬁa‘”lw}

=2 (g) {U; (% J=T)+ %2 Us} .................... (68),

and therefore the roots of J,(v)=0 correspond to maxima or minima of
intensity according as J,(v) U,(u,v) is positive or negative, and the roots
of U,(u,v)=0 give maxima or minima according as J,(v) Us(u, v) is
negative or positive. At the centre of the pattern where v=0, we have
[/o (@) U, (w, v)}ymo = 2 sin? (u/4) and thus the centre of the pattern is a
maximum of intensity, unless the position of the screen be such that
% = 4mm, in which case, as we have seen, the illumination is zero and the
central point is a minimum of intensity.

The second differential coefficient of M with respect to v is, however, zero,
when J,=0 and U,= 0 simultaneously, while in that case

oM
ov®

This does not vanish, except in the case already mentioned when u = 4mr,
»=0, and therefore at such points the illumination is neither a maximum
nor a minimum.

Again if U, (u, v)=0 and U, (%, v) =0, we have 0°M/0v* =0 and

%“_i’h o (%) (%) J (v) U, (4, v)

=2 200 U =2 (3] 2 T 0) ... (60,

Jond 2< ) Y 77 e W L SR R (70),

and therefore these values of v give neither maxima nor minima. These
exceptional cases are distinct from the former, since Ui (y, v)=0 if both
Jy(v) and U, (u, v) are zero, and U,, U, only vanish simultaneously when

w=4mm and v=

Within the geometrlcal shadow, that is at points for which u < v, J;(v)=0
and U,(u, v)=0 have no common roots; for a graphical representation
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PLATE 1IV.
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The regions of the lines that give minima are indicated by heavy ruling:
those that give maxima by light ruling.
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(Plate IIL.) of the equation U,(w, v)=0 shows that at such points the slope
of the curve is such that du/dv is negative. Now

du —9? U,

Cm
dv u U+ (_:;;) U,

and if J, (v)=0, U;=— U,, wherefore

du_ 9 vju

dv “1—(v/uy
which is positive so long as v>wu. Hence at points within the shadow for
which J, (v) =0, the sign of J,(v) U, (u, v) is the same as when u is very small,
but it is then negative and consequently the roots of J; (v) =0, with the
exception of v=0, give the minima. Further since U, (%, v) continuously
approaches the value (u?/v?) J,(v) as u decreases, and the roots of J,(v)=0
separate those of J, (v) =0, it follows that for points within the shadow only
one root of U,(u, »)=0 lies between two consecutive roots of J;(v)=0 and
hence the roots of U, (u, v)=0 give the maxima.

89. It now remains to consider the case in which the diffraction is due
to a stream of light passing the edge of an opaque circular disc. In this
case, as we have already seen, the illumination depends upon the expression

M= (2) (RN il s st (T1).

At the centre of the pattern, where v=0, we have V,=1, V;=0 and
M, = (2/u)*; consequently at this point the illumination is practically the
same as it would be at the same point if the disc were removed.

For a given value of » we have

oM /2y (1 0V, o Th
w=2() P R

—_z( ) Vo (Vo + V)——2( ) V (y 9) J; (0) vnen(T2).
Thus the maxima and minima of intensity occur in accordance with the
roots of J,(v)=0 and V,(u, v)=0, or since J,=—20J,/dv, V,=— (u/v) oV, /ov

the values of v that give either a maximum or a minimum of intensity are
those that make J, (v) and V, (u, v) either a maximum or a minimum. Now

651%[:—2 (’) {J aaV + ¥ av}
—2 (i) {Vo (5 J—T)+2 0, V_,} .................. (73),

and we see that if J(v)=0, the intensity is a maximum or a minimum
according as J,V, is positive or negative, and if V,(u, v)=0, maxima or
minima occur according as (v/u) J,V_, is negative or positive.
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When however both J;(v)=0 and V,(u, v)=0, the value of *M/0w* is
zero but not that of 93M/0v*; for in that case
oM 2\2 2u
=2 (a) LV, S (74).
Hence to such values of v neither maxima nor minima correspond. These
are the only exceptional cases, for ¥V, and V_, cannot simultaneously vanish.
That this is the case is at once clear from a graphical representation (Plate IV.)
of the equation V,(u, v)=0; for it will be seen that the tangent to this
curve always makes an acute angle with the axis of v, but
o S G
dv Vi+ (wup V.’
and since this is always positive, V_, cannot vanish.
Further none of the cases in which J;(#)=0 and V,(u, »)=0 have
common roots occur at points in the geometrical shadow, where u> v; for if

Jy(»)=0 then V_;=— ¥, and
du 2v/u

i v |

which is negative when  >wv. Also as u increases V,(u, v) continuously
approaches the value J,(v) and since the roots of J,(») =0 and J,(v)=0
occur alternately, it follows that for points within the shadow, one and only
one root of V,(u, v)=0 occurs between two consecutive roots of J; (v)=0.
But when v =0 the intensity is a maximum, and consequently within the
shadow the roots of J,(v)=0 give the maxima and those of V,(u, v)=0
determine the minima of intensity.



CHAPTER IX.

MORE ACCURATE INVESTIGATION OF THE. PROBLEM
OF DIFFRACTION *,

90. TroUGH Huygens’ principle is in itself exact, the method in which it
has been applied to the explanation of diffraction in the previous chapters is
open to serious objection. In order to obtain the expression for the polar-
isation-vector at any point, it is necessary to know the values of ¢ (¢) and
¢, (t) at the different points of the diffracting screen, and it has been assumed
that on the illuminated side of a perfectly black screen these quantities have
the same value as when the screen is removed, while on the remaining portion
their value is zero. The surface conditions are thus obtained by neglecting
the effect of diffraction, or in other words it is first assumed that the wave-
length of light is infinitesimal in order to arrive at results that are afterwards
applied to the case in which it is finite, and this is done in spite of the fact
that the results are then inadmissible, as they involve discontinuities, which
are expressly excluded in the deduction of Huygens’ principle.

That this faulty method of procedure leads to final formule that agree
very closely with observed phenomena, at any rate as regards the positions
of the maxima and minima of intensity, may be attributed to the fact that
the measurements are made at distances from the diffracting screen that are
large compared with the wave-length, in which case the errors due to the
imperfection of the method are only a small fraction of the width of the
fringes.

91. An absolutely black body is defined as one that neither transmits
nor reflects the light incident upon it, and it is difficult to represent the
action of such a body by any ordinary surface conditions, There is however
a strong analogy between the effect of a thin, absolutely black screen and
that of a branch cut in a Riemann’s multiple space, one part of which repre-
sents the physical space; for this branch cut acts, as it were, the part of an

* Sommerfeld, Giétt. Nachr. (1) 338 (1894), (1) 267 (1895); Math. Ann. xuvi. 317 (1896).
Poincaré, Acta Math. xv1. 297 (1892). Macdonald, Electric Waves, p. 386, Camb. 1902.
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open door, through which a stream of light can leave the physical space and
spread into another infinite region without any portion of it returning. It
seems probable then that an infinitely thin screen of absolute blackness may
be regarded at any rate approximately as a branch cut in a multiple space,
provided it be such that the light only passes out of the physical portion of
the space.

The problem is however still indefinite; for to determine completely a
Riemann’s multiple space we require the form, position and order of its
branch curves, and while these curves are given by the edge of the infinitely
thin obstacle, their order remains arbitrary and depends upon the kind of
blackness that is to be attributed to the screen. In fact black bedies, though
alike in possessing the property of neither reflecting nor transmitting light
may differ physically in the way in which they aﬁ'ect a stream of light in
their immediate vicinity.

While the multiple space is characterised by its branch curves, the form
* of the cut bounded by them is arbitrary, and all cuts are equivalent from the
point of view of the problem of diffraction, provided they fulfil the condition
that the light passes always out of the physical space. Thus the possibility
is afforded of representing the diffraction due to a massive black body by
regarding it as the part of the physical space between two branch cuts
through the same branch curve. In this case a second arbitrary element is
introduced, namely the line on the surface of the body that is to be taken
as the branch curve, and to the various positions of this curve there correspond
black bodies that are to be regarded as physically different*.

92. It is however necessary to specialise the investigation by assuming
that the polarisation-vector is independent of one of the coordinates, say z:
the multiple space then becomes a Riemann’s surface with a branch point,
where the branch curve cuts the plane of wxy. This is equivalent to the
a:sumptlon that the screen is limited by a straight line and that the source
is a luminous line parallel to the edge of the screen.

The components of the polarisation-vector then satisfy three differential
equations of the form
Pu_ L, (0u  Ou )
L (Bwﬂ oy?)’
which in the case of monochromatic light becomes
0*u 0% e
— (1) 60D IS bAG o300 1)
3+ g T =0 (1)
where « = 27/\.
In the special case in which « =0, the determination of the functions
required for the solution of the problem may be effected by the theory of

* Voigt, Gott. Nachr. (1) 1 (1899).
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complex algebraical functions, but these methods cannot be directly transferred
to the present more general case. It is however possible to deduce from a
solution of V?u =0 with certain properties, a solution of equation (1) with -
corresponding properties.

93. Starting from a function f(z) of the complex variable z, we refer
the z-plane to a sphere of unit radius by stereographic projection. The
centre of the sphere is taken at the zero-point of the z-plane and this plane
being the equatorial plane, the centre of projection is the south pole of the
sphere. Then if the centre of the sphere be the origin of a system of rectangular
coordinates £, 7, £ of which £ and # coincide with the real and the imaginary

axes of the z-plane, we obtain the function f (f . Lg) and from this the solid

spherical harmonic of degree 0
______E 4 Lﬂ) 2 2 2 2
’ T N T (ereceernncetosssscnns 2 y
f ( Py pP=E+r+E )

whence we may deduce spherical harmonics of different degrees by multiply-
ing by p~* and differentiating m times with respect to any axis.

Thus taking the {-axis as the axis of differentiation and introducing a
suitable numerical factor, we arrive at the spherical harmonic of degree

—(m+1) AL f
(=1)™ o™ {1 &+ }
Im aé””{Pf(p+L’) y
which by Cauchy’s theorem may be written
1 [+ 1 do goretingy
é‘vﬁff<z+p)(§_—w ) pP=+n+t......... (3),

wherein z denotes a complex variable, that is taken by a closed path round
the point z= ¢ in the plane of the variable 2, so as to leave this point always
on the left hand.

This process however introduces a branch point p=0, or 2=+ JE+
that does not belong to the original function, but this may be removed by
adding to (3) a second mtegral

el ff (S + m) it 1Z)m+l ap_z ...................... ),

obtained by the above process from stereographic projection of the reflection
of the z-plane at its zero-point, the north pole of the sphere being now the
centre of projection.

In order to pass from these spherical harmonics to a solution of equation
(1) we write

£ = ram, 7 = Ky/m, E+n+=1,



156 The Analytical Theory of Light [cH. IX

and regard # and y as finite quantities, while m 1s increased to infinity. To
facilitate this transformation, let us introduce polar coordinates by the
equations ‘

=g+ et = (2 + oy)/r.
The expression for ¢ then becomes

¢={1-r(®+)mP =1—rr/2m*)—...,

and writing

z= LJ§2+n2.cos a = uxr cos a/m,
we have

; Kr 0 dz
p = «r sin a/m, ztp =He*°‘+2‘, — =—da,

+ ¢
i ~ : — e:(¢d:a-1r/2)’ 57, 5= (é‘_ Z)—'m—1= gixT c0sa

and there results from the sum of (3) and (4)

w=g [1f (e by f(r o) guremedy ........ ).

The closed path in the z-plane becomes in the a-plane a path in which the
initial and final points may differ by 2, and if the path extend to infinity,
it must be so determined that the integral retains a meaning.

where 2z’ is a point on the unit circle,

94. Writing now f'=— Tj(lfz/ﬁ"_‘)xm’

we obtain
U= —_1_ { 1 iy 1 } gLkreosa da
2n) ] _ a6t | _ gn6-¥+a)
A
1 sin ;
= : EHTCOSA ot L reinaeenns (6)
2 f 248 ’ 2
T 0082 — cos A
- . n n
if we write

2 = e ¥ (¢’ real).

As regards the path of integration it is to be remarked that in the
z-plane we only obtain a closed path if we pass round z= and p=0 both
in the same direction, and that we must approach infinity by a path along
which the real part of wr cos a is negative. The regions for which this is the
case on the a-plane are denoted by shading, and the path of integration has
to start at oo in strip I. and to end at oo in strip IL, the points a =+ (¢ — ¢")
lying outside the region enclosed by the path.

When n=1 we have a solution that is everywhere finite in the simple
plane and there results

1 sin a

Al ve emrcosada.
27} cos a — cos (p — @)

Uy
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Fig. 26.

Regarding cos a as the integrand, the corresponding path of integration is
closed and includes the point cos a = cos (¢ — ¢'), on which it may be con-
tracted, so that by Cauchy’s theorem

' R T U IO e PRSI PR o (7).

95. Returning to the general case, we have Lt,_u =0, provided we can
deform the path of integration, so that it entirely lies in the shaded strips,
since in these Exp (txrcosa) becomes continually smaller as » increases.
Now this is always possible, provided that the discontinuity in the denomi-
nator a =+ (¢ — ¢') does not lie between 0 and 7, that is if [¢p—¢’|>7: in
other cases we have to exclude the point of discontinuity by a loop, as
indicated by the dotted line in the figure, and then by Cauchy’s theorem the
integral over the loop is Exp {ckrcos(¢ — ')} =u,, and the remaining parts
vanish. Hence

Ltyew u=0 if |¢p—¢'|>m, Lbyew u=u, if |¢p—¢'|<m.
Let u, denote the value of u at the point (r, ¢ + 2 (s —1) ), then

n =0 g o ol - <
Eus=—1— & {cosg—cosd’ (el I)W} sin Ee“"’“‘"‘ég;
1 DT e (SN 7 7 2 e
8=n o 1
but cos &t — cos (¢ — ¢') = 271 IT {OOS%—cosd) ¢ +i(s 1) 71-} ’
8=1

and taking the logarithmic differential of each side
o 7 =1sings§n{00s3—cos¢—¢+2(s—l)w}—l,
cosa—cos(p—¢) n  nso n n

o, 1 sin a
= wreoSe o == Y vurirurenennens(8)
whence ?us R R oo (3 —0) e dot=u, (8)
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Hence the solution  has the following properties :—

(a) it satisfies the differential equation (1), as do all functions derived
by the method that has been employed ;

(b) it is finite everywhere at a finite distance, since the path of
integration has been so determined that it is finite for all values of r apd ¢;

(¢) it is single-valued on a Riemann’s surface of n sheets with a
winding point of the (n — 1)th order at the zero-point ;

(d) denoting by the first sheet of this surface the assemblage of points
for which | ¢ — ¢'| < 7, the function is equal to u, = Exp {«xr cos (¢ — ¢')} at
infinity on the first sheet and vanishes at infinity on the remaining sheets;

(¢) the sum of the values of u at the points on the 1st, 2nd... nth
sheets that lie above one another is equal to u,. :

Thus we may take u to represent the disturbance due to plane waves of
light incident in the direction ¢ =¢’ on the branch cut of the Riemann’s
surface of n sheets.

96. Let us now take the case of n=2 and in order to follow the course
of the multiform solution and to obtain results suitable for numerical calcula-
tion, let us transform (6) into an integral with a real path of integration.

Writing (¢ — ¢') =+ and assuming provisionally that |y | <7 we have

U, Eis Uy = Uy = eu(?'cOSIII‘

cos 5 2 @Krcosa . a d %
Uy — Uy = sin - da
V% e Jeosa—cosy 2
. u —u 2 gwr(cosa—cosy)
and if = f sin = da,
cosa—cosyr 2
BX K 3 14 22
then e ek ey ‘l’ e 2uer cos? 5 ezmrcos SlIl da
or m 9

Taking cos ;—‘ as the integrand and deforming the path of integration in

the ‘a-plane so that it becomes the imaginary axis in the cos (a/2)-plane, we

have
o'e | ite O e
fezucrcos 231n_da=/\/__ e‘ 3
2 Kr

aX 2% .= Vv _urcostt 0 v/\\/2:(r-cos—- L }
— L x L i
and B A e icosge s { ~/7T ! T
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whence integrating between 0 and » we obtain, since X =0 when r=0

Oy XA L
X=V7re 4foe wdr, o= 2xrcos%,

and ul""'u2=%re‘(xrcosw-'-;)f‘re—‘ﬂd'r-
0
We may also write
2 - 0
%+u2=%ec(xrcos¢+;)f e—t-rzdr,

and from these two equations the values of %, and u, are obtained.

Removing now the restriction that |yr|< 7, we have

1 1" o S
= :/;T_et(xrwsw+4 )f_w e—dT, = »/2/0‘ cos—\g 2% o7 8 (O}

which holds for both sheets, ¢ being positive in the first and negative in the
second sheet.

Now we have (Appendix II., equation 28)
ag

A

5 = 2 4
=—'\/—'n_euﬂf e-”’zd‘T""\/—’n’e“ﬁf e“"’d’r,

0 0

V; (202, 0)+ 4V} (205 0)=—2 f ¢t 0= gy
.

;/2; :e"f“df =e M4 e (V3 (20% 0)+ .V (207 ()).}-,
Hence for ¢ > 0
Z/lTr iw e~"'dr = e~ + Je=o" {V; (2% 0) + ¢V (2% 0)}......(10),.
and for c <0
Tl,r ; e dr =— 3¢~ {V3(20% 0) + ¢V (204, 0)}......... (10).

97. The application of these results to the problem of diffraction follows
at once.

Suppose that plane waves of monochromatic light parallel to the axis
of z are incident on-an infinitely thin black screen that occupies the positive
half of the plane of zz, the normals to the waves making an angle ¢’ with
the plane of the screen. If we confine our attention to the plane of zy and
assume that the action of the screen may be assimilated to that of a branch
cut in a Riemann’s surface of two sheets, the polarisation-vector may be
represented by

o

u=(A[y) e lxut-+arcos b-—¢') +id} f B o (11),

-0



160 The Analytical Theory of Light [om. 1x

wherein o = 2kr . cos (¢ — ¢)/2,

and 4 is a constant, ¢ being measured from the branch cut and 0< ¢ < 27
in the physical sheet, — 27 < ¢ < 0 in the auxiliary sheet.

Now in the physical sheet we recognise two portions that are separated
by the line ¢ =¢’+ m, the edge of the geometrical shadow: in the first of
these regions, that is outside the shadow, |¢ — ¢’|< 7 and consequently

uw= A .elet+rr.cos (p-¢"} + % {V§(202’ 0) + LV} (20.2’ O)} et (xwt—xr-m/4) ”_-(12)”

while within the shadow | ¢ — ¢'| > 7, and hence

_.‘; (V4(26%, 0) 4+ (V3 (202, 0)] eslemt—srtmt) (19,

R==

Since V;(20% 0) and V;(2¢% 0) vary but slowly in comparison with the
exponential e~*”, we may say that the disturbance outside the shadow is
approximately the same as that which results from a superposition of the
incident waves and of cylindrical waves emanating from the edge of the
screen, while within the shadow the disturbance is that due to the latter
waves alone.

_ From the expressions (12), (12") we obtain for the intensity within the
geometrical shadow

I=‘§ (V204 0)+ V(264 0)} cvvvveereenne.(18),

and for the intensity outside the shadow

2
1= 4 [{g V4 (26, 0) +cos (o2 - g)} 2 {,m (207, 0) +sin (o _g)” (13,
expressions that have the same form as those obtained for the values of the

intensity by the approximate method (Chap. VIIL (38), (39)).

In order to compare the results obtained by the two methods, let us
suppose that the incident waves are parallel to the screen, then in the
formule of Chapter VIII., we have to write

k=«/r, l=rxsin 6,
where 6 is the angle that the direction considered makes with the edge of
the geometrical shadow, and the approximate method has

B[k = xrsin? 6,
¢ - 7r/2 i d Q
o T 4kr sin? 5

given by the present investigation. Near the edge of the shadow, the
expressions become identical, for as far as terms of the fourth order they
both become xr6-

in the place of

262 = 4xr cos?
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98. The above investigation may also be applied to the case, in which
the diffracting screen, instead of being absolutely black, is perfectly reflecting.
Such a screen may be approximately realised by the employment of a
highly polished silver sheet.

Taking again the case in which plane waves of light are incident on the
screen, we may reduce the general problem of diffraction in which the
polarisation-vector has any direction with respect to the plane of incidence
into the two simpler cases, in which the vector is respectively perpendicular
and parallel to this plane.

Now when-two homogeneous media are separated by the plane of yz the
general surface conditions are, as we shall see in the next chapter, that
w%, ow, @, and =; are continuous across the interface. The plane of
incidence being that of zy and the polarisation-vector being parallel to the
axis of z, we have in the case of monochromatic light in the first medium

AT | AR e e
6] aF é-y; + x*w = 0,
and in the second medium -
e R e
5&;24_‘8?-'-’6 wl-—O,
but if ¢ be the angle of incidence 9*w/0y? = — «*sin’*¢.w and in the first
medium
12
» g—g+x’cos’i.w=0,
while in the second medium
2, )/
O = (st k) = 0 (say),
which gives w'=f(y) e + £, (y) e~

Suppose that the second medium is on the side of negative z; then since
w’ does not become infinite with 2, we must have £ (y)=0, if 8 be chosen so
that its real part is positive: hence

v =f(y) ef* and @, =-— ﬂ’m%% = — Bo"w/,

and since =, and w?w are continuous across the interface, we must have in
the first medium just outside the interface

By = — Bw?w,

and since when the reflecting power is very great, «" and consequently 8 is
very great, we have in the case of perfect reflection w = 0.

When the polarisation-vector is in the plane of incidence, the auxiliary
w. 11
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or light-vector = is parallel to the axis of z and we obtain as in the former
case

@y = ¢ (y) ef?, 0wy [0z = By
But =, is continuous and 9w,/0x=0v/ot; Ow,/ox is therefore discontinuous
and its values at two points close to the interface in the first and second
medium respectively are as »”:w? or as «?:«2% Hence in the first medium

at the interface
: 0w,

IC2
i
and in the case of perfect reflection this reduces to 0w;/dx = 0*.

Thus when the polarisation-vector is perpendicular to the plane of
incidence, we have

w | 0w
Er
and when the polarisation-vector is in the plane of incidence

Owy 0wy, , 0wy _ 15
5 +W+Kw3—0’ and %—O when z=0, z >0.

Supposing again that the direction of incidence of the waves is defined by
¢ =¢’, and denoting the function u in § 97 by u(¢’) in order to indicate its
dependence upon the angle ¢', we obtain the solutions of the two problems
by writing

w =4 {u($)—u(-¢)} e,

@y =4 {u(¢) +u(=¢)} e,

since from symmetry we then have for ¢ =0, w =0 and 9=,/o¢ =0.

+*w=0, and w=0 when 2=0, >0,

The diffraction phenomena may therefore be regarded as due to the
action of waves incident in the direction ¢’ in the physical sheet together
with waves incident in the direction — ¢’ in the auxiliary sheet of a Riemann’s
surface of two sheets.

Now in the physical sheet of the surface we recognise three distinct
regions, separated by the lines for which ¢ =7 —¢' and ¢=7+¢’; in the
first of these, extending from ¢=0to ¢ =7 —¢’, we have ¢ —¢' <7 and
¢+ ¢’ <7 and consequently from (10)

¥ } = Agtleuttercos(p—4)} T A gt teat+ereos($+4))
CF

otz %[V; (20% 0) F V3202 0)+ ¢ {V3 (202 0) F V(2072 0)}] et (xot—wrtnid)

where o?=2xr.cos’ (P — ¢')/2, o =2kr.cos*(¢p+¢)/2;

* Poincaré, loc. cit.
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the second region extends from ¢=7—¢ to ¢p=m+¢’ and therein
¢—¢'<m, ¢+¢' >m whence from (10) and (10")

w} = A g {xwt+xrcos (6 -¢')}

W3
ar % [V3 (202 0) + V3 (2022 0) + ¢ {V3(20% 0) + V(20,2 0)}] e+ (cwt—xrtnid)

while in the third region occupying the remainder of the physical sheet,
b—¢'>m d+¢ >m and
A L ~
:} & —»§[V§ (20% 0) F V3 (202 0) + ¢ {V;(20% 0) F V(20,2 0)}] et (xut—xr+ls),
3

We may thus represent the effect of the screen approximately by a train
of waves emanating from its edge, which we may call waves of diffraction:
in the first region the disturbance is due to the interference of the incident
and reflected waves and the waves of diffraction; in the second region we
have the superposition of the incident waves and the waves of diffraction;
while in the third region the waves of diffraction alone are operative.

For the intensity in the three regions we have
[ ‘f ™ ( w\] ]?
I,= A2 ] ({;V; (202, 0) + cos (02 - Z)} F t}Vg (204 0) +cos (a-l2 - Z)H

:{% V3 (247 0) +sin (0'2 - %)} F {1} V; (2072, 0) +sin (0'12 L g)}] 2,

L= 42 | 1V320% 0) +cos (- F) £ 473 (202, 0)]2

+ A% | 1V} (20% 0) +sin (0'2 - ’;_r) 13V 20y 0):|2,

L=21(V; 26 0)F V3 (20, 0)+{V3,(20% O) F V3 (205, )],

the upper and lower signs referring to the cases in which the polarisation-
vector is perpendicular and parallel to the plane of incidence respectively.

11—2



CHAPTER X.

REFLECTION AND REFRACTION AT THE SURFACE OF
ISOTROPIC MEDIA.

99. Wz have seen that the characteristic equations of the polarisation-
vector d are for free space

d=—curle, F=curle ..coo.cocvereueeinnnn. 1),

where = is an auxiliary vector, that we may call the light-vector to dis-
tinguish it from the polarisation-vector d, and the vector ¢ is defined by its
components

(en B e (a% a% a—fu) 7 s e ).

These equations were deduced from the principle of interference combined
with the assumption that a train of waves is propagated with a speed that is
independent of the intensity of the light and of the direction of the waves.
We may therefore, when dispersion is neglected, extend their application to
the case of any transparent isotropic medium, provided we regard w no longer
as an universal constant, but as a function of the period of the waves under
consideration.

The interfacial conditions that must be satisfied at the passage from one
isotropic medium to another follow at once from the above differential
equations, if we assume that the transitién takes place by a rapid, but con-
tinuous change of the properties of the one medium into those of the other
and that the differential equations still hold within the region where the
variation occurs. For taking the interface as the plane of yz, the equations
give that 0w,/0x, 0w,;/0x, Oe,/0z, Oes/ox remain finite, and that consequently
@y, W3, €, €; Must be continuous across the interface z=0. To these we may
add two further conditions: for since the curl of a vector has no divergence
anywhere, divd=0, and div & = 0, and hence » and =, must also be continuous.
These last two conditions are not however independent of the four former.

100. These boundary conditions lead at once to the geometrical laws of
reflection and refraction; for since they hold for all values of ¢, y, and 2z, and
these variables occur in the expressions for the polarisation-vectors of the
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incident, reflected and refracted waves only in the combinations of the form
lz + my + nz + st, it follows that s, m, and n must have the same value for
cach of the streams, m and n being in general complex quantities in the case
of unhomogeneous waves.

We see then that the periodicity is the same for the three streams, and
when the waves are homogeneous, taking the axis of y perpendicular to the
plane of incidence, m = 0 for all the waves, and

sin 4/A = sin ¢, /A =sin /N,
where 1, %, r are the angles of incidence, reflection and refraction, and A, A’
are the wave-lengths of the light in the two media.

Hence the reflected and refracted wave-normals are in the plane of in-
cidence; the angle of reflection is equal to the angle of incidence; and the
sine of the angle of incidence bears a constant ratio to the sine of the angle
of refraction, this being the ratio of the wave-lengths of the incident and the
refracted light.

101. Since the vectors d, @ and e are connected by purely geometrical
relations, we may in discussing the problem of reflection and refraction employ
which we please as representative of the streams of light, and as the cal-
culations are rather simpler with the light-vector =, we shall in this chapter
adopt this vector in our investigations.

Let the plane of incidence be that of zz and let the normal to the planes
of constant amplitude of the incident waves be in this plane: then we may
represent the light-vector = by the expression

w=Adexp [t (@ +7z+8t)] ceovrevrrrrrrrrrrennnns (3),

defined by the direction-cosines &, B, ¥, bars (—) being placed over the letters
to denote that the corresponding quantities are in the general case complex.

Since dive=0 we have &Z+r7ﬁ=0, and the axial components of the
vector may be written s

(w1, ®2, ®5) = (7, k, - A) D exp {¢ ((ZES PR ) | RO (4),

where, ¢ being a complex angle defining the vector with respect to the plane
of incidence and v being the coefficient of extinction,

EF=2rtand V1 —1?/A, D=%Acosdd/2mr V1 —2) ......... (5).

Hence if F, G be the components of the complex amplitude perpendicular
and parallel to the plane of incidence

P=1D, G=2aDNA-/x=DVE+7m ............ (6).
Substituting the values (4) in the equations (1), we obtain
= ot (B4 ),
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which determines I when s and 7 are given. There are then two values 34
corresponding to waves of given period, the traces of which on the interface
move at a given rate: one of these is a wave approaching the surface and the
other is a wave leaving it.

Similarly if accented letters refer to the second medium, we have
&=l +7);
but asin the present investigation there is no question of an incident wave in
this medium, we require only one of the two values of + !’ thus determined,

and this will be the one with the positive sign, if we regard the value +1 as
referring to the incident wave in the first medium.

We have then the following expressions for the system of waves:
Incident wave
(w1, w2, w5)= (%, k, — ) Dexp (s (lz + 7z + st)}.
Reflected wave
(w1, @y, w3) = (7, Ky, 1y D, exp {¢ (— lo+7z + st)}.
Refracted wave
(w1, &y, ws) = (@, &, — 1) D-"exp {¢ Uz + 7z + st)}.

Introducing now the boundary conditions, the continuity of =, or of u,
when z =0, gives

D T i AV 5 Fe ol e s (7);
the continuity of e, requires that
0l (hD = kD)= VED coovvvvvvineee. (8);
the continuity of =, leads to the relation 4
LD PN S L 50, 107 4 Al 4 9);
and from the continuity of =, or of ¢, we have
Doy DV i e e ) (10)

Introducing the components parallel and perpendicular to the plane of
incidence these equations become

F+F =F,
(U +72) }(F ~ F)= (V[ +7)} F,
(J@E+2W (@G- = I/l +mH &,
/(P + ) (F+G) =R/ + ) &,
or if 7, 7 be the complex angles of incidence and refraction defined by

'r_L=27rsin’t_:\/1—v2/)\.=27rsin’7”\/1 - v/,
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we have R vl G WAL, £kt 52« bt oo (1),

(F~F)sinicost=F" SinFCOST vvvriverrnnn.n.. (8",

(G =) cost =G COS Frurrererrrrrrrirananeanns (9),

G+ G)sint=GFsinF.ccervvnveerinnnnnnnn. (10);

whence — 1 —= - Fl, = = ,F - feast (11),
sin (v 4 7)cos (¢ —7) cos(2+7)sin (2 —7) sin 24

_——?—:- = B Gl— — —_G S eeeses (12)
sin (2 + 7) —sin (¢ — 7) sin 2

These equations determine completely the specification of the reflected and
the refracted streams.

102. When the incident waves are of constant amplitude and the second
medium is the more highly refracting, + and = are in all cases real, and the
reflected and the refracted waves are also of constant amplitude. Writing

G/F =(G/F) e, "G‘I/F,=(G/Fl>eml, G/F = (@|F) e,

: G :
we obtain 7 cos (t—r)=— 7 cos @C+r)= 7

AAI A

From these equations the elliptic constants of the reflected and the
refracted streams may be obtained in terms of those of the incident stream,
and we see that reflection and refraction introduces no new difference of
phase between the components parallel and perpendicular to the plane of
incidence, other than that of +# implied by a change in the sign of the
amplitude of the vibrations.

If the ratio G/F be real, the incident, reflected and refracted streams are
all plane polarised, and the azimuths ¢, ¢, ¢’ of the light-vectors with respect
to the plane of incidence are connected by

cot ¢’ = —cot ¢, . cos (¢ + ) = cot ¢ . cos (¢ — 7).

In interpreting this result, it must be noticed that, in accordance with the
specification of the three streams adopted above, the vectors are regarded as
positive, when'in each case the components in and perpendicular to the plane
of incidence are related to one another and to the direction from which the
stream travels in the same way as the axes of 2, ¥ and 2. Thus positive
values of F,/F and F’'|F mean that the directions of the incident, reflected
and refracted light-vectors are the same: on the other hand a positive value
of G,/@ signifies at normal incidence that the directions of the reflected and
the incident light-vectors are opposite, at grazing incidence that they are
identical.
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103. When the incident stream consists of common light, we may in
accordance with what has been shown in Chapter II, represent it by two
components of equal intensity, that are polarised in planes parallel and per-
pendicular respectively to the plane of incidence, and from the results obtained
in § 101, as also from considerations of symmetry, the reflection and refraction
of these components may be treated separately.

Let us represent these components by
2F, exp {¢ (lux + npz + syt + an)} or 2@, exp {¢ (L2 + nyz + sut + by)},

according as the vector = is perpendicular or parallel to the plane of incidence
with the condition 3F,?=32@G,*= L, 2L being the intensity of the light.
Then in the reflected stream the components become

tan (1 —1,)
" tan (5 + 1) L {t (= L + 10y + spt + an)},

sin (¢ — 1y,)

d e
W "sin (3 + )

exp {¢(= lnz + nyy + 8ut + by},
P

and in the refracted stream

7 sin 2¢
" sin (1 + 1r,) cos (1 — 7p)

exp {¢ (l/'e+ npy + spt + an)l,

sin 27

and =
e ™ Sin (i + )

xp {¢ (0% + 12 + st + by}

If now the incident light be practically monochromatic, we may neglect
the change in the values of 7, in passing from one constituent of the streams
to another and we see that in general the reflected light is partially plane

polarised, having a polarised part with its light-vector = parallel to the plane
of incidence and of intensity

sin? (1 — 1) {1 cos? (z + r)} 3

sin®(i+7) | cos’(f—r)
and a part consisting of common light of intensity
tan?(t —r)
tan?(¢4+7) "

Similarly the refracted light may be regarded as made up of a stream of
common light and a stream of polarised light with its light-vector perpen-

dicular to the plane of incidence, the intensities of these streams being in
terms of a new unit

sin? 2¢ I and sin? 2¢ { 1 1} L

sin® (¢4 ) Sin* (¢ +r) (cost (G —17)

At the particular angle of incidence given by ¢ + r = /2, the intensity of
the common light in the reflected stream is zero, and the whole of the
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reflected light is plane polarised with the light-vector @ in the plane of
incidence. Now this phenomenon was first observed by Malus* in 1808,
when viewing the light reflected from the windows of the Luxembourg
palace through a doubly refracting prism. The angle of incidence at which
this occurs, Malus called the polarising angle and he stated, as a definition of
the plane of polarisation, that the reflected light is then polarised in the
plane of incidence. It follows then, in accordance with what we have
assumed, that the light-vector = is in, and the polarisation-vector d is per-
pendicular to, the plane of polarisationt.

Since the polarising angle 7 is determined by the condition 7 + R=/2,
we have by Snell’s law that J = tan= y, a result that was found experimentally
by Brewster in 18151,

104. Returning now to the case in which the incident stream is plane
polarised, let 6, 8, 6’ be the azimuths of the planes of polarisation of the
incident, reflected and refracted streams respectively, measured from the
plane of incidence. Then writing for shortness

Sf=tan(i—r)/tan (i +7), f’'=sin 2¢/{sin (Z+ r)cos (& —7)},
=—sin(z—r)sin(z+7), ¢ =sin2isin(@+7),
we have A,sin§,=fAsinf, A’sinf =f'Asiné,
A,cos0,=gA cosf, A’ cosf =g'A cosb,

1 1 (cos*f,  sin?é, 1 1 (cos*@  sin?€
whence Yt {——91—14' 73 1}, VL { 7 i 77 }
Also tan 6, = (f/g)tan 6, tan & =(f'/g’)tan 8;

* Mém. de la Soc. d'Arceuil, 11. 149 (1809).

+ The question of the direction of the vibrations in polarised light has been much discussed
both theoretically and experimentally. It must be remembered that in all cases we have to deal
with two vectors, one parallel and the other perpendicular to the plane of polarisation, and in
considering experimental determinations of the direction of vibrations we have first to decide
with which of these vectors the phenomenon, that we observe, is connected. Cf. Babinet, C. R.
xx1x. 514 (1849) : Pogg. Ann. Lxxviir 580 (1849). Haidinger, Wien. Ber. viit. 52 (1852); x11. 685
(1854) ; xv. 6. 86 (1855). Angstrom, Pogg. Ann. xc. 582 (1853). Stokes, Camb. Phil. Trams. 1x.
35 (1856): Phil. Mag. (4) x1m1. 159 (1857) ; xviir. 426 (1859). Holtzmann, Pogg. Ann. xcix. 446
(1856). Eisenlohr, Pogg. Ann. crv. 387 (1858). Lorenz, Pogg. Ann. cxr. 315 (1860); cx1v. 238
(1861). Fizeau, Ann. de Ch. et de Phys. (3) Lvir. 385 (1859). Quincke, Berl. Monatsber. (1862)
714 : Pogg. Ann. cxviir. 445 (1863). Lord Rayleigh, Phil. Mag. (4) xu1. 107, 447 (187}); Xt 81
(1871). Rowland, Phil. Mag. (5) xvii. 413 (1884). Carvallo, These; Ann. de UEcole Norm.
supplément pour 1890 : J. de Phys. (2) 1x. 257 (1890) : C. R. cxir, 431 (1891). Wiener, Wied. Ann.
xr. 203 (1890): Ann. de Ch. et de Phys. (6) xxmr. 387 (1891). Drude, Wied. Ann. xL1. 154
(1890) ; xrrr. 177 (1891); xuvim. 119 (1893). Lommel, Wied. Ann. xuiv. 311 (1891). Cornu, C. R.
cxi. 186, 365 (1891). Poincaré, C. B. cxm. 325, 456 (1891). Berthelot, C. R. cxm. 329 (1891).
Potier, C. R. cxir. 383 (1891): J. de Phys. (2) x. 101 (1891). Drude and Nernst, Gitt. Nachr.
(1891) 346 : Wied. Ann. xLv. 460 (1892).

I Phil. Trans. cv. 125 (1815).
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hence when 6 is varied, the angle of incidence remaining constant, we have
sec? 0,d6, = (flg) sec®>0do, sec* 8'd¢’ = (f'[gq’) sec? 046,

or A2 do, = fgAde, A0 =f'g’A°d0.

Thus if the intensity of the incident light and the angle of incidence remain
unaltered, while the polarisation of the incident stream varies, the amplitudes
of the vibrations of the vectors of the reflected and the refracted streams may
each be represented by the radius-vector of an ellipse, and the area described
by this radius-vector is in a constant ratio to the area described by a vector

representing the amplitude of the vibrations of the vector of the incident
stream *,

Now 6, is always numerically less than 8, and the rotation R, of the plane
of polarisation, measured from the primitive plane towards the plane of
incidence, 1s for the reflected stream given by

cos (2 —7)+cos (v +7)
cos (2 —r) — cos (¢ + r) tan® 0

af sin 26
" cos 20 + tan ¢ tan 7

tan R, — tan (6—8,)=tan @

When the angle of incidence remains constant, this rotation increases with
the azimuth @ of the primitive plane of polarisation: while if & be constant,
it is a maximum and equal to 26 at normal incidence.

On the other hand ¢ is greater than 6 and the rotation R’ of the plane
of polarisation of the refracted stream away from the plane of incidence is
given by
1—cos(z—7)

tranR =tan (0 it 0)= tan 0005 (@—r)+tan20;

the angle of incidence remaining constant, this is a maximum when

tan?@ = cos (1 — r),
and the rotation then is
1—cos(z—7)

o {2 Veos (1 — 1))

When 6 is constant, the rotation continuously increases from zero at normal
incidence to the value
tan—t {(,u, —1)tan 6}

1+ ptan®d

at grazing incidence, u being the relative refractive index of the second
medium.

* Cornu, Ann. de Ch. et de Phys. (4) x1. 326 (1867).
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105. Among the methods that are employed for producing polarised
light, we may mention that of transmitting a stream of common light through
a pile of plates, and though the polarisation of the emergent light is by no
means perfect, polarimeters in former years were frequently made with this
form of polariser. The employment of a pile of plates as a polariser is now
somewhat unusual, but it is a problem of considerable interest to determine
how the degree of polarisation of the transmitted light is related to the
number of plates, and what are the intensities of the reflected and the trans-
mitted streams*.

Let us suppose that the plates are all of the same material and thickness
and are placed parallel to one another, the plates themselves and the inter-
posed layers of air being sufficiently thick to prevent the colours of thin
plates.

There will then be no regular interference, and as we have seen in § 40
we have only to deal with intensities: whence taking the intensity of the
incident light as unity, the intensities of the streams reflected from and
transmitted through a single plate are

(L —p)pg* _(-pyg
Ty SRR L v - S (13),
where p is the intensity of the light reflected at the first surface of the plate,

and 1 to g the proportion in which the intensity of the light is reduced by
absorption in a single transit through the plate.

Ry=p+

Denoting by R, and T, the intensities of the reflected and the transmitted
streams in the case of a pile of p plates, let us now determine in terms of
R,, T, R,, T\, the values of R,, and T}y, in the case of (p+ 1) plates.
This pile may be considered as made up of a group of p plates to which a new
plate has been added, and from this mode of regarding the pile, it follows that
the reflected light will consist of that reflected from the group of p plates,
together with that which has traversed the group and has been reflected
once, twice, ... from the single plate. Hence since there is supposed to be
no regular interference between the streams, )

LR 4.

Ryy=R,+ TSR (1+RR,+R’R2+..)=R,+ . P
1= RR,
In the same way
Tyoi= IT, (L+ R Ry+ RER 4. )= - D0d2 .. (15).
T

But we may regard the pile from another point of view and suppose that the
single plate is placed before instead of behind the group of p plates. Hence

* Stokes, Proc. R. S. x1. 545 (1862) : Phil, Mag. (4) xx1v. 480 (1862). Kirchhoff, Vorles. iiber
Math. Optik, p. 166.
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Ry, and T4, must remain unchanged in value when the suffixes (1) and (p)
are interchanged, so that
o i LA i 4
Rp+l—Rp+1——m_Rl+m ............ (16),
whence multiplying by (1 — R, R,)/(R,R,), we obtain the relation
1-Tp2 1-T¢
R, + R R+ R ceerereeeeesieeeeas ).

ot i 2 : 2 _"PRe
~1—-*;12%;1%1—1i=cosaz, 1——4--—121'71&=cos,8 ......... (18);

Let

then since R, and T are essentially positive

Rty S Pl Ny
SnB T sma T @) (19).

Now from (16)
R R,,.H uR S0}
let Ry = 8,1./8p + 1/R,,
Te—R2+1 T2
sin a cos B sin? ¢

in 3 'Sp+l+siu2/3

then Spsa+

or Spts +2 S,=0,

the solution of which is

Sp = ( s a) (M cos pB + N sin pR),

where M and N are constants. Hence 2
__sina Mcos(p+1)B+Nsin(p+1)8  sin(a+B),
£ Lsih B M cos pB + N sin pf sinB '
but R,=0, R, =sin B/sin (a + B), whence M =sina, N =cosa, and
sin pB

P~ sin (a+ pB)
Also from (17)
sin®
Tp2= 1 + Rp2—2RpCOSG = m‘),
Rp sul _TP_ = ___1
sinpB  sina sin (a+pB)
the constants being determined from (18).

and hence

106. This method fails, if a=0; we then have
(1-R)y-T7T2=0, oo 1-R-T)(A-R+T)=0;
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and since R, and T are proper fractions, this relation gives
R+ T =1,
which expresses the fact that the plates are perfectly transparent.

In this case we may proceed as follows: the complete transparency of the
plates gives that R, 4+ T, = 1, and therefore

T A

TP+1= 1 —.R]sz T1+R1Tp-
This equation gives
R
Town T, Tv
and hence %=0+10%,
P 3

holding for all values of p. Writing then p=1, we find that C=1, and
therefore
T

By vl
£ T1+PR1’
i ‘pRl

and R,=1-1T, T+ pRy

or introducing the values of &2, and 7 from (13) and writing g = 1,
Ll e - 2pp

Tp= 1+(2p—-1)p’ R”_l +(2p-1)p """

When the number of plates is infinite, the intensity of the reflected light is

unity, which explains the brilliantly white appearance in reflected light of a
finely divided substance, that is transparent in mass.

AR

. 107. Supposing still that the plates of the pile are perfectly transparent,
we may now determine the degree of polarisation of the transmitted light,
when common light is incident upon it. -

Replacing the incident stream by two components of intensity L polarised
in planes parallel and perpendicular to the plane of incidence, the intensities
of the corresponding transmitted streams will be

T 1_92 " By i . 1_f2
Sl T
where f=tan(z —r)/tan (¢ +7), g=—sin (i —7r)/sin(Z+7).

Let t—r=p, 1+ 7 =0, then since sint=psinr

dz dr dp do

tans tanr tani—tans tant-+ tanr

= cos ¢ cosrdw (say),

whence dp =sin pdo, do=58ID0d@......cocurenrennin. (22).
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2 2
_ tan p_ ,c08¢c

2
ko f tan’c Y cos? p’
1 _f2_tan2a—tan2p _sinfc—sin’p 1—g°
~ tan'c | sin'coos’p  costp’
2 2
ljif2 = 19ng cos? o = H? cos? o (say),
L L

g b 9 o

a i 1+ 2pH*’ 1+ 2pH?cos*c’

The intensity of the transmitted light is then

1+ p(1+cos?c)H?

G2+F2= ZL(1+ 2_p.H2)(1 +2pH200520')’

that of the polarised part is
pH?sin® o
(14 2pH?) (1 + 2pH?cos?o)’
and the measure of the polarisation is
gy :F’z — G2 - P
X=F7+G?  Hcosec’o +p (2 cosec’ o — 1)

Fr—Ge=2L

= p
= oowE T = omasa—p (23

since B L e SRR A g

Hence x will be a maximum, if cosec®p + (2p —1)cosec?*c —p is a

minimum which gives by (22)
cosec? p cos p -+ (2p — 1) cosec? g cos o =0,
sinfacosp  tano sing 1
cososin’p  tanp ‘sinp fg’
from which we see that cos o is negative, so that 7+ > /2 or ¢ is greater
than the polarising angle. Substituting for p in (23), we find
2u?
X= 03 e

When p=ow, 7+r=m/2 or v=1, and since sin?J = /(1 + p?), x =1;
hence as the number of plates is indefinitely increased, the angle of
incidence, at which the maximum polarisation occurs, approaches indefinitely
to the polarising angle and the polarisation tends to become more and more
perfect.

whence 2p—1=—

108. We have seen that when the incident waves are homogeneous, the
coefficients of reflection and refraction are real for all angles of incidence,
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provided the second medium is more highly refracting than the first; but
this is no longer the case if the first medium refract more powerfully, for
then the law of refraction for homogeneous waves ceases to be true, when
the angle of incidence exceeds the critical angle sin™ u, u being as before
the relative refractive index of the second medium.

Now since we have in general

3 sl | 2
l’=%,r«/1—v*.cos?=%,r(cos'r+wcosR),

ﬁ’=2)\7,r~/1 —v”.sino‘*=27\‘—7,r(sinr+w sin R),

where cos r cos R + sin 7 sin R = 0,

and since in the case under consideration 7’ is real, because the incident
waves are homogeneous, it follows that sin R =0, cos R= 4 1 and therefore
cos 7 =0, sin r = 1, a negative value of sin r being clearly foreign to the case.

Hence sin 7 = l/Jl — 12, COST = — w/Jl — 17

the negative value of cos B being taken, because the second medium being
on the side of negative z the positive value would correspond to a stream
increasing indefinitely in intensity with the distance from the surface.

To determine v, we have from the equality of the values of n for the two
media, the generalised law of refraction

sin 4/A = V1 =22 . sin 7N = 1)\,

whence if ' be the propagational speed of the unhomogeneous waves of given
period

sin {/w = 1/Q = 1/(o’ V1 — 1),
giving VN1 — 12 = w/(e’ sin 1) = p/sin 7,

where p is the relative refractive index for homogeneous waves of the same
frequency. Hence

y=V1— p/sin*i, sinF=sini/p, CcoS7=—sin®c— p*/u...(24).

Substituting these values in the expressions for the coefficients of
reflection, we find that

sin (i —7) _cos ¢ + ¢ Wsin?¢ — p?

i s = = pta
I= TsinGG+7) COS & — ¢ Vsin? ¢ — p? e (25),
e tan(i—?)_p*cosi+u\/sin21l——;ﬁ_e‘b (26)
© tan(v+7)  uicost— o sint— p B %) &
/sin? g —
where tamé lt = lw .................... @).

2 ¥ M cost
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Thus the amplitudes of the vibrations of the vectors for the streams
polarised in planes parallel and perpendicular to the plane of incidence are
unaltered by reflection, while the phases of the vibrations are accelerated by
a and b respectively. '

Hence if the incident light be polarised in any azimuth with respect to
the plane of incidence, the reflected stream will be in general elliptically
polarised and of the same intensity as the incident stream, the component
polarised in a plane perpendicular to the plane of incidence being accelerated
in phase relat1ve1y to that polarised in the plane of incidence by an amount A,
given by

(1-—-,uﬂ)ta,nc—z .
BRI S i1 2 cosiNsin®¢ — p?
2 7 i 1 sin? ¢
/L+tan§

which is zero, when ¢ = /2 and when 7 = sin™ g, that is at grazing incidence
and at the critical angle. Further since

tan%:coti'\/l — p? — p? cot?e,

tan (A/2) is a maximum, when cot?¢ =(1 — u?)/(24?) or sin®t = 2u*/(1 + u?)
and 1ts value then is (1 — p?)/(2u) or cot (2 tan™ u), whence A = 7 — 4 tan™ u.

Let us now determine the refractive index required to give a prescribed
difference of phase. Solving (28) for sin®¢ we obtain

2 sin®%2 = (u?+ 1) cos? + cos PRy (u* + 1)20082%— 4,
Now the expression under the radical is

cos2é(p—tan7—A) <p+tan7_A><p—cot7r_A> (,u+cot7r—A>,
2 4 4 4 4

and hence for sin’¢ to be real, the value of u must not lie between
tan {(w — A)/4} and cot {(7 — A)/4} and since cot {(7 — A)/4} is greater than
unity, the maxunum value of p is tan {(= — A)/4}.

Thus A increases from 0 to = — 4 tan—u, as ¢ increases from sin™ u to

sin™' (V2. u/V1 + p?} and then decreases to 0 as ¢ increases to /2, and
for a given value of A to be possible, » must not exceed the value
tan {(m — A)/4]}.

Thus if A=m/2, u must be less than tan (m/8) or ¥2 — 1, and taking air

as the second medium, the index of the substance must exceed ¥2+1 or
2:414, that is the substance must be at. least as highly refracting as a
diamond.
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If A =/4, p must be less than tan (37/16), or the index of the substance
must be greater than cot (37/16)=1'4966. When this is the case, it is
possible, as with Fresnel’s rhomb, to convert by two reflections a stream
polarised at 45° to the plane of incidence into a circularly polarised stream.

Turning now to the coefficients of refraction we have

L sin 27 2u cos
L N R R (29),
~ sin @G+7 V1
sin 2¢ o 2u® cos 7 :

LeP2,. (30).

= Csin(v+7)cos (1 —7)  Wptcos?s + sini — 2
Thus when the light-vector of the incident stream is perpendicular to the

plane of incidence, that of the refracted stream is in the same direction and is
represented symbolically by
. 2u? cos 1

o2 2
@y = BTN " g VA St R, [y LY
N pf cos? ¢ + sin?q — (31);

on the other hand when the light- vecbor is in the plane of incidence, that of
the refracted stream is
2u cos 1
V1= W
defined by the complex direction-cosines sin#, 0, —cos7, so that its axial
components are

2 2m
GexN'* ot N Witztal)

e 2sin 7 cost
VT — w
L 2 cos 1 V/sin? ¢ — p? Gez)\i'r
V1 — ©?
and the extremity of the vector describes a small ellipse lying in the plane of
incidence with its axes along the axes of # and z, the direction of revolution

being the same as that in which the incident wave must revolve in order to
decrease the angle of incidence.

2 2r
Ge N ¢V Witztal?)

..(32),

e X (w't+z+af2)

109. A difficulty here arises in connection with these results for the
refracted stream, as they apparently contradict those previously obtained for
the reflected light, according to which the whole of the intensity of the
incident stream is to be found in the reflected train of waves. What then is
the source from which the energy of the refracted stream is derived ?

Now if we multiply the second triplet of equations (1) by =,d7T, =,dT,
wsdT respectively, where d7' is an element of volume, and integrate the
sum of these products over a region 7, we have

%f% (ml+ wi+ w2 dT

P Oe;  De, e, Oes
“f{“‘(é&'&)“’? B—z—ax>+us

(-5}



178 The Analytical Theory of Light [cE. x

whence integrating the terms of the right-hand side by parts, we find by the
aid of the first triplet of equations (1)

a—atf% {w2 (02 +v° + w?) + =2 + = +‘5!'32} ar

= w? f {(mw — =) cos nx + (wu — wyw) cos ny
+ (mw — wu) cos nz} dS .......(33),

where dS is an element of the bounding surface of 7" and n is the normal to
dS directed outwards. If now we extend the region of integration so far
that the polarisation-vector vanishes on its bounding surface, this formula
expresses that the integral on the left side does not alter its value with the
time, and we may regard it as expressing to a factor independent of the time
the whole of the energy of the luminous disturbance in the region in question.
The right-hand side then expresses the energy that crosses the boundary of
T, when the polarisa.tion-vector does not van’ish on its surface.

Let us then determine the energy that enters per period into the second
medium through the interface of the media. By (33) since cos S 1y = cos e = 0,
this is represented by

" f' dt f (w W — = u’) dS.
0

Now the actual values of =/, w,’, w;’ being the real parts of their symbolical
expressions, we see that in the case of total reflection, each term of the integral

has the form
[deT2A sin (—-2 t+ 8) cos (——2 t+ 8) dt
0 o T

=fdsf’A sin(‘*ﬂ+2s)dt=o
0 T

Thus on the whole no energy passes across the interface into the second
medium, the flow of energy changing its direction four times during each
period.

110. It has been assumed in the above investigation that the second
medium extends so far from the surface at which reflection occurs, that the
light-vector becomes insensibly small at its second limiting surface. When
however this medium is an extremely thin plate, the superficial undulation
within it gives rise to an homogeneous refracted wave at its second surface
and the reflection ceases to be total.

To investigate this case, let us take the faces of the plate as the planes
=0 and £=—d and suppose it to be bounded by media having different
optical properties. Then assuming for the sake of generality that the
incident waves are unhomogeneous, the complete specification of the systems
of waves will be as follows :—
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In the first medium,
incident wave
(@, w3, w5) =, k, — 1) D exp (¢ (I + iz + t)} crveen... (34),
reflected wave
(@1, ®o, @) = (@, &y, 1) D, exp {¢(= Iz + 71z + st)}............(35).
In the second medium,

wave incident on the second surface of the plate

(&, &y, @) =7, K, =)D’ exp {¢ Tz +7245t)] .......... (36),
wave reflected at the second surface of the plate
(@3, @y, wy) = (7, &', V') D)’ exp {¢ (= V& + 7z + S ot oot AL

In the third medium,
emergent wave '
(@1, @, ) = (7, K, = 1") D" exp (e (" + 71z + st)}.......(38)
The boundary conditions are the continuity of

oy (or of w), ww, @5, @ (or of W) ..cvvevennen... (39)

when =0 and #=—d. Hence introducing the components of the light-
vectors parallel and perpendicular to the plane of incidence, we have as in
§101,

F+F =F+F/, (F—Ii)sig?cos?:(F”—F{)sinFcos?
(G— @) cosi= (G —G)cos 7, @+ G)sini=(F + G)sin 7 }

and
e g R 4 ¢ F =q¢'F',  (¢F —q7F/)sinFcos7=¢"F sini’ cos
(¢ — ¢Gy) cos7 =q"G”" cos”, (¢ +¢F)sinF=q"G" sin 7"

where q = exp(—d'd), q" =exp(—d"d),
and 4, 7, ¢ are the complex angles of incidence, refraction and emergence.
The last set of equations gives

ql 171/ ) ql_l Fll o qnpn
sin (7 +1") cos (F—1") cos(F+14")sin(F—1”) sin 27 (42)
q/(—;l ¥ __—q,_la-l, E q”’G” ...... 5
sin (F+1") —sin(F—1’) Sn2F
3 'y > U7
or q/FI=q—'€'/1=_ql’_l_,
5 =iF 1-7 5 )
/6 =1 —g; L gle ) (TR i CP A (43), -
et O ~tact,

74

sin v ' red;
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where 7 =tan (i’ — #)/tan (i’ +7), §' =—sin (7' —F)/sin @’ +7) ...(43).

Substituting for F', By, &, G, from these equations in (40) we obtain

A Al

e Ml AL = sin 27-
F =(d— 1 F _q___’ F—F= 11 mn 4
P+ F (q f)l—f" 1 s 21} Qf) f
%, 7 _Sin F 7 —qq" sin 7' g”G"
bt l_sinqj )sm'r'l -g"
5 [ _COST ., .60 % q"G"
g Gl_cosi(q IR e -7
whence F
sin (7 + 7) cos (1 — 7) ¢ — cos (¢ + 7) sin (7 — 7) ¢'/f”
.. Fl U qI/Fﬂ
" cos (1 +7) sin (i — 7) ¢ — sin (i 4 7) cos (4 — 7) ¢f” sin 2:(1 -
G Gy
and i L0 Ji AN s L Vs R A L
sin G4+ 7) ¢ +sin(G—7)q9”" —sin(t—F) ¢ —sin (s +7)q'g”
' f, : qu@//
sin 2 sin 7 (1 — §”)/sin 7"’
or F = Fl = qIF”
T g el in O )A=r) (44)
é Gl ) ”G// ...... )
(7475 ¢79-¢5" A+5A-g)sinisind’
where f=tan (@ —7)ftan(t+7), §=—sin(¢ —7)/sin (@ + F)...... (45).

111, Let us now apply these general formule to the case, in which,

the first and third media being identical and more highly refracting than
the plate, homogeneous waves are incident at an angle exceeding the critical
angle*.

In this case ¢’ is real and equal to exp {— 2xd ¥/u?sin?s — 1/A} where A

is the wave-length of homogeneous waves of the same frequency in the plate
and p is the refractive indezE of_the surrounding medium relatively to the
plate: also §=g"=exp (i), f = f” = exp (¢b), where

b .. a_ uVuisinti—1
R R ol R

Gl _(]_ _qlﬂ)eca (1 _q?) (eca_q'ze—ca)— >
Hence PR T 9q"cos 90 & q"‘ PE AR e (46),
2 ere AL g 47) tan 4 = +q tan g (48)
in(n p (1 q,2)2 T 4q,2 Slni oo s 1 Y, q,2 ........ .

of wa

Stokes, Trans. Camb. Phil. Soc. vint. 642 (1849); Math. and Phys. Papers, 11. 56.
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If p be taken positive, Y- must be chosen so that cos y» and cos ¢ have
the same sign: therefore sin+ must be positive, since sina is positive
because a lies between 0 and w. Thus of the two angles lying between —
and + 7 that satisfy (48), we require that which lies between 0 and .

To obtain the value of F,/¥, we have merely to write b for @ in the above
equations.

Considering now the transmitted light, we have ¢” =exp {— ¢ 27d cos i/\'},
A’ being the wave-length of the given light in the media bounding the plate,
and

Q = q, (1 1) e¢2a) etz)\—’: deost __ 2‘9’ sin @ (ela 13 9"0'“’) z2—1,’doosi
Riv 18978 (1—q"”)?+49"sin’a
=p’e‘(*'+§""d°°”) e g Ll
1 49" sin’a y b e ‘
where p?= a= q'”(‘;” Figsna ...(50), tan Y’ = — IT% GO S (51).

If we take p’ positive, 4~ must be chosen so that cos+’ is positive, that
is, of the two angles between — 7 and 7 that satisfy (51), we must take that
which lies between — /2 and 7/2. Now from (48) and (51), 4" = + 7/2 + n7w
and we therefore must take Y =+ — /2.

The value of F”/F is obtained by writing b for a in the above equations.

Since p?+ p"? =1, it follows that the sum of the intensities of the reflected
and the transmitted light is equal to that of the incident light and it is
therefore necessary to discuss the expression for the reflected stream alone.

Let us suppose that the plate is a thin film of air contained between the
flat face of a prism and the convex surface of a lens, upon which the prism
rests, the curvature of the lens being so small that the defect of parallelism
of the surfaces of the film may be neglected.

At the point of contact itself, d =0 and therefore ¢'=1, p =0 or there is
absolute blackness: as d increases, ¢’ decreases, but this decrease is at first
extremely slow, for d o« 3 where y is the distance from the point of contact,
and in consequence the intensity varies ultimately as % There is apparently
then perfect blackness for some distance round the point of contact. Further
on ¢ decreases rapidly and finally becomes insensible : hence the intensity at
first increases rapidly and afterwards more slowly until it attains its final
value equal to that of the incident light.

Next as regards change of intensity as dependent upon colour, we have
that @ and b depend upon A, but their changes are so small that they may
be left out of account; the quantity that has to be considered is ¢. Now
the smaller A is, the more rapidly ¢’ changes on leaving the point of contact,
and the central spot must therefore be smaller for blue light than for red;
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that is beyond the edge of its central portion there is a preponderance of the
colours of the blue end of the spectrum.

Finally the effect of the polarisation on the size of the spot has to be
considered. Let s,, s, be the ratio of the intensity of the transmitted light
to that of the reflected light according as the incident stream is polarised in
a plane parallel or perpendicular to the plane of incidence : then

/s, = sin®a/sin?b = {(p* + 1) sin?¢ — 1}°
Now according as s, (or s,) is greater or less, the spot is more or less
conspicuous as regards extent and intensity at some distance from the point
of contact. Very near the critical angle, we have s, = ufs, and therefore the
distinctness of the spot is the greater for light polarised perpendicularly to
the plane of incidence. As 7 increases, the spots seen in the two cases
become more and more nearly equal in size, and they become exactly of the
same magnitude when sin?¢ = 2/(1 + x?), that is when the difference of phase
between the oppositely polarised streams, arising from reflection at the
surface of the film, attains its maximum value. When ¢ exceeds this value,
the order of magnitude is reversed, and the spots become more and more

unequal as 7 increases. When 7 = /2, s;=p’s, so that the inequality becomes
again relatively large. '

112. The above investigation of the problem of reflection and refraction
has been based upon the hypothesis that the transition from the one medium
into the other takes place so rapidly, that the region within which the
optical properties are variable may be regarded as vanishingly small.

One of the consequences of this assumption is that a stream of light plane
polarised in any azimuth with respect to the plane of incidence gives rise,
in the case of ordinary reflection, to a reflected stream that is in all cases
also plane polarised, and in particular that at an angle of incidence tan™ p,
the plane of polarisation of the reflected light coincides with the plane of
incidence, and consequently at this angle light polarised in the perpendicular
plane ceases to be reflected.

This is however by no means always the case and it was found by
Brewster* and by Biot+ that with certain highly refracting substances
there is no angle of complete polarisation, while Airy} confirmed this result
from observations of the behaviour of Newton’s rings in polarised light and
made the further deduction that the phase of the component stream polarised
perpendicularly to the plane of incidence undergoes a continuous variation
as the angle of incidence passes through the polarising angle, instead of
changing abruptly as the theory requires.

* Phil. Trans. c1v. 230 (1814); cv. 152 (1815).

t Traité de Phys. 1v. 288 (1816).
I Cambd. Phil. Trans. 1v. 279 (1831).
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This question has been carefully investigated by Jamin* by direct
measurement of the difference of phase and of the ratio of the amplitudes
of the vibrations in the component reflected streams polarised in the principal
azimuths, and he found that with few exceptions a stream of light polarised
in any azimuth with respect to the plane of incidence except 0° and 90°
occasions by reflection an elliptically polarised stream, its elliptic character
however being only strongly marked at angles of incidence near the polarising
angle. At the principal incidence itself the axes of the elliptic vibration of
the polarisation-vector are in the principal azimuths, so that the components
of the reflected light polarised in these azimuths have a phase-difference
of m/2.

Jamin further recognised that transparent bodies may be arranged in
three classes with respect to their action upon the light reflected from them.
In the case of some substances, the phase of the component polarised in the
plane of incidence is by reflection at the principal incidence retarded by /2
relatively to that of the component polarised in the other principal azimuth :
with others, it is accelerated by this amount; while intermediate to these
classes there is a third, characterised by the property that the reflected light
remains plane polarised. Substances belonging to these three classes he
termed media of positive, negative and neutral reflection respectively, and he
stated as a general rule that they are included in the first or second class
according as their refractive index is greater or less than 1'46. Later investi-
gations have however considerably modified this result.

The elliptic polarisation produced by reflection at the surface of trans-
parent media has also been investigated by Quincket, Wernickef, Cornu§
and others||.

The ellipticity of the polarisation of the reflected light is found to be to
a great extent dependent upon the means employed to polish the reflecting
surface and upon the time that has elapsed since the surface was made, and
it is scarcely perceptible in the case of clean freshly formed surfaces, such as
a clean surface of water or a crystalline surface newly made by cleavage**.
This fact indicates that the defect in the former investigation of the problem
of reflection arises from the neglect of the thickness of the transition-layer,
and that we must regard two homogeneous media as separated by a region
of small but sensible thickness, within which the optical properties vary.

113. As we are ignorant of the nature and properties of this surface-
layer, we must content ourselves with an approximate solution of the problem

* Ann. de Ch. et de Phys. (3) xx1x, 263 (1850); xxx1. 165 (1851).
t+ Pogg. Ann. cxxviir. 355 (1866). + Wied. Ann. xxv. 203 (1885).
§ C. R, cvmr. 917, 1211 (1889).
|| Cf. Winkelmann, Handb, der Phys. 11. T61—771.
9 Lord Rayleigh, Phil. Mag. (5) xxx. 400 (1890); xxxmi. 1 (1892).
** Drude, Wied. Ann. xxxv1. 532 (1889); xxxviir. 265 (1889).
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of reflection. This we shall base on the method employed above, assuming
that the ratio of the thickness of the layer to the wave-length of light is so
small that its square may be neglected and that for all quantities that occur
with this ratio as a factor we may substitute the values that are obtained by
neglecting the thickness of the layer*.

Let us suppose that the medium, in which the incident light travels, is
homogeneous from w to #=0, that the transition-layer occupies the space
from £=0 to £=—d and that from this lower plane to #=— c the pro-
perties of the second medium are unvaried ; and let us further assume that
the characteristic equations within the surface-layer have the form (1) and
(2) in which o is regarded as a function of 2.

Taking the plane of incidence as the plane xz, we obtain by multiplying
the last two of each pair of triplets (1) by d« and integrating from 0 to —d

-d -d Je, -d
[ ﬁdx=—f Fy dz+ =y — @, f Wdz = — @, + @,
0

0

0
—d -d pe, ! = ‘
f ‘wgdﬁ:f _“dx—e;; +33, w3dx=e2 — &,
0 0 0z 0

where the accents denote the values of quantities at the plane z=—d.

Now we have seen in § 99 that if the thickness of the layer be insensibly
small, the quantities =,, w,, @, ¥, &= 0™, ¢; = w*w are continuous across the
interface : we may then, in accordance with the assumption made above,
place these quantities outside the sign of integration, assigning to them their
values at the plane # =—d. Then writing, for shortness,

- d
f wdr = — Qw'd, f 0, de=—Po'2d ..oc.ouennn.... (52),
0 0

where I’ and @ are simple numerics, we obtain the system of equations

b Tl [m‘s + Pdi+ 22 d] ........................ (53),
aZ z=—d
Ry e o et L 2 W A 36 0 b o o SRt (54),
il [e3 —wd+ Qd] ......................... (55),
z z=—d
PRI AP B (i, | - o el Vs (56).

Let us take as the specification of the system of waves, the expressions
given in § 101, omitting the bars over the letters, as we shall only apply the

* Drude, Wied. Ann. xxxvi. 532, 865 (1889); xumi1., 126 (1891): Lehrbuch der Optik, p. 266.
Voigt, Komp. der Theor. Phys. 11. 7100. Cf. also Zech, Pogg. Ann. cix. 60 (1860). Van Kyn van
Alkemade, Wied. Ann. xx. 22 (1883). Von der Miihll, Math, Ann. v. 505 (1872).
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results to the case of homogeneous waves. Then neglecting terms involving
d* and remembering that s?= w? (I* + n?), equations (53)—(56) give

(kD + kD)) = ¢4 (KD + k' VdPD)
=kD (1+dd(P-1)},

’

!
—d'd & 'y /
z=+ s RD =D = e (s KD kD — 4 koD)

=kD {l’*fu'_n'z R apir + ,d(Q— 1)}
I(D=D))=e{I'D + (I + n?) dPD — m2d D}
=D {l + (" +n) d(P-1)}
D+ D,=e (D +.0'dD)
=D;

whence introducing the components perpendicular and parallel to the plane
of incidence and the angles of incidence and refraction

F+F,

F'{1+L—2i7,£cosr(1’—1)d}

(F—F)sinicost=F’ {sinrcosr—zi—":—sinsr(Q— 1) d} L ..(57).

(G = @) cost =G {cos'r+1, (P-1) d}

(G + G)sin =G’ sinr J
Hence
i

sin(¢+r)cos (v —r) + Sl d {(P—1)sin? coss cosr — (Q 1) sin®r}

F,
sin (¢ —r) cos (z+r)+L2 d{(P—1)sinzcos?cos 7+ (Q — 1) sin’ r}

Fn

T R e e s SR e ) (58),
G X G,
Sin (i +7)+¢ oy sind (P=1)d  —sin(i=7r)~ 7 ind (P-1)d
A 7 [ R (59),

“sin 2
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and omitting as before terms involving d?,
F_’l_tan(i—r){l_*_ 2 (P—-1)cos’r+(Q—1)sin’r

sin 27 sin 'r}

F  tan(i+7) A 7 sin (¢ +7) cos (¢4 7) sin (¢ — ) cos (1 — 1)
"ol TR e g o R PR St ) (60),
G, sin@-r) 2w sin 2¢ sin r
—G—‘——SiT(H—T‘){l'*'LY(P—l)dsin(i_l_,r)sul(’b_r)} ............... (61),
F, cos(i+7) 2m (P—1)sin?i 4+ (Q—1) sin?r | J{
(—i__cos(i—r){l N sin(i+r)cos(i+r)sin(z'—*r)cos(i—r)sm2”1[”‘
. cos(i+47) 4r P-1D)+(Q—=1)p? AN }
“cos(i-r){” RO S S e L s e
......... (62).
At the polarising angle ¢+ 7 ==/2 and
F, 4x _,, sin‘tcost F
(j_L—d{(P £ St 2}sinz2icos2z'?¥
N1 4w F
= T a{(P-1)+ Q-1 (63).

1— e Ty e e

Hence if the incident light be polarised at 45° to the plane of incidence,
the ratio of the amplitudes of the vibrations in the component reflected
streams polarised in planes perpendicular and parallel to the plane of inci-

dence is
11+ 2
=T AP-D+@-Dp T,

and the difference of phase between these components is /2. Thus the
reflected light is elliptically polarised with its planes of maximum and
minimum polarisation in the principal azimuths.

The quantity e is called the coefficient of ellipticity, and referring to (52)
we see that its value is

7T'\/1+Iv"fd(l/' l"x2)(/“z_1)d

where y, denotes the refractive index within the layer relatively to the first
medium at a distance « from the plane at which this medium ceases to be
homogeneous.

If u>1, it follows that e will be positive so long as the refractive index
of the transition-layer is at all points between the values 1 and u: if p<1
the reverse is the case. As it is natural to assume that the index of the
layer is between that of air and the second medium, we should expect to find
that in most cases the reflection in air is positive: negative reflection
requires that the polished layer must be the more refracting, and this is
most likely to occur when the index of the refracting substance is small.

2
G

G
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So long as the plane of polarisation of the incident light is not in one of
the principal azimuths, a plane polarised stream will at any incidence give
rise to a reflected stream of elliptically polarised light, the difference of phase
between the components polarised in the principal azimuths being given by

1 Lo .
tan & = de = sm;,.tan 2 :
N1 4 p? tan®s —

since however e is small, the ellipticity is only marked at incidences near
the principal incidence. The ratio of the amplitudes of the vibrations is
except at principal incidence approximately the same as that given by
the simple theory, viz.:—
cos(t+r) F
Tceos(i—1) G’

In the case of bodies of positive reflection it is possible to assign an
inferior limit to the thickness of the surface-layer: for the value of ¢ being
given d will be a minimum, when u, is constant and of such a value that
(12 — p?) (us? — 1)/ps? is a maximum, that is when p.? = p.. This gives

d_ep+1 1

Thus for heavy flint glass u =175, =03, whence d/x = 0:0175.



CHAPTER XI.

DOUBLE REFRACTION.

114. It was discovered by Erasmus Bartholinus that a stream of light
on entering a crystal of Iceland spar is in general divided into two refracted
streams. By a careful series of experiments he found that the direction of
one of these streams was determined by the ordinary law of refraction given
by Snell, while the other stream was bent according to a different law, that
had not been previously recognised.

An account of these observations was published in Copenhagen in 1669,
and their publication led Huygens to investigate whether the new refraction
could be accounted for by the principles that he had already successfully
applied to the explanation of ordinary refraction, and for this purpose he
proceeded to determine with accuracy the experimental laws of this new
phenomenon.

According to Huygens' principle the existence of two refracted streams
shows that an elementary disturbance at a point on the surface of the crystal
occasions two disturbances spreading out into the medium at different rates,
so that the wave-surface that determines the direction of the refracted
streams must be a double surface or a surface of two sheets. As one of the
streams follows the ordinary law of refraction, the corresponding wave-surface
must, as in the case of isotropic media, be a sphere, and since it appeared
that the law determining the refraction of the other stream, though less
simple, was not much more complicated, Huygens assumed that for it the
form of the wave-surface was a spheroid. Now from the measures that he
made, it appeared that the radius of the spherical wave-surface was practi-
cally equal to the polar semi-axis of the spheroid, whence he inferred that
the two surfaces touch in the axis, and finally observing that a rhombo-
hedral crystal of spar behaved in precisely the same way whichever pair of
faces the light passed through, he concluded that the polar axis of the
spheroid must be symmetrically placed with respect to each of the planes
of the rhombohedron and must therefore coincide with the direction of the
axis of the crystal.
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Huygens also discovered that each of the two refracted streams had
acquired new properties with respect to their transmission through a second
rhomb of spar. To this phenomenon, which has already been described in
§ 12, Malus afterwards gave the name of polarisation, and he found that the
properties of a stream of light completely polarised by reflection are the
same with reference to the plane of reflection, as are those of the ordinary
stream with respect to the principal plane of the crystal and those of the
extraordinary stream with respect to the perpendicular plane. Thus accord-
ing to Malus’ definition the ordinary stream is polarised in the principal
plane, the extraordinary stream in the plane perpendicular to the principal
plane of the crystal.

The correctness of Huygens’ measures and deductions remained unrecog-
nised for over a century, and little, if any, progress was made in the quanti-
tative determination of the laws of double refraction, until Wollaston* in
1802 undertook at the suggestion of Young an experimental investigation of
the subject. Wollaston’s measures confirmed the accuracy of Huygens’ law
for the case of Iceland spar, and the evidence in its favour was further
strengthened in 1810 by the publication of a memoir by Malus+, that gained
the prize offered by the French Academy for an essay on the question of
double refraction.

115. It was at first assumed that Huygens’' law applied to all crystals
that exhibited the phenomenon of double refraction, but Brewster} in 1818,
while examining the rings surrounding the optic axis of a crystal in polarised
light, discovered a number of crystals possessing two optic axes. He deter-
mined moreover that though these directions must not be regarded as the
fundamental axes of the medium, they are connected with them by simple
relations, the fundamental axes in fact being the internal and external
bisectors of the angle between the optic axes and a direction perpendicular
to their plane.

Brewster also succeeded in establishing a connection between the optical
properties of crystals and their crystallographic form. Crystals are referred
to six systems based upon their grade or type of symmetry and these
systems are further grouped into three classes that correspond to the
arrangement of crystals into divisions determined by their optical charac-
teristics.

In the isometric class, containing the cubic system alone, there are three
principal planes of symmetry at right-angles to one another and six secondary
planes of symmetry that bisect the angles between the principal planes.
Optically, crystals of this class are isotropic and the wave-surface for them is

* Phil. Trans. xc11. 381 (1802).

+ Mém. des Sav. Etrang. 11. 303 (1810).
+ Phil. Trans. cvi. 199 (1818).
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in general a sphere, but there are a few cubic crystals possessing hemihedral
or tetartohedral merosymmetry that exhibit rotary properties and for these
the wave-surface consists of two concentric spheres. Such crystals though
still isotropic show weak double refraction.

The isodimetric class comprises all forms that have a single principal
plane of symmetry. In this class there are two crystal systems:—

(a) the tetragonal system, having four secondary planes of symmetry
all at right-angles to the principal plane and inclined to one another at
angles of nmw/4;

(b) the hexagonal system with six secondary planes of symmetry inter-
secting the principal plane at right-angles and each other at angles of nm/6.

Crystals of this class are optically uniaxal, the optic axis coinciding with
the principal axis of symmetry for all wave-lengths and temperatures, and
the wave-surface is Huygens’ system of a sphere and a spheroid touching one
another in the axis. There are however some crystals having merosymmetry,
that show rotary properties, and in these cases the sheets of the wave-surface
no longer have a common tangent plane.

In the anisometric class there is no principal plane of symmetry and this
is characteristic of three crystal systems:—

(a) the prismatic system, that has three secondary planes of symmetry
at right-angles to one another;

(b) the monoclinic system having one secondary plane of symmetry ;

(c¢) the anorthic system with no plane of symmetry.

Such crystals are optically biaxal, and in their case the wave-surface is a
surface of the fourth degree with a centre of symmetry and three rectangular
planes of symmetry determining by their intersections three axes of optical
symmetry.

In the prismatic system, the axes of optical symmetry coincide with the
crystallographic axes for all wave-lengths and temperatures. In the mono-
clinic system, one of the axes of the wave-surface coincides with the crystallo-
graphic axis in all cases, while the positions of the other two change with
the wave-length and temperature. In the anorthic system, the orientation

of all the three axes of optical symmetry is dependent upon the wave-length
and the temperature.

Unvazal Crystals.

116. Referred to a rectangular system of axes, of which the z-axis
coincides with the optic axis of the medium, Huygens’ wave-surface con-
sists of

the sphere a?+ y* + 22 =aq?

and the spheroid




115-118} Uniaxal Crystals 191

where @ and ¢ are the principal wave-velocities, or if & be the ray-velocity in
a direction making an angle Y with the optic axis, the equations of the
sheets of the wave-surface may be written '

1 _sin’+ 7 cos? Jr

B ks i e T e, (2),
- AT A TN e
whence we obtain Sy (0—2 = ﬁ) SRR F e Bt0Bdoat adao BarpoR: (3),

or the difference of the squares of the reciprocals of the ray-velocities in any
direction is proportional to the square of the sine of the angle that this
direction makes with the optic axis.

117. Since the wave-surface is a surface of revolution, it follows from
symmetry that the extraordinary ray and the normal to the corresponding
plane wave lie in a plane through the optic axis. Taking this plane as that
of xz, let (2, 2') be the coordinates of the extremity of an extraordinary
ray OS: the corresponding plane wave W is perpendicular to the plane 2z
and cuts it in the line

@ tash
2 2
touching the ellipse % + ; =1

at the point (#/, 2).

But if » be the wave-velocity and x be the angle between the normal to
the wave and the optic axis

xsiny +2cos y =0,
whence &'l =sin ylw, lat=cosyfe .....coccuvineniin. (4).
Substituting these values of #, 2’ in the equation of the ellipse, we obtain
A w?=¢*sin® x + a* cos® x.

Thus in polar coordinates the surface of wave-quickness consists of

the sphere w=a )
and the ovaloid o?=¢?sin?y+a%cos?y j 7T ;
and in Cartesian coordinates the equations of these surfaces are
©?+yt+r=a? 6)
R T e e St o .

118. A comparison of equations (2) and (5) shows that we pass from the
one to the other by changing

a, ¢, o, ¥ into a7, ¢, 07, x

respectively, and accordingly to each proposition referring to rays there
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corresponds a similar proposition relating to waves. Thus we have in corre-
spondence with (3)

0% — ¥ (=) sTheal e S a3 (1),
or the difference of the squares of the wave-velocities in any given direction
is proportional to the square of the sine of the angle that the direction makes
with the optic axis.

From equations (4) we have
ay _a
tanx=o—2?=g,‘, tan\[r .............................. (8),

thus the tangents of the angles between the optic axis and the ordinary and
the extraordinary rays, corresponding to waves that have the same direction,
are in a constant ratio, and the angle between these rays is given by
(a*—c®) tany (a®—c?)siny cosy
a*+cttan’*y . o?

tan 6 = tan (y — {) =

this angle is the greatest when
tan y = + a/c, or tan+r= + c/a,

that is when the sum of the angles x and ) is a right-angle ; its value then
1s tan™ {1 (a®— ¢?)/(2ac)}.

119. We see from equation (8) that y =+ or the ordinary ray is
farther from or nearer to the optic axis than the extraordinary ray of a wave
in the same direction, according as a Z ¢, that is according as the spherical
sheet is without or within the spheroidal sheet of the wave-surface, the
spheroid being in the first case prolate and in the second oblate.

There are then two classes of uniaxal crystals and these Biot*, to whom
their discovery is due, denominated attractive and repulsive respectively,
ascribing the existence of the extraordinary ray in the theory of emission to
attractive or repulsive forces emanating from the optic axis. These classes
of crystals are now called positive and negative.

120. The surface of wave-slowness in an uniaxal crystal, being the
inverse of the surface of wave-quickness, consists of a sphere of radius a™
and an ellipsoid of revolution about the optic axis, the polar and equatorial
semi-axes of which are a=* and ¢ respectively.

Let @ be any point on the spheroid, @M the perpendicular from @ on the
equatorial plane, O the centre of the surface, then

FOM*+ QM2 =1 or ¢?0Q*+(a*— ) QM>*=1;
but if 6,, 6,, 6;, be the angles that the optic axis makes with the axes of
«, y and 2z respectively, the equation of the equatorial plane is

:ccos01+ycos€2+zcos03=0,

* Mém. de la prem. classe de UInst. xur. (2) 19 (1814).
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and hence the surface of wave-slowness consists of
the sphere 2ty +2t=a"?
and the spheroid T et e (10).
(@ + y* + 2°) + (a* - ¢®) (z cos 0, + y cos b, + 2 cos 0, =
Suppose now that a plane wave is incident at an angle ¢ on a plane surface
bounding an uniaxal crystal, and let the plane of incidence be taken as the

plane of zz and the surface of the crystal as that of zy, the positive quadrant
«z containing the direction in which the light travels*.

Since the ordinary wave within the crystal follows the ordinary law of
refraction, its normal makes an angle r, with the normal to the surface
given by

Sy weop SINAIES 4ot b e A e, e (11),
Q being the propagational speed in the outer medium, and the ordinary ray
coincides with the wave-normal. The plane of polarisation is the plane
containing the wave-normal and the optic axis, and hence if a,, B, v, be the
direction cosines of its normal
a, cos 6, + B, cos b, + y,cos 8, = 0,
o, Sin 7 + opcos 7= 0,
whence the equation of the plane of polarisation of the ordinary wave is
cos 7, ¢0s 8,  + (sin 7, cos f; — cos 7, ¢os 6,) y — sin 7, c0s 6, 2= 0...(12).
As regards the extraordinary wave, if 7, be the angle that its normal
makes with the axis of z, r, is determined by writing
z=sint/Q, y=0, z=sintcotr/Q
in the equation of the spheroidal sheet of the surface of wave-slowness.
This gives
¢ (1 + cot?r,) + (a*— ¢?) (cos 8, + cos G, cot 1) = Q?/sin? v,
or
[{e® + (a* — ¢*) cos? 8,} sin? s — Q*] tan?r, + 2 (a® — ¢®) cos 6, cos 6, sin? 7 tan 7,
+ {c*+ (a® — ¢®) cos? Oy} sin? s =0............... (13).-

If the propagational speed in the outer medium be greater than the
greatest principal velocity in the crystal, this equation gives two real roots
of opposite sign for tan r,, of which the positive one is that required, as from
the nature of the problem 7, is positive and less than #/2. Hence 7, is
determined and the velocity of the wave is given by

w = Q sinr,/sin .,

The corresponding ray is in the direction of the perpendicular from the

* Beer, Einleitung in die hihere Optik, 2nd ed. p. 273.
W. 13
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centre on the tangent plane to the surface of wave-slowness at the point in
which the normal to the wave meets it and is therefore parallel to the normal
to the surface at this point. Whence we obtain for its equations

x. =
c*sinr, + (a?— ¢*) cos P, cos 6,  (a?—¢?) cos ¢, cos b,

z
~ c*cosr,+ (a®— ¢?) cos ¢, cos b,

where ¢, is the angle between the wave-normal and the optic axis, so that
cos ¢, = sin 7, cos ; + cos 7, cos .

The plane of polarisation of the extraordinary wave is perpendicular to
the wave and to the plane containing the wave-normal and the optic axis:
hence if a,, B, . be the direction-cosines of its normal

o, cos 0, cos 1, + B, (cos ; sin r, — cos 91 COS T) — v, cos B, sin 7, = 0,
@, SIN 7, + oy, CO8 7, =0,
and the equation of the plane of polarisation is

cos 0,
z— :
cos 7 (cos 0, sin r, — cos 0, cos r,)

y—tanr,z=0......... (15).

The angle between the planes of polarisation of the two refracted waves is 6,
where ‘
cos © = a2 + BB + Vuve
= cos 6, cosec ¢, Cot P, SIN (7, —7) weveveerernnnn. (16),
where' ¢,, ¢. are the angles between the refracted wave-normals and the
optic axis.
The extraordinary ray is in the plane of incidence, only when
cos p,=0 or cos §,=0,

that is when the optic axis is either parallel to the refracted wave, or in the
plane of incidence: in the latter case the plane of polarisation becomes .
indeterminate when

cos ,/sin r, = cos ;/cos r,,

which expresses that the optic axis is in the direction of the wave-normal.

The planes of polarisation of the two refracted waves are at right-angles,
only when
cos0,=0, cos¢,=0, sin(r,—r)=0,
that is when the optic axis is either in the plane of incidence or parallel to
the extraordinary wave, and when the two refracted waves have the same
direction, that is in the case of normal incidence.
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Biaxal Crystals.

121 The first attempt to extend Huygens’ construction to biaxal crystals
was made by Young*, who suggested a sphere combined with an ellipsoid
having three unequal axes as the form of the wave-surface in such media.
It is readily seen however that this form of wave-surface is inconsistent with
the biaxal character of the crystals, and in addition Fresnel discovered that’
any form with a spherical sheet must be rejected, since in biaxal crystals
there is no ordinary refraction in all cases, as was at firss supposed to be
the case.

Fresnel arrived at this conclusion by the following considerations.
Starting from the idea that light consists in transverse vibrations of the
particles of the ether, he was led by the symmetry of uniaxal crystals about
their axis to assume that vibrations perpendicular to this direction are
propagated with the same speed in all directionst, and he pointed out that
this explains the existence of an ordinary wave and the relation between its
velocity and that of the extraordinary wave, provided the vibrations in
a stream of polarised light are perpendicular to the plane of polarisation: for
in that case, light polarised in the principal plane will travel with the same
speed in all directions, as the vibrations are in all cases perpendicular to the
optic axis; on the other hand light polarised in a plane perpendicular to the
principal plane will have a speed dependent upon the direction of propagation,
as the vibrations are in general oblique to the optic axis. As however the
direction of propagation approaches that of the axis, the vibrations will
become more and more nearly at right-angles to it and the speed will
approximate to that of the ordinary waves.

It soon became obvious to Fresnel that this explanation could not be
applied to the case of biaxal crystals, and that there was no reason to expect
an ordinary wave in such media, since the existence of two optic axes
indicates that they possess no single direction round which their optical
properties are symmetrical. In order to test this inference, Fresnel took
two prisms of topaz, cut in different directions with respect to the crystallo-
graphic axes and carefully worked so as to have the same angle, and of these
he formed a single prism by attaching them together with their edges in the
same straight line. After partially achromatising the system by prisms of
crown glass, he observed through the combination a luminous line parallel to
the edge of the prism and at once perceived that the image, hitherto regarded
as due to ordinary refraction, was discontinuous, proving that the deviations
produced by the two halves of the prism did not follow the same law}.

* Miscellaneous Works, 1. 317, 322.

+ Euvres completes, 1. No. xx1. § 14, p. 636. For an account of the sequence of Fresnel’s
ideas on Double Refraction, see the introduction to Fresnel's work by Verdet, pp. lxv—Ixxxv,

reprinted in Verdet’s works, Vol. 1. pp. 360—376. .
+ Buvres completes, 11. No. xxxviir § 12, p. 271,

13—2
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If then the laws of double refraction in biaxal crystals were to be deduced
by Huygens’ method, it would become necessary to look for a surface, having
two sheets and probably of the fourth degree, that would reduce in the case
of uniaxal crystals to Huygens' system of a sphere and a spheroid, and
recognising the difficulties inherent in this method of procedure, Fresnel
‘was led to consider the possibility of representing the phenomena by the aid
of a simpler surface. Now he perceived that in the case of uniaxal crystals
it was possible for this purpose to replace Huygens’ wave-surface by a single
spheroid, of which the polar and equatorial semi-axes are respectively the
equatorial and polar axes of Huygens’ spheroid, as the velocities of the two
rays in any direction are given by the semi-axes of the section of this
spheroid by a diametral plane perpendicular to the ray, and the plane of
polarisation of either ray is perpendicular to the semi-axis that gives the
ray-velocity*. It therefore suggested itself to Fresnel that the properties
of biaxal crystals could be expressed by similar relations with respect to an
ellipsoid with three unequal axes, and the results thus deduced he found to
be in accordance with all the facts known about such crystals .

This surface is called, for reasons that will appear later, “ the reciprocal
ellipsoid,” and the wave-surface is the locus of points obtained by taking on
the radii-vectores through its centre lengths equal to the semi-axes of the
diametral sections perpendicular to their directions.

122. Turning now to the consideration of waves, it is clear that the
speeds and polarisations of waves in an uniaxal erystal may be determined by
the aid of a spheroid, of which the semi-axes are the reciprocals of those of
the reciprocal spheroid, the wave-velocities in any direction being the reci-
procals of the semi-axes of the diametral section parallel to the plane of the
waves, and the plane of polarisation of each wave being perpendicular to the
axis determining its speed. Hence it is natural, as in the case of rays, to
extend this construction to biaxal crystals by the employment of an ellipsoid
with three unequal axes. This ellipsoid is called “the polarisation ellipsoid.”

Let the equation of the ellipsoid of polarisation, referred to its principal
axes, be
(e o e e e e S RS o 4 S0rBd (17);
then to determine the speeds and the polarisations of the waves propagated
in the direction, of which the direction-cosines are [, m, n, we have to find the
axes of the section of this ellipsoid by the plane

L A OB N N TR N ot ol o AT o (18).
Let 1/w be the length, a, B, v the direction-cosines of any radius-vector
* Fresnel supposed that the vibrations were perpendicular to the ray (@Euvres, m. No. XxxviII.

§ 22, p. 281), an assumption that he rejected afterwards.
1t Euvres completes, 11. Nos. XXXVIIL., XXXIX., XL,
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ON of the section; then if #, y, z be the coordinates of its extremity XN,

we have
z=alw, y=RBlo, z=rv|w,

and from the equation of the ellipsoid

@R R B A R SR S s e i (19),

also «, B, « are connected by the relations
8 S T T Rt A Bl HIN i TP R (20),
Rl HTBI oy =10 e B S e (21),

the latter equation expressing that the radius-vector is in the plane of
section.

If now ON be one of the semi-axes of the section, w*> must be either
a maximum or a minimum subject to the conditions (20), (21); whence
differentiating with respect to «, 8, v,

@*ada + b*BdB + cydy =0
ada+ BdB +ydy=0f ..ccoviviiininnnn. (22),
lde +mdB + ndy =0 '
and using indeterminate multipliers, we have
(- E)a=Fl, (;*—E)B=Fm, (¢*—E)y=Fn.
Multiplying these equations by a, B, ¢ respectively and adding, we find

E = 0?
whence
(@—w)a=Fl, (*—w)B=Fn, (¢—w®)y=Fn....... (23),
from which by eliminating a, 8, vy we obtain :
BT AL SN (24),

P iy e
the roots of which give the two propagational speeds in the direction (I, m, n).

Again multiplying (23) by I, m, n respectively and adding, we get

F =l +b0Bm+ YN cvecrecareisnciioiaiacasis (25),
and also from (28) since a?+ B2+ 4?*=1
1 (A AR N 5
1- (a2 i w=) i (bz. . ;> i (___62 = wz) ............ (26),

which gives the value of F corresponding to either of the two waves, and then
the direction-cosines of the corresponding polarisation-vector are obtained
from (23).

On the other hand, if it be the plane of poiarisation or a, B3, vy, that we
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know, the propagational speed is determined by (19), and squaring and adding
equations (23), we have
P ot =+ b e ieiiieeiee e (27),
which gives F' and the direction-cosines of the wave-normal are by (23)
given by
l=(a*-o*) a/F, m=(b~w?)B/F, n=(c-o’)q/F.

123. Let w, be the speed of the quicker, w, that of the slower wave
propagated in the direction (I, m, n), then since w,, w, are the roots of
equation (24), the equation

(£ — o) (- o)
=EE-B)(—)+m (- ) (= a)+ 02 (F—a) (- b)
is identically true for all the values of & Hence writing in turn a, b, ¢ for ¢,
we obtain

o (az Le (012) (az £ wf)‘

N Iy
o (0 - ) (b* - o)
me = B RS L e L (28),
2= (¢* — ) (¢*— wy?) J
(02 = a?) (02 s b2)
whence we find
Fac (a2 — 02) (0* — 0,2) (¢ — w,%) . (a2 — ) (b* — ) (¢ — ,?) 320y,

0 — 0 ©2 — w?

relations that we shall require later.

Now assuming, as we shall do in what follows, that a*>b*> ¢?, the second
of equations (28) shows that (w,®~—b?)(b*— wy?) is always positive and then
the first and last of these equations give that w, and w, are both less than o
and greater than ¢, so that @ > @ >b>w,>c.

We see then that if , and o, become equal, this can only occur by their
both being equal to b; but if one of the speeds be b, we must have m =0, that
1s the wave-normal lies in the plane of zz and if the second speed be also b,
we have

a?—b? b2 — 2
P e

At the same time the expressions for the direction-cosines of the polarisation-
vector become indeterminate and hence in the directions given by

T =
lo:i a—cz, m0=0, no=,\/a§:-éz ............ (30),

all waves are propagated with the same speed, whatever may be their
polarisation. Since these directions have the same property as the optic
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axis of an uniaxal crystal, they are called the optic axes of the medium, and
they are obviously the normals to the circular sections of the ellipsoid of
polarisation. y

Calling O4 the optic axis in the quadrant zz, OB that in the quadrant

— a2z, and 20 the angle A0B, then
g at—b? b — ¢
sin () = m , Cos = mz ............... (31)-

124. The quantities /, m, n given by equations (28)vmay be regarded as
the coordinates of a point on a sphere of unit radius with the origin as centre.
If w, be kept constant, while w, varies, the point will describe a spherical
ellipse, determined by the cone

2 2
! m LA g YR S (32),

+ +
BP—w? bDP—w? ¢ — w?

the centre and foci of the ellipse being the points in which 0Z, 04, and OB
meet the sphere*.

Similarly if w, vary, while w, is constant, the point will describe a
spherical ellipse given by the cone

> m? n?
az—w,2+b2—w1’+c’—wf—0 .................. (33)

with its centre and foei at the points in which OX, O4 and OB’ (the
prolongation of BO) meet the sphere.

Taking the spherical ellipse w, = const., we have

a?— .2 ani T
L L w,dw,,

== @@= e ™G s o)

it i ¢ — w,?

B R ICRLY)
whence if a;, B;, v, be the direction-cosines of the normal to the plane of
polarisation of the wave w,, we have

a,dl + B dm + ydn = 0,

or the plane of polarisation of the wave w, cuts the sphere in a tangent to the
spherical ellipse w, = const.

Similarly the plane of polarisation of the wave w, cuts the sphere along
a tangent to the ellipse w, = const.

But the tangent to a sphero-conic makes equal angles with the radii-
vectores from the foci to the point of contact: hence, the planes of polari-
sation of the two waves propagated in any given direction bisect the angles
between the planes drawn through this direction and the optic axes.

w,dw,,

* Clebsch, Prinzipien der math. Optik, Augsburg (1887), p. 38.
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Again let N be a point on the spherical ellipse w,=const., and let the
angles NA and NB be x and x’ respectively; then (x +x')/2 is the major
semi-axis of the ellipse, that is the angle between the axis of z and the

e

Fig. 27.

generating line of the cone (32) lying in the plane of zz. But writing
m =0, we have for this line

& n?
% — wy? +c’—m,’ i O’
% 2 - 4
whence N ne 7L+_X_
0 — ¢ 2
2 2 2 __ pn2
oF W = Sl 28 S (0 £ )3 Cealoe agosshos (34).

2 2
Next regarding N as a point on the ellipse ®,=const. we obtain by
interchanging a and ¢ and writing 7 — ' for %/,

~2—a2+62 a2_62

ot = e —pueph (S v o o o p (35),
and from (34) and (35)

w?— 0 =(a*—c*)sin ¥ sin y veverveniniiininenn, (36),

or the difference of the squares of the speeds of two waves propagated in a
given direction is proportional to the product of the sines of the angles between
that direction and the optic axes.

We have further
at—w? =(a*-c?) sin? X~ ; X, C—op=-— (a* — ¢*) cos® X-——; X,

2 2

;c {cos (x —x) — cos 202} ;

b — 0 = — (a* - ¢%) (s}in2Q ——sin’x;x) =
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but if 7 be the angle ANB

cos 202 = cos y cos ' + sin y sin ' cos 7,

ek —_
b — 0 =—(a’ — ¢*) sin y sin y’ sin? 5

Hence Fi=13(a*—c*)sin(y—x')sin % ..................... (37),
and in the same way we find

F,=+}(a*— ) sin (x + ') cos % ..................... (38).

125. Considering now' the transition from biaxal to uniaxal crystals, let
us first suppose that the mean axis of the ellipsoid of polarisation gradually
diminishes until it becomes equal to the least axis 2/a. The medium then
becomes ultimately an uniaxal crystal with its optic axis in the direction of
the axis of 2. Since in the limit x and x’ become equal, we see that the
quicker wave then has a constant speed and is polarised in the principal
plane, while the slower wave has a speed dependent upon the direction of
propagation and is polarised in a plane perpendicular to the principal plane.
Hence when the acute angle between the optic axes is bisected by the
greatest axis of the ellipsoid of polarisation, the biaxal crystal has a certain
resemblance to a positive uniaxal crystal and the more acute the angle
between the optic axes, the greater is the similarity.

Again by increasing the mean axis of the ellipsoid of polarisation until
it becomes equal to the greatest axis 2/c, we see that, when the acute angle
between the optic axes of a biaxal crystal is bisected by the least axis of the
ellipsoid of polarisation, the crystal to a certain extent resembles a negative
uniaxal erystal with its axis in the direction of the axis of z.

The bisector of the acute angle between the optic axes is called “ the first
mean line,” the bisector of the obtuse angle is termed “the second mean
line.” Thus a biaxal crystal is said to be positive or negative, according as
the first or the second mean line coincides with the greatest axis of the
ellipsoid of polarisation.

Calling 20 the angle between the optic axes that is bisected by the axis

of 2z, we have
cos 20 = (20* — a* — ¢*)/(a* — ¢¥),

and from what precedes, the crystal is positive or negative according as

2Q = 7/2, that is according as 2% Z a*+ ¢

126. The surface of wave-quickness is the locus of points obtained by
taking on lines through the centre of the ellipsoid of polarisation lengths
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representing the reciprocals of the semi-axes of the central sections of the
ellipsoid perpendicular to the lines. Its equation in polar coordinates is
I m? n?

) e R

Tl St (39),

and in Cartesian coordinates
a? 5 y* ¥ 2 =
(L2—(.’L'2+y2+22) b2—(w2+y2+z2) c*—(w2+y’+z2)—
The sections of this surface by the planes of symmetry are a circle and an
oval, of which the equations are given in the following scheme :

0.....(39).

Plane Circle Oval
yz P+ 2t =a? (yz T zz)e =cht 4+ b2,
2% 2+ at=0b (2® + 22 = a?2? + ¢,
xy x® + y2 =c? (mﬁ =18 y2)2 = b2x? 4 azyz.

Since the surface of wave-quickness is the pedal of the wave-surface, the
circle in each plane of symmetry is common to these surfaces.

In the plane of zz the circle and oval intersect, and the radii-vectores to
the points of intersection give the optic axes. We are thus afforded another
method of determining these directions.

The equation of a plane wave propagated with speed w in the direction
given by the cosines I, m, n is

le+my+nz=w0,

I, m, n, ® being connected by (39). Taking as coordinates of the pla;.ne the
negative reciprocals of the intercepts made by it on the axes, or writing

=—l/o, =—mjow, N=-njo
the equation of the plane becomes
Lz+My+ Nz+1=0,
where L, M, N are connected by the relations
L M2 N
i c”—a)’=0 ;
o*= (L4 M+ N>
Eliminating o between these equations, we obtain
(Lbet + M2cta? + N2a?b?) (L2 + M* + N?)
—{L2 (B4 + M2 (¢ +a®) + N2 (a2 + b?)} + 1 =0...(40),

which is the tangential equation of the envelope of the wave, that is of the
wave-surface*.

* Pliicker, Crelle’s J. x1x, 13 (1838).
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127. The surface of wave-slowness is the reciprocal of the wave-surface
with respect to a concentric sphere of unit radius: its Cartesian equation is
thus obtained from the tangential equation of the wave-surface by changing
tangential into Cartesian coordinates. Hence we obtain

(b’c’w“ 4L caazyz AL a2b222) (xz + :’/2 o 22)
— (O +c)at+ (4 a?) g2+ (a+ %) 22} + 1 =0......(41).

It is also the inverse of the surface of wave-quickness, and hence its polar
equation is
I m? n?
a*w’—l+bzw’—l +c’w’-—1_

R S (42).

Since it is the locus of points obtained by taking, on the normals to the
diametral sections of the ellipsoid of polarisation drawn through its centre,
lengths equal to the axes of the sections, the outer sheet of the surface of
wave-slowness corresponds to the inner sheet of the surface of wave-quickness
and vice versd.

The section of the surface by each plane of symmetry consists of a circle
and an ellipse, of which the equations are given in the following table :

Plane Circle Ellipse
yz Y+ 2=qg7" Ay 4+ b2t =1,
2z 2+ ar=0"2 a2 +cr=1,
xy x4 yr=c"? b? + aff=1.

In the plane of zz the circle and the ellipse intersect, the points of intersection
being on the optic axes.

In order to determine the refracted waves corresponding to a plane wave
incident in an isotropic medium on a plane surface of a biaxal crystal*, let us
take new axes £, 7, ¢ such that the surface is the plane of £n and the plane
of incidence that of £{, the positive direction of the new axes being so chosen
that the positive quadrant £¢ contains the direction of propagation of the
light, and that on regarding the plane of £ from the positive direction of the
axis of 7, the positive axis of £ is made to coincide with that of { by a rota-
tion in the direction of the hands of a watch. Let the new axes be given
with reference to those of @, ¥, 2z by the scheme

x Y z
5 Cn Ci2 Cis
7 Ca Caa Cas
& Ca1 Cs2 Css

* Liebisch, N. Jahrb. fir Min. (1885) 11. 181; Phys. Kryst. p. 353.
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'Then to obtain the equation of the surface of wave-slowness referred to the
new system of coordinates, we must write

(U 0116+ Ca? + csl; :y =012E+ Com + 632;
z=cpftemtenl, P+Yy+2=E+92+

and the directions of the refracted waves, and of those produced by them on
reflection at a second surface parallel to the first, are found by writing in the
equation thus obtained

E=sin/Q, 7=0, {=sin¢/(Qtanr).

Making these substitutions we obtain an equation

a, tan® r 4+ 4a, tan®r + 6a,tan®r + 4a; tanr 4+ a, =0 ........ (43),
where
it
Ay = 5184 L (beey® + e, + a*b’c,s?)
Sinzi b2 2] 2 2 2 2 2 bz 2
=, 92 {( +C>Cn +(C +a)012 +(a o )013}+1,
el
4q, =2 513 41 (b°c%cry €5 + C*AP01C30 + A2D%C15Ca5)
Sin2 ”: 2 2 2 2 2 2
23] o {0 + ) ey eqy + (€2 + a?) €128 + (@ + b?) €150},
sints
ba,= —; {0%2 (Cu® + €u®) + 62 (C1g? + Ca?) + @%H% (015" + C5s?)}
Sinz"’. 2 2 2 2 2 2 2 b2 2
oY {(b +¢%) e+ (¢ +a)032 +((1 ap )Cas }a
=)
4a,=2 §13;3' (b°cPer e + €0y Co + 077015 Css),
=t
ay= 513 47' (b%c%cs® + c*atesy? + aPbicsy?).

In general this equation can only be solved by a method of approximation
but in certain cases it assumes simple forms that give complete solutions of
the problem. Thus, suppose that the surface of the crystal is parallel to
one of the axes of symmetry, say the axis of z,and let the angle (#£) be u.and
let the angle between the planes £¢ and zy be 8. Then

¢y =sin pcos §, €12 = COS f1 €OS &, Ci3=SIn J,
Cq1 = COS M, Cse=— SID Y, Cu=0,
and
sint s

Qy = O

(b%* sin? u cos? & + c*a? cos? p cos® & + a?? sin? §)

b '
8132—1- {(b*+ ¢?) sin? p cos? & + (¢* + a?) cos? u cos? 8 + (a?+ b%) sin8} + 1,



Special Cases 205

127]
da, =2 (SISJ 2 — ) qais (b* — @) sin p cos u cos 8,
o= Bt "o 0% (1 — sin® wsin? 8) + c%a? (1 — cos* u sin® &) + a%? sin? 8}
e 5 (¢ + a?sin® p + b? cos® w),
4q, =2513 ! ¢® (b — a®) sin p cos u cos 8,

o
a, = Sl;;} P (a?sin? w + b? cos? w).
If the plane of incidence be parallel to the plane of zy, we have § = 0 and

(43) becores
F () (r)=0,
L] ¢ — 1) tan? r + T;;c”,

=g

where
¢ (r)y=A,tan*r + 24, tan r + 4,,

sm T
(b sin® u + a?cos? w) — 1,

with A,=

s
1;; : (b* — @*) sin u cos p,

A=

sy 5~ (0*cos? p + a? sin? p).

4A2=

If on the other hand the plane of incidence pass through the axis of z

8= /2 and (43) reduces to
a, tan* r 4 6a, tan?r + a, = 0,

Bells A
where Q= (ﬂ% a?— 1)(513—: b — 1> 3

sind g
(b= 0

cos? u + ¢’a? sin? u + a?b?)

s

-nii' (¢*+ a?sin® p + b? cos? /L),
L% c2 (a?sin?® pw + b2 cos® u).

T =—g;
Further if 4 = /2 we have the case in which the surface of the crystal is

parallel to the plane of symmetry z and tan r is determined from
a, tant » + 6a, tan*r + a, =0,
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s, W)
where (== (%—zl b? — 1){5—18—21 (¢? cos? 8 + a* sin? 8) — 1} ;
ok SRl
6a,= 25" (0%0? + bie? cos* § + @b sin? 8) = 257 (ot + 09),
_sinfe

;= [on ciaz;

and this breaks into two factors when 8 =0 or w/2.- The equation also takes
a simpler form when the plane of incidence passes through one of the optic
axes, as then

8=+ (7m/2— Q) and c*cos?d+ a’sin?d=c*sin’Q + a*cos? Q = b2,

128. We have seen in § 121 that the wave-surface may be found at once
from the reciprocal ellipsoid by a process similar to that by which the
surface of wave-quickness is obtained from the ellipsoid of polarisation and it
was thus in fact that Fresnel himself arrived at its equation*. It will how-
ever be convenient to proceed by a more direct method and to determine the
wave-surface by its property of being the envelope of a system of plane waveés,
that have passed simultaneously through a given point and have travelled
thence in different directions for unit time. This method was also given by
Fresnelt, but he did not effect the elimination of the variable parameters :
this was first done by Ampeére} by a somewhat laborious process and after-
wards in a far simpler fashion by Archibald Smith§.

The equation of a plane wave is

B+ My +n2=0 .cviopuiiininiurnincninence, (44),
wherein the parameters are connected by the relations
B Sl ] R S A T R (45),
12 m?2 n2
az—w2+b2—-w2+c'2—m’=0 ..................... (46).

In virtue of these relations only two of the parameters are entirely inde-
pendent in their variations; but by multiplying equations (45) and (46) by
the indeterminate quantities G and H respectively and adding them to (45),
we obtain the equation

Iz m? n?
lw+my+nz+G(l2+mz+nz)+H(a‘l_ - +02_w2>=w+G,

w? b2 — ?

* Buvres completes, 1. No. xLvir § 37, p. 561.

1 Ibid. §§ 32—36, pp. 552—561.

1 Ann. de Ch. et de Phys. (2) xxx1x. 113 (1828).

§ Camb. Phil. Trans. v1. 85 (1835); Phil. Mag. x11. 335 (1836).
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in which all the parameters I, m, n, ® may be regarded as independent
variables. Hence differentiating with respect to each in turn, we have

o+ 200 420 =0, y426m+2H ;" =0,
z+2Gn+2HL2=O, 2H —.=1,
¢—w

where F is given by (26).

Multiplying the first three of these equations' by I, m, n respectively and
adding we find 2G = — w, whence '

LU0

g w——ga“-—aﬁ
£2 m

y =mw — ; bT—__a)2 ......................... (47),
o

2= nhw — —
0w ¢°—

which equations give the coordinates of the point of the wave-surface, at
which it is touched by the wave (44).

Squaring and adding equations (47), we obtain

F4 / l 2 m 2 n 2
x2+y2+22=w2+—&{<a2_w2> +(b2—w2> +(cz—mg>}

whence, writing 2+ 3* + 2* = ¢%, equations (47) become

% ol y wm z

o —q? a?—w?’ o?—b? B—w?’ o?—¢ c

wn
e (49),

and multiplying these equations by equatious (47) respectively and adding
we have finally

3 y? 2 o m? n?
a’”—a2+a”—b’+a”-—cﬂ=-w (az_w2+bz_wz+c2_w2
l SR2 m 2 n 2
¥ 3 {(af’ w’) +(b’—w2) +(c”—w’)}
N e e o e e ey Ly e R e (50),

the equation of the wave-surface.

129. Let A, u; v be the direction-cosines of the ray o, then

r=A\o, Y=po, 2Z=vyo,
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and introducing the direction-cosines of the polarisation-vector from (23),
equations (47) become

Ao = lo — Fajo
po=mo—FpBlw }
vo = nw — Fylo
Eliminating o, o, F between these equations we have
i?», 5, Rash=I10}
| H~, M, B
l v, n ’ 7 l
which expresses that the ray, the wave-normal and the corresponding polari-
sation-vector are in one plane.
Consider now the normal to the ellipsoid of polarisation at the point in
which the polarisation-vector meets it. This line is called “the reciprocal
line ” and if e, f, g be its direction-cosines

B 2Ris ey 158 1 S 2 (52)
aa BB ¢y Jale+bprt cly? JF2+ = :
Hence using the suffixes (1), (2) to distinguish between the two waves
propagated in a given direction :
€y +f1132 + g1y = 0, €0 +f2/31 + g = 0,

or the reciprocal line is in the same plane as the ray and the wave-normal.

Also from (51) and (52) we have
ex + fu + gv = (a’al + bBm + c*yn)/c* — (a%a® + U*B? + c*y®) F/(o%0?)
=0 )
from (19) and (25); thus the reciprocal line is perpendicular to the ray.

We may therefore extend the proposition respecting the ellipsoid .of
polarisation as follows*:

The propagational speed of a plane wave in a crystal is given by the
reciprocal of one of the semi-axes of the diametral section of the ellipsoid
made by a plane parallel to that of the wave: the polarisation-vector of the
wave is in the direction of that axis: the corresponding ray is parallel to the
line of intersection of the tangent plane at the extremity of the axis and the
plane containing the polarisation-vector and the wave-normal.

130. The angle between the ray and the wave-normal is given by
tan (VS) = Vo? — 0¥/ = Flw®.
Hence we have from (37), (38) in the case of the qmcker wave

tan (NVS)) = + sm (x —x0 sm .................. (53),

* Beer, Hohere Optik, 2nd ed. p. 319. Von Lang, Wien. Ber. xrim. (2) 627 (1861).
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and for the slower wave
tan(NS)—+C—Lz_—czsin( '+ ’)cosi 54
ol ==l 2(‘)22 x x 2 .................. ( ),
where x, ¥’ are the angles between the normal and the optic axes, and % is
the angle between the planes through the normal and the optic axes.

In order to interpret these results, let a sphere be described round the
origin as centre, and let the axes of symmetry of the crystal meet its surface
in the points X, ¥, Z and let the optic axes and the wave-normal intersect it
in the points 4, B and N. Then by § 124, the polarisation-vector of the
quicker wave lies in the central plane bisecting the exterior angle between
AN and BN and by § 129 the corresponding ray is in the same plane: the
polarisation-vector and the ray of the slower wave are in the plane of the
great circle bisecting the interior angle between these arcs.

Fig. 28.

Considering now the cases in which the normal is in one of the planes of
symmetry, we see that when it is in the plane of YZ, S, coincides with NV and S,
is between N and Z; when it is in the plane of XY, S, is between N and ¥
and S, coincides with & ; finally in the case of the plane of XZ, when the
normal is within the angle AOB, S, is between N and Z and S, and &V are
coincident, but when the normal is without this angle, S; and V coincide, and
S, is between XV and Z.

Collecting these results on the surface of the sphere, we see from con-
tinuity that S, must be within the angle ANB and S, must lie without the
angle ANB’, B’ being the point on the sphere diametrically opposite to B*.

* Neumann, Vorl. iiber theor. Optik, p. 193.
w. 14
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131. The above method of determining the ray that corresponds to a
given wave fails, when the wave-normal is in the direction of one of the optic
axes, for the angle A NB loses its meaning when NV coincides with 4 or B.

Suppose now that the point IV, starting from some position other than 4
or B, moves along the great circle N4, till it comes to 4 ; then in the limit
when it reaches 4, we have w,=w,=b, x =0, x'=2Q and 7 is the angle
BAN’, so that the formule (53) and (54) become

tanASl = W sin.i_’
b 2
tan A4S, = e b;g(b* . Ae! cos % A

S, being on the great circle bisecting the angle N'AX and outside this angle
and S, being on the great circle bisecting the angle N'AZ and within the

W
Fig. 29.

angle. Hence calling « the angle ZAS, we may include these formul in the
single expression ‘

tanAS:&_b;)T(lf;:c_z)

BB JIGH ot Sl TR (55).

But this result is independent of the particular path along which we have
supposed N to travel and the same reasoning applies to all great circles
through 4 and it hence follows that to the single wave-normal OA there
correspond an infinite number of rays forming the generating lines of a cone.

Now in § 128 we have found that the coordinates of the extremity of a
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ray are connected with the speed of the corresponding wave and with the
direction-cosines of its normal by the relations

z e 90 v me z nw
F—aF —a O—-0 -0 P—c w—c

V4
a c

)

A
Pl %
Fig. 30. 4

Writing the second of these relations in the form

?/ _2, la n? )
a“—l)”—-'l11,(aﬁ—(u”-*-c?-w2 .

we see at once that the expression becomes indeterminate when the wave-
normal coincides with the optic axis, since m and ?/(a®— w?) +n?/(c* — w?)
then vanish independently of one another. Consequently in this case the
coordinates of the extremity of the ray have only to satisfy the two conditions

&by B Y= o b
c—a? D—a? MW@)’
z neb b

- P N -c)aF-¢)’

and thus the extremities of the rays corresponding to the plane wave perpen-
dicular to the optic axis lie on the intersection of the spheres

m2+y2+zg+/\/(a,2—b2(a”—c”)w_a2=0 ............... (56),

and B4yt 22—

N (b = ¢?)(a* — c?) p
b

and the wave touches the wave-surface along a circle in the plane

1 a®—b? 1 b* —¢?
5/\/C'L2—_—c;m+’b— mz=l .................. (58).
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The equation of the cone of rays is found by combining (58) with (56) or
(57) so as to form an homogeneous equation of the second degree, and we
thus obtain

Va?

2y +2+ b:bz(\/az—-b’a:+«/b’—022)w

a? a? — bz bz —c? e
~5(Vazs=tV a=g?) =0
or a*(b*—c)at+b(a*~ )yt +c*(a - b?) 22
=(a*+ ) V(@ =) (B = D) 22 v (59).

The cone is symmetrical with respect to the plane of #z and its angular
opening & is found by writing « = 0 in (55), which gives

tan § = V(a? — 52)(B* = )/B® .coeererriirnnnnnnns (60).

132. The fact that a plane perpendicular to the optic axis at its
extremity touches the wave-surface in an infinite number of points consti-
tuting a circle, so that corresponding to a single wave-direction there are an
infinite number of rays lying on a cone, occasions what is known as internal
conical refraction.

In order to investigate the characteristics of this phenomenon, let us con-
sider the simple case, in which a cylindrical pencil of rays, of small radius r,
is incident normally on a plate of a biaxal crystal cut perpendicularly to one
of the optic axes of the crystal.

Fig. 31.

Round the point O in which the axis of the pencil meets the plate,
describe the wave-surface within the plate and draw a tangent plane to it
parallel to the faces of the plate: this will touch the wave-surface along a
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circle and the lines joining O with the points of this circle will be the axes of
refracted cylinders of light, that are determined by the illuminated portion
of the first surface of the plate. The incident pencil is thus divided into an
infinite number of diverging streams, the axes of which meet the second
surface of the plate in a circle 4SC, passing through the point in which the
normal OA meets the surface and having its centre @ in the plane of the
optic axes. On emergence these streams resume their primitive direction,
and apart from loss of light due to refraction, the appearance on a screen
parallel to the plate will be the same as on the second surface of the plate
itself.

If AC be the diameter of the circle ASC, the angle AOC is given by
tan A0C = V(a* — b*)(b* — ¢*)/b?,
and if D be the thickness of the plate, the radius of the circle is
R = (D/2) tan AOC = DV (a? — V?)(b* — ¢*)/(2b%).

If R >r we have on the second face of the plate a ring of light bounded by
concentric circles of radii R+ and R —r; if R=r the central dark patch
just vanishes; if R <7, there is a luminous circle, the inner portion of which
of radius r — R is due to the overlapping of the refracted streams.

Suppose that the incident light is plane polarised, and let us determine
the intensity and the polarisation at a point on the second face of the plate.

Let tt be the direction of the polarisation-vector of the incident stream
and let a be the amplitude of its vibrations. Draw As perpendicular to #,
meeting the circle 48C in the point s and dz being an element of an arc of
unit radius, divide the circumferenice of the circle into elementary arcs s,

4

s's”, ..., corresponding to d.

Now the incident stream may be regarded as the superposition of /dx
identical elementary streams, and these may be replaced by 2w/dz streams
with their polarisation-vectors in the directions As, 4s’ ... and the per-
pendicular directions Ao, Ag’.... On entry into the plate each of these
components will assume a direction corresponding to that of its polarisation-
vector : thus the stream with its polarisation-vector parallel to Ab will meet
the second face in a circle with its centre at b, and the amplitude of the
vibrations in this stream is

(adz/m) cos blt = (adxz/m) sin (8/2) «.cuvernrennnnnen (61),
where 8 is the angle sQb.

Consider a point p on the illuminated portion of the face: the light at p
is due to a ray of each of the streams, the axes of which intersect the arc s;s,,
where s, and s, are the points in which 4 SC is cut by a circle described round
p as centre with radius 7.
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Let @p cut ASC in the point n and let pQs,=pQs, = ¢, s@n=25. Divide
the angle ¢ into elements of magnitude dz, then the azimuths of the cor-
responding points of the arc s,s, measured from s@ are

8+¢, d+¢—dz, ..., 6—Pp+dz, §—¢,

and hence from (61) the amplitudes of the vibrations in the streams that
contribute to the illumination of p are
clv@?sin 8—+¢, ad—wsin Rt —-da:’ 544 ajl—wsin s ol @Si P
™ 2 T 2 T 2 A e
and the azimuths of the corresponding polarisation-vectors measured from
As are

O+¢ S+¢—dx S—p+de S—¢

2 3 ) 2 9 *eey 2 - ) 2 .

Hence regarding the illumination at p as the effect of two streams with
their polarisation-vectors parallel to 4s and A respectively, we have for the
amplitude of the vibrations of the first

a (¢ . S+=x o4z
=—| sin—— CO8 ——

Y
7 3 5 dz= . sin¢sin D0 o 1 (62),
and for the amplitude of the vibrations of the second

af® . 6+zx . 04z
X=— smi~31n—+—
T

him 2 do=2 (¢~ sinp cosd) ...(63).

Whence the intensity at the point p is
' a? G :
I=X*+Y2= = (¢*—2¢ sin ¢ cos & +sin’ @) ............ (64),

and the polarisation-vector at the point is inclined at an angle 4 to that of
the initial stream of light, where

., singsind
tan ‘\P‘ = m ........................ (65)-
Calling p the distance Qp, the angle ¢ is given by
cosp=(I2—r2+ pz)/(QRp) ..................... (66).

In interpreting these results, it is necessary to consider separately the
three cases mentioned above.

(1) If R>r, so that there is a ring of light with a dark centre, the value
of ¢, which remains constant over each circle concentric with the ring,
is equal to zero at the edges of the ring, to which correspond the radii R + 7,
and attains its maximum value on the circle of radius ¥ R? — 72,

Along one and the same radius & is constant, and the intensity changes
in the same manner as ¢: the polarisation-vector is at first inclined at an
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angle 7/2 — 8/2 to that of the incident light ; this angle increases to a maxi-
mum as we pass outwards and then decreases to its former value at the outer
edge of the ring. '

On one and the same circle ¢ is constant and the intensity increases from
the minimum value a?(¢$ — sin ¢)?/z* at points on the radius Qs to the maxi-
mum value a*(¢ + sin ¢)*/w* at the diametrically opposite points: the
polarisation-vector has the same direction as that of the incident stream
at points on the diameter sQo, and as we move round a given circle from one
of these points, its deviation from this direction increases to a maximum and
then decreases again, the deviations being equal and opposite at two points

“on the circle equidistant from the point in which Qs cuts it.

(2) When R=r, the central dark patch disappears and the centre is the
intersection of the edges of all the elementary circles of light. At this point
¢ = m, and on passing along a radius ¢ suddenly changes to /2 and then
decreases gradually to the value zero at the limit of the spot. Hence at the
centre the intensity and the polarisation are the same as those of the incident
light: they then change suddenly and thence alter gradually until at the
outer edge the intensity becomes zero and the plane of polarisation is
inclined at an angle 7/2 — §/2 to its primitive position.

(3) If R<r, the elementary circles overlap on a circle of radius r— R.
For all points within this circle ¢ =, and on passing outwards ¢ decreases
gradually to the value zero at the limit of the spot. Thus the changes in
the intensity and the polarisation are the same as in the former case, except
that on crossing the edge of the central circle there is no sudden variation.

Taking now the case in which the primitive stream is unpolarised, we
may regard the incident light as resulting from the superposition of two
independent streams of equal intensity with their polarisation-vectors parallel
and perpendicular respectively to AC. If I be the intensity of the un-
polarised stream, then 7/2 is the intensity of each of the polarised streams,
and that with its polarisation-vector parallel to AC will give at the point p
a stream of intensity I sin? ¢ sin? 8/(272), where 8 is the angle AQp, with its
polarisation-vector perpendicular to 4C, together with a stream of intensity
I (¢ — sin ¢ cos 8)*/(27°) with its polarisation-vector parallel to AC. On the
other hand the second component of the incident light gives at the same
point streams of intensities J (¢ + sin ¢ cos 8)*/(27%) and I sin® ¢ sin® 8/(27%)
with their polarisation-vectors perpendicular and parallel to A C respectively.

Hence the combined effect at p is a stream of intensity

%ri(¢2+ sin? ¢+ 2¢ sin ¢ cos d) =2i7r2 {((f) — sin $)* + 4 sin ¢ cos? %} i

with its polarisation-vector perpendicular to AC, and a stream of intensity

QLﬁ(¢=+sin2¢— 2¢ sin ¢ cos 8):»2—{r2 {(4, — sin @) + 4¢b sin ¢p sin? _g} '



216 The Analytical Theory of Light [cH. XI

with its polarisation-vector parallel to AC. These are equivalent to a stream
of common light of intensity I (¢ — sin ¢)?*/n* together with a stream of
polarised light of intensity 2/¢ sin ¢/w* with its polarisation-vector inclined
at an angle of 7/2 — §/2 to the direction AC. The total intensity is
I (¢? + sin? )/,
and the measure of the polarisation is
2¢ sin ¢ _2( ¢ _"_sin<¢>)"1
¢*+sin’¢ ~\singp ¢ :

Applying these results to the three cases already considered, we have

(1) When R > r, the same intensity at all points on a circle concentric
with the ring: on the edges the intensity is zero and it attains its maximum
on a circle lying within the circle ASC. The light is partially plane polarised ;
the polarisation is the same for all points on a given radius, becoming more
complete as the edges of the ring are approached, and the polarisation-vector

is parallel to the line joining A4 to the point in which the radius cuts the
circle 4SC.

(2) When R=r, the inner limit of the ring contracts to a point, at
which the light is unpolarised and the intensity that of the incident light.
Passing outwards from the centre along a radius, there is a sudden change in
intensity and the light becomes partially polarised and thence the intensity
decreases and the measure of the polarisation increases as the edge of the
spot is approached.

(83) When R < 7, there is a circle of common light of radius » — R, over
which the intensity is that of the incident light, and on moving thence to the
edge of the spot the intensity gradually decreases and the measure of the

polarisation increases*.
133. Returning to equations (49), we have

Ao lo po me vo new
@ - - P’ - -’

and from (23) and (52)

! a ow m cw

n
doa FaF® oo b s_aap? O
e, f, g being the direction-cosines of the reciprocal line, and we thus obtain
O AR A € l_l) e
((—1—2—;)9-—?[, (T)—z-'o—_.z>f—H-, (62 ¥ g—H ......... (68),
H being written for — w?c?/F.

* Beer, Pogg. Ann. Lxxxv. 67 (1852); Hohere Optik, 2nd ed. p. 346.
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These equations connecting the ray-slowness and the directions of the ray
and of the reciprocal line are of precisely the same form as equations (23)
connecting the wave-velocity with the directions of the wave-normal and of
the polarisation-vector, and we pass from the one set of equations to the other
by writing

RO, o NSl Y e, £,
for danbhicis Jlsnranest Bl Sosl o, b B oy

and (e, f, g) stand in exactly the same relation to (A, g, ») as do (a, 3, y) to
(I, m, n) § 129 ; whence it follows that all the propositions deduced from (23)
may be extended by this change of letters. In this extension

the direction of the wave-normal becomes the direction of the ray,
the wave-velocity becomes the ray-slowness,

the polarisation-vector becomes the reciprocal line,

the polarisation ellipsoid becomes the reciprocal ellipsoid,

of which the equation is
x? y? "
—+w+ =1,

with the following properties :

The propagational speed along a ray in a given direction is equal to one
of the semi-axes of the diametral section of the ellipsoid perpendicular to the
ray; the plane through this axis and the ray is the corresponding plane of
the polarisation-vector ; the line of intersection of this plane and the tangent
plane to the ellipsoid at the end of the said axis is parallel to the correspond-

ing wave-normal *,

134 Corresponding to the optic axes or directions of single wave-velocity,
we have two directions of single ray-velocity or ray-axes, the direction-cosines

of which are
a? - 62 a b2 vy 02
M_—b'\/ czr ) Vo=iz«/;‘;c; ............ (69)_

The ray-axes are thus in the plane of optical symmetry zz and in the
directions of the radii-vectores to the points of intersection of the ellipse and
circle, that are the section of the wave-surface made by this plane.

Also we obtain at once that the planes of polarisation of the waves cor-
responding to the two rays in a given direction bisect the angles between the
planes through this direction and the ray-axes, and that, if 4, 4 be the
angles that the direction makes with the ray-axes, the two ray-velocities are
given by

at=4(a*+ ")+ (a7 —c7) cos (y — )
=3+ @ - cos (v + «p’)}

* Beer, Hohere Optik, 2nd ed. p. 319. Von Lang, loc. cit.
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whence - o= ?=(a—c)sinYPsin Y., (71).
Further

H'=+%(a?- '2) sin (Y — ') sm‘;

Hi = 4§ (a2 = o) sin (9 + 9) cos ]

where j is the angle between the planes through the ray and the ray-axes in
which the axis of z lies.

135. The angle between the ray and the wave-normal is given by

tan (SN)= F/co”:—- a*/H,

whence tan (SN,) = §° 2— “ sin (=) sm‘;

a?— b v
tan (SNV,) =+ 20-2—2 " sin W+ '\[r ) cos é

where, if aOB be the angle between the ray-axes Oa, OB in which the axis of
" z lies, NV, is the plane bisecting the angle aSB and without this angle, while
N, is the plane bisecting the angle aSB’ (OB’ being the prolongatlon of B0)
and within the angle.

Thus the wave-normals corresponding to a given direction of a ray are
completely determined.

136. This method, as in the case of the converse proposition of § 130,
becomes indeterminate, when the ray coincides in direction with either of the
ray-axes, so that the angle aSB, on which it depends, is without meaning.

b4

Fig. 32.
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Proceeding as in the analogous case of § 131, it is seen at once that in
this case to the single ray in the direction of the ray-axis there correspond an
infinite number of wave-normals forming a cone, the equation of which may
be written

tan (alV) = e s 23.. cos «,

where 23 is the angle aOB and. « is the angle that the plane aON makes
with the plane of zz.

The section of this cone by a plane perpendicular to the ray-axis is a
circle, for if alNey be its section by the said plane,  lying in the plane of zz,
we have

Clite U
ay/b = tan (ay) = —27—_2—— sin 2%,

and alN/b=tan (alV)=

oy ;
—2b’ s1n2...cosrc,

aN/ay = cos «,
whenee the angle aNvy is a right-angle, and the locus of IV is a circle.

Now the coordinates &, #, ¢ of the foot of the perpendicular from the
centre on the tangent plane to the wave-surface at the point in which it is
met by the ray o with the direction-cosines A, p, v satisfy the conditions

PR 7 o ¢ vo

? — a? 0'2--0,” wa__ba o.2_b2’ w? — ¢? 0.2___02’

and writing the second of these relations in the form
n __.i(aw c”vz)
0?=b  ubt\e*—a? o'—c/’
we see that it becomes indeterminate when the given ray coincides with the
ray-axis, as u and a*’*/(o? —a?) + ¢*v*/(a® — ¢*) then vanish independently.
Hence in this case & 7, { have only to satisfy the two equations
b
E - 7\'Ob and g Vo

o*—at b—a? ot —c -

and thus the feet of the perpendiculars from the centre on the tangent planes
to the wave-surface at the extremity of the ray-axis lie on the spheres

£orms e W=D g o)
s b SV s (75),
E2+n2+§2—v(b —c()l(a C)é'_c?—o){.

and thus their locus is a circle in the plane

1 \/“2*" =c B . (76),

a*— c’ —
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and this is the plane perpendicular to the plane of the ray-axes through the
tangent at the end of the ray-axis to the elliptic section of the wave-surface
made by the plane of 2.

Combining equation (76) with one of the equations (75) so as to form an
homogeneous equation of the second degree, we obtain as the equation of the
cone of wave-normals

FEnd=@-)E+(@-A)n+(a’—b) &
e “«/(‘s ) (B = &) £t =0.....(T7).

We may now obtain the equation of the tangent cone at the-singular :
point of the wave-surface, for its generating lines pass through the extremity
of the ray-axis, the coordinates of which are

wy=cV(@=B))(@=¢*), =0, z,=a(b*—c?)/(a®—c?),
and are perpendicular to the tangent planes of the cone of wave-normals.

Thus the equations of any one of them are

=% _ Y _z—
oFjoE ~ oF Jon aF/ag (Say )
whence
20 - ) E- TN @B B =) b =p (a2
2(a*—c¥n =py )
- V@ T D E+ 2@ - ) E=p (s - 2)
which give i

3
acVa? —b* {2ac NVa? — b* (z — ,) + (a* + ) VB = ¢ (2 — 2,)}

n
@=F) =) (e~ a2

= ¢
acVb? — ¢ {(a? + ) Var — b (z — 2,) + 2ac VI —¢* (2 — 2,)} |

Substituting these values of £, #, { in (77) we obtain on reduction
aacc (az = ba) (w - - xﬂ)ﬂ E|5 i (b2 s 02) (02 = az) (az ¥ bﬁ) y'z HIL ac? (be —— 02) (z - 20)2
+ ac (@ + )V (@ — b)) (02— &) (x — @) (2 — 2) =0 ...... (78),

which is the equation of the tangent cone.

137. The existence of a conoidal cusp on the wave-surface at each of the
four points, in which it is cut by the ray-axes, occasions the phenomena
known as external conical refraction ; for since at these points there are an
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infinite number of tangent planes, forming a tangent cone of the second
degree, it follows at once from Huygens’ construction that a single ray within
a biaxal crystal in the direction of one of the ray-axes will, on emergence into
an isotropic medium, be divided into an infinite number of rays lying on the
surface of a cone.

Let us take the case in which the surface of the crystal is perpendicular
to the ray-axis and determine the equation of the cone of external rays. Let
Oa represent the normal to the plate, ON any wave-normal within the crystal
corresponding to the ray-axis, ON' the corresponding emergent wave-normal,
and suppose a, N, N’ to lie in a plane perpendicular to Oa. Then the locus
of IV is, as we have seen, a circle with its diameter aP in the plane of the
ray-axes.

(o]
3 Fig. 33.

Now by Huygens’ principle ON, ON’ and Oa are in one plane and
sin aON :sinaON' it @t eviviinininennnnnes (79),

Q being the propagational speed of light in the isotropic medium and o the
wave-velocity in the crystal in the direction ON. Also if x be the angle that
the plane «ON makes with the plane of the ray-axes
VB — w?
@

2 2

= tan aON = e

=R F
;= sin 25 cos «,

2b

abc
W =—F— .
Vact + (a2 — b?) (b* — ¢*) cos’ k
Take the surface of the plate as the plane of zy, the plane of the ray-axes as

whence
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that of wz, the origin being at O : then the coordinates of N being z, y, z and
p being written for ¥2* + 42, we have

p=aPcos k=ztan aOP . cos x =z ¥ (a* — b?) (b* — ¢?) cos? «  ac. ..(80).
But p/z =tan aON, hence /, 3/, 2 being the coordinates of N”

p2
P2 + Zﬂ
and from (80)

02 (aa —4 b?) (bz = ca) cos? k = qa2b?c? (w’ﬂ + y’z)/(w'z At y'z + Z’“),

arbhcr ()2 x4 ylz
a*c? + (a? — b?) (b* — ¢*) cos? k" 2+ "1 + 2%’

a5 e I p
= sin’ a0N=§sm aON’ =

and since cos k =2'/Nz* + ¥, we obtain
arbic? (2 + y?) = Q2 (a* — %) (B — ¢®) 2% (22 + y* + 27%) ...... (81).

On account of the weak double refraction of all biaxal erystals, this equation
takes approximately the form*

abe(z24+ y) =0 V(@ = 0) (B — ) &2 eeeeeeannn... (82),

whence it follows that the locus of N’ is approximately a circle passing
through a with the diameter aP’ in the plane of the ray-axes of the crystal.

If now the stream of light within the crystal be limited by a circular
cylinder having its axis in the direction of a ray-axis, the axes of the
emergent streams will form the generating lines of the cone just obtained,
and the section of any one of these streams by a plane parallel to the face of
the crystal will be a circle equal to the section of the incident stream. The
emergent light will therefore give a bright ring on a screen parallel to the
face of the crystal and at a sufficient distance from it; but as the screen is
moved towards the crystal, the ring will contract retaining the same width,
until the central dark spot vanishes, and on a further approach of the screen
the bright spot contracts, until at the surface it becomes equal to the section
of the stream within the crystal.

The intensity and the polarisation at any, point of the bright ring or spot
may be calculated in the same manner as in the case of internal conical
refraction, since the polarisation-vector for any part of one of the emergent
streams is in the plane containing the axis of the stream and the normal O«
to the face of the crystal. That this is so, is clear at once from the fact that
for any one of the waves corresponding to the ray-axis, the polarisation-
vector is in the plane through the ray-axis perpendicular to the wave-front,
that is the plane of incidence of the wavet.

* This equation is obtained at once as follows : equation (79) gives approximately
aN :aN' :: w:Q::0:Q or p/p=b/Q,
whence substituting for p from (80), equation (82) is at once obtained.
t Beer, Hohere Optik, 2nd ed. p. 362.
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138. It is to Sir William Hamilton that we owe the discovery of the
conical refractions in biaxal crystals, as it was in the course of his researches
on Fresnel’s laws of double refraction by means of the surface of wave-
slowness, that he found singularities of the wave-surface, that led him to
anticipate the existence of these phenomena*. At his instigation Lloyd+
undertook an experimental investigation of these cases of refraction, and
entirely established the accuracy of the conclusions.

This confirmation of Hamilton’s deductions was naturally regarded as
a decisive proof of the general correctness of Fresnel’s form of the wave-
surface, but Stokes} has pointed out that the phenomena of conical refraction
are not of themselves competent to decide between different theories that
lead to Fresnel's surface as a near approximation.

Internal conical refraction depends upon the existence of a tangent plane
touching the wave-surface along a plane curve. Let us then consider the
result of supposing that the nearest approach to a plane curve of contact
is a twisted curve. Let a plane be drawn touching the part where the
surface bends over, at two points on opposite sides of the rim, and let this
plane be moved parallel to itself towards the centre, after having been slightly
tilted about one of the points of contact. The section of the wave-surface
made by this plane will be of the general form represented in the following
figures, from which we see that in four positions, as shown in a, b, d, e, the

2200

a b @
Fig. 34.

plane will touch the surface in one point, so that in the direction considered
there will be four possible wave-velocities. On the other hand whatever
theory of double refraction may be adopted, we are led to assign to a wave in
a given direction three possible directions of the polarisation-vector, to each
of which corresponds a different wawe-velocity: but if these three parallel
waves can be propagated, a fourth in the same direction is impossible, for
replacing its polarisation-vector by its components in the three given directions,
we should have three pairs of parallel waves and in each pair the waves would
travel with different speeds though their polarisation-vectors were coincident.
Thus the number of possible waves in a given direction is limited to three, or
excluding waves with longitudinal vectors, to at most two. It follows then
that a tangent plane with a plane curve of contact is a necessary property of
the wave-surface and not a distinctive feature of Fresnel’s form.

* Trans. Roy. Irish Acad. xvi1. 134 (1832).
+ Ibid. xvir. 145 (1833) ; Papers on Physical Science, p. 1. 1 B. 4. Report, 1862, p. 270.
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This is not the case with the conoidal cusp on Fresuel’s surface, on which
the phenomenon of external conical refraction depends: but since the wave-
surface must have approximately the same form as Fresnel’s surface, and
since it also has plane curves of contact with a tangent plane, the outer sheet
will pass into the inner by what is very nearly a conoidal cusp, and hence
taking into account the impossibility of reducing indefinitely the pencil of
rays with which observations are made, we see that we should obtain a
phenomenon that would be practically indistinguishable from true conical
refraction.



CHAPTER XII.

DETERMINATION OF THE PRINCIPAL WAVE-VELOCITIES.

139. FRroM an optical point of view, one of the most important practical
questions connected with crystals is the measurement of the principal wave-
velocities, as on these quantities the doubly refracting properties of the
medium depend, and we will now pass in review the methods by which these
determinations may be made, taking the three cases in which we have at our
disposal (1) a plate, (2) a prism and (3) a single reflecting surface of the
crystal.

Foci of lines seen through a crystalline plate.

140. In 1767 De Chaulnes* proposed the well-known method of deter-
mining the refractive index of a plate from measurements of its real and
apparent thickness by means of a microscope. When the plate is isotropic,
it may be easily shown that the refractive index is the ratio of these
quantities: with crystalline plates, however, the case.is not so simple, but
when the object viewed through the plate consists of systems of lines at
right-angles to one another, certain characteristic phenomena are observed,
that serve to differentiate between singly refracting media, uniaxal and biaxal
crystals, and that in general afford a method of deducing the principal indices
of the platet.

Consider a small pencil of rays emanating from a point O on the lower
surface of the plate, in such a direction that its axis on emergence is per-
pendicular to the plate. Round O as centre describe a half wave-surface and
considering only a single sheet of this surface, let its dimensions be such that
the upper face of the plate touches this sheet at the point £: then by
Huygens’ construction O will be the axis of the pencil considered.

Let an adjacent ray OP(Q) cut the wave-surface in P and the face of the
plate in @, then the form of the wave on emergence will by Huygens’

* Mém. de VAcad. Roy. des Sci. Paris, 1767, p. 431.
+ Stokes, Proc. R. S. xxv1. 386 (1877).
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principle depend upon the time that the light requires to traverse PQ
regarded as a function of the coordinates that determine the position of the
point ¢ on the surface of the plate.

TG

Fig. 35.

If QF be a small quantity of the first order, the retardation will be
a small quantity of the second order, and it is only to this order that we
require the retardation in determining the foci of the emergent pencil. We
may then substitute for the retardation any quantity that bears to it a ratio
that is ultimately one of equality. Now if QM be the normal to the sheet
of the wave-surface drawn from the point ¢, the wave-velocity in the
direction QM will differ from that in a direction perpendicular to the plate
by a small quantity of the first order, and the distance QM is a small quantity
of the second order: hence we may neglect the variation of the wave-
velocity and may regard the medium as if it were a singly refracting one, in
which a wave is travelling that has already by some means acquired the
form DEF.

Through the normal HE draw the two rectangular planes of principal
curvature of the surface and let C, C’ be the centres of curvature, p, p’ the
radii of curvature on the same scale as that in which FH represents the
wave-velocity o in the direction ZH. Then by what precedes, we may regard
the rays in that principal plane of curvature, the normals in which intersect.
in C, as diverging from (' in an isotropic medium with refractive index Q/w-
and these will on emergence diverge from a focus distant CE(w/Q) below the
surface of the plate. But if 7 be the thickness of the plate, CH=pr/w:
hence the distance of the focus is pr/ and the apparent refractive index will
be Q/p. In the same way /p’ will be the apparent index in the perpendicular-
plane. : :
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In each case the image of the point will be seen as a short line
perpendicular to the plane of principal curvature, and hence in order that
one or other of two rectangular systems of lines may be seen distinctly
through the plate at a certain focal adjustment of the microscope, the lines
must be perpendicular respectively to the two principal planes of curvature.

Hence taking into account the second sheet of the wave-surface, it follows
that with biaxal plates there will be in general four focal distances at which
lines properly orientated will be seen distinctly, and for each.of the polarised
streams the two necessary directions of the lines will be at right-angles to
each other.

In the case of uniaxal plates, the focal distances are reduced to three,
since one sheet of the wave-surface is spherical, and the image corresponding
to the ordinary stream is frée from astigmatism.

141. It may be shown* that, if o, and w, be the wave-velocities in
a direction normal to the plate, p;, p/ and p,, p, the principal radii of |
curvature of the corresponding sheets of the wave-surface at the points
where they are touched by tangent planes parallel to the faces of the plate,
then
(pr + pr) 0 (0,7 — 0%) = w*(a® + b + ¢* — 2w,?) — a?b%c?
(o — pr' ) 0 (w1 — w2) = [{a?h°¢? — @,* (a? + b + ¢* — 2w0,%)] (@, — @5’ r ()3
: + 2p07] — 4o, pip,
and :
(pe + ps) 0 (w* — 0,) = 05 (a? + b* 4+ ¢* — 20,?) — a?*c?
(Pz N le)z )’ (("22 T m12)4 5 [{a-zbﬂc2 — o (a2 + b4 — 20’22)}(0’22 =3 wlz)} b8 .(2),
SF 2}72 ‘1’22]2 3 4“’24]31]72
where
pr=(a*— ") (* — o) (* — @) (3) 1
Pr= (0 — @) (B — o) (¢ — w;); .................. :

142. In the case of an uniaxal plate, w,=a and b =a; hence

Cptp’=2a, p—p/=0, .. p=p/=a,
and i
(po+ p) 0= (w3 +a%), (p2— po) @ = (w0’ —a?).
. pa=Cw,,  p, =aic/w?
(a) If the plate be perpendicular to the optic axis, w,= a and
, pe=ps = ca.
In this case then there will be only two images, which are free from

astigmatism and indistinguishable directly by their polarisation, and the
apparent indices of the plate are w, and pc*/u,.

* See Appendix 1r. § 8. Hecht, N. Jahkrb. fiir Min. Beil.-Bd. v1. 265 (1889).
15—2
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(b) If the plate be parallel to the optic axis, w, = ¢, and

pa=¢, ps =d*c.

In this case there are three focal adjustments of the microscope, at which
one or other or both systems of lines are seen distinctly—the one for the
ordinary pencil polarised in the axial plane, at which both sets of lines are
in focus together, giving the index u,; the other two for the extraordinary
pencil polarised in the equatorial plane, at the one lines in that plane are
seen distinctly and this gives an apparent index u?/u,, at the other lines in
the axial plane are brought into focus and the index obtained is g..

(¢) In the general case, calling 6 the angle between the optic axis and
the normal to the plate, we have

@, = a? cos? 0 + ¢*sin? 6 ;
and the apparent index obtained by focussing a line in the principal plane is
‘ Qc*(a?cos? 0 + ¢?sin? )},
arid that given by observing a line perpendicular to the principal plane is
Qa7 (a? cos? 6 + ¢? sin? )L

As 0 increases from 0° to 90° this latter index changes from u?/pu, to
fo?/pte, and therefore for an intermediate value of @ the index obtained will
be w,. This value is given by

tan? 0 =, % .t (o’ + ).

When the plate has this orientation, there are only two focal adjustments
at which a distinct image is seen. This case is however easily distinguished
from that of a plate perpendicular to the optic axis, because at one of the
focal distances only lines parallel to the principal plane are brought into
focus and this image is polarised in a plane perpendicular to the principal

plane. g

143. Let us now suppose that-we have a biaxal plate, the faces of which
are parallel to one of the axes of symmetry of the crystal and therefore
perpendicular to one of the planes of symmetry. Wty

Then either p, = 0 or p, = 0, and taking p, =0, the equations (1) become

(pr+ pr) @ (@0 — ") = @* (a* + b+ — 20%) — azbzc’} @)
(pr — po) @ (w412 —02)=ab%— ot (@ + b+ — 202)) T ’
which give
0 (@ +0+¢— ol — ) — o (5),
(1’13 (w12 = w22)

0=, and p, =

and from (2) we obtain
(p + p) 0 0 (w2 — ) = 0 {0, (@® + b* + ¢ — 20%) — a2} ...... (6),
(p2 = p7) 0% 0 (@ = w,2) = 0)? {6 — w,* (a? + b + ¢ — 20,7} (@5 — )

+ 20 (02 P, — w5} P1) ............ ().
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But
@) Py — 0 Py = A% (@0, — @) + 00, (07 — 0?) (@® + b + ¢*) + 0,20, (0 — wf)
=(w?— o) (@®+ 1 + ¢ — 0 — o)) 0wy’ = ath’e?} ......... (8),
and therefore (7) becomes
(p2 — po) 0207 (05 — ©,?) = a?D°c? (0 — 207%) + 0wyt (a* + B + ¢* — 20,?)...(9).
Hence from (6) and (9)
_ 0w (@ + b2+ ¢ — 20,°) — a?bPc?
e w2w, (0 — ©?)

yonattic
p: =

e PP
(e) If the plate be parallel to the mean axis of the ellipsoid of

polarisation, then
o, =b, w?=a?cos?f+ c*sin?f,

where 6 is the angle between the normal to the plate and the greatest axis.

In this case therefore
&= ,_ (b —a?) cos* 0 + a? (b — ¢*) sin? §
i e b {(b* — a®) cos® & + (b* - ¢*)sin? 4} °
- a?(b* — a®) cos® 6 + ¢* (b* — ¢?) sin? @
4T (a®cos® @ + ¢*sin? 6)! {(b* — a®) cos® & + (b* — ¢*) sin? 0}’

g a*c?
P2 = (@cos 0 + o*sin? B)1

For light polarised in the principal plane, the apparent index is u; when
a line perpendicular to that plane is brought into focus and Q/p," in the case
of focal adjustment for a line in that plane: for light polarised perpen-
dicularly to the principal plane the apparent index is Q/p, or Q/p, according
as a line in or perpendicular to the principal plane is the object of
observation.

(b) The cases in which the plate is parallel to the greatest axis z and to
the least axis # of the ellipsoid of polarisation are obtained from the above
by changing a, b, ¢ and , y, z in cyclical order.

In each of the planes of symmetry #y and yz, the radii of curvature p,
and p,’ at a point on the elliptic section of the wave-surface can become
equal, the position of these umbilics being determined in the first plane by

tant (N.X) = b*(c* — b*)/{a* (¢* — a?)},
and in the second plane by

tant (N Y) = ¢* (a* — ¢*)/{b* (a* — b?)},
N denoting the perpendicular from the centre on the tangent plane at the
point.
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If the plate be perpendicular to the normal at one of the umbilics, one of
the polarised streams that it transmits will give images of both systems
of cross-lines distinct together, and in this respect it acts as a plate of an
uniaxal crystal cut in an arbitrary direction. The two cases may however be
readily distinguished, when the double refraction is sufficiently strong to give
a lateral separation of the two oppositely polarised images; for with an
uniaxal plate the plane of polarisation of the image free from astigmatism is
parallel to the plane of separation of the images, while with the biaxal plate
it is perpendicular to that direction: further on rotating the plate about its
norinal, the image free from astigmatism will remain fixed in the case of the
uniaxal plate, while with the biaxal crystal any point of this image will
describe a small circle round its mean position. g

144. When the plate is perpendicular to an axis of optical symmetry,
p1=p, =0 and we have from (8)
o0l (0 + b + ¢ — 0 — 0,?) = a?b’c

- Hence equations (5) and (10) give

,  abic?
PrEEIRMN . LA »
0P 0y
) o B =, a2bzc2
2 = Wy By Tt ETe s
! 02wd

Thus if the plate be perpendicular to the least axis of the ellipsoid of
polarisation, #, @, =b, w,=c, and we have the following results: when the
line brought into focus is parallel to the mean axis g, the apparent indices
are up and pq*/p., the planes of polarisation being 2z and wy respectively; the
indices obtained by focussing on a line parallel to the greatest axis z are u,
and pq*/pp, the planes of polarisation being in these cases zy and z2.

The other cases are obtained from this by changing , y, z and @, b, ¢ in
cyclical order.

: Prisms*.
145. We have already in Chapter I. considered the question of the
passage of a stream of light through a prism from a general point of view
without any assumption respecting the form of the wave-surface within the

prism, and it is now only necessary to apply the results to the special cases,
in which the wave-surface has one of the forms discussed in the last chapter.

Let us first take the case of a prism made of an uniaxal crystal, of which
the crystallographic orientation is arbitrary but supposed to be known.

* Stokes, Camb. and Dublin Math. J. 1. 183 (1846): Math. and Phys. Papers, 1. 148.
Senarmont, Nouv. Ann. de Math. xv1. 273 (1857). Von Lang, Wien. Ber. xxxur. 155, 577 (1858).
Liebisch, N. Jahrb. fiir Min, (1886) 1. 14; (1900) 1. 57: G&tt. Nachr. (1888) 197: Phys. Kryst.
pp. 376—403. Born, N. Jahrb. fiir Min. Beil.-Bd. v. 1 (1887). Viola, Zeitschrift fiir Kryst. und
Min. xxx11. 66, 545 (1900): Rend. Lincei (5) 1x. [1] 196 (1900).
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Referring the prism to rectangular axes, such that the axis of ¢ is the
edge of the prism and the plane of £ bisects its angle, we may regard as
given the angle u that the optic axis makes with the normal section and the
angle ¢ that its projection on this section makes with the axis of £ this
angle being measured towards the direction in which the light is travelling.

¢

Fig. 36.

Suppose lines and planes; parallel to those that we have to consider, to be
drawn through the centre of a sphere of unit radius, and let the coordinate
axes meet the surface of the sphere in the points £, #, & and let the optic
axis and the normal to the wave within the prism cut it in the points 4 and
N respectively.

The surface of wave-quickness for the prism consists of a sphere of radius
a and an ovaloid with the equation

@ =adcoSAOPE GHISINAGN TSI S B (11),
where @ is the angle between the wave-normal and the optic axis; and if
be the angle that the wave-normal makes with the plane of &7 and 4 be the
angle that its projection on this plane makes with the axis of £, the spherical
triangle AEN gives

cos @ =sin usiny’ +cos uwcosy’ cos(Yr—) ..oouneen.n. (12).

If now we measure the angle of the prism 4, the deviation D produced
by it, the angle of incidence 7 and the angle y that the incident wave makes
with the edge of the prism, we have, § 7,

sin (D,/2) = secy sin (D/2), cosi,=sec y cos1

and 4 and i’ are given by

tan«p:—coté—cot (z’o—A +D°>tanA+D°

2 2 e
tan? " = tan?y (Cy~2 cos? ¥ + S;~* sin® ),
where 0, = cos ‘o -; D, cos 124 , S,=sin 4 -|2- D, sin % i
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and finally to determine w we have
w* = (2sin? x//sin®y.
In the case of the ordinary wave, the one principal wave-velocity is given
at once by a=w; while from measurements with the extraordinary wave,

calculating 6 from equation (12), the second principal velocity is determined
from (11), or writing

€08 €=, C080 /@ hatiet 1 I SIS S (13),
by Ry S TR S Y 0L (1 SR S S A o o St (14).
146. Passing now to the .case in which the deviation is a minimum, we

have in the first place that the wave-velocity within the prism is expressed
in terms of the angles 4, D,, yr, ¢’ by the relation

o} BN e ., tan?y’
T Ey X 05K tan? x
=sin’x' +cos? ¥’ (M + N cos2¢) .uvervrnnnnns (15),
where IM=C248,2 2N=0C;*—S,2

and on the other hand » must satisfy the equation of the surface of wave-
quickness, which may be written

PR X, 415 < LS e s O SRR T (16),
whence eliminating o between (15) and (16), we obtain an equation
Ty, W R S Y IS L S N i osey an),

and the minimum deviation being characterised by dD,/dy= 0, we have in
this case 0F/oyr = 0.

Thus in the case of the ordinary wave with an uniaxal prism, we have
Q2 {sin®x’ + cos? ' (M + N cos 2)} = a?,
and in the case of minimum deviation

02cos?y’ . Nsin 2y =0,
whence = 7/2 and

tan x’=tanx~/M—N=tanxsin§/sin <. ;Ao,

and
A+ A,
2 4

a*/Q?=sin? ' + cos? ¥’ (M — N) = sin® ' + cos? x sin? g / sin?
A, being the minimum value of D,.

In the case of the extraordinary wave, (17) becomes
Q2 (sin? ' + cos*x’ (M + N cos 24)}

—c*=(a®—¢*) {sin p sin ¥’ + cos u cos x’ cos (Y — $)}* =0......(18),
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and in the case of minimum deviation we have
Q? cos® x. N sin 29 — (a® — ¢*) {sin p sin '+ cos p cos x’ cos (Y — ¢)}
cos p cosy sin (Y — ¢) =0...... (19).
It is clear however that with a prism of arbitrary orientation and in the

general case of oblique refraction, no result of practical utility will be
obtained, and we will therefore proceed to consider some special cases.

In the first place we will suppose that the incident waves are parallel to
the edge of the prism; then we have ' =0 and

Q*(M+ Ncos 2¢r) —c—(a*—c?) cos’ wcos® (Y — p) =0 ...... (20),
Q2 N sin 24 — (a® — ¢®) cos® wsin (Y — p) cos (Y — ) =0 ...... (21),
whence
Q2 M sin 24 — ¢*sin 249 — (a? — ¢?) cos? u cos (Y — @) sin (Y + ¢) = 0...(22),
and from (21) and (22)
{0 (M + N) — ¢*} sin 24 = (a® — ¢*) cos? p cos (Y — ¢) 2 cos ¢ sin 4,
{Q*(M - N) — ¢} sin 24 = (a? — ¢*) cos® u cos (Y — ¢) 2 sin ¢ cos Y.
These equations give
(202 — ¢®) (238,72 — ¢?) sin 24 = (a® — ¢*)? cos* p cos® (Y — ) sin 2¢
and
{2 (Cy2sin? ¢ + Sy~2 cos? p) — ¢*} sin 24 = (a® — ¢?) cos? p cos? (Y — @) sin 24,
whence
(220,72 — ¢®) (38,7 — ¢®) = (a* — ¢*) cos? p { Q2 (C;~? sin? ¢ + S;~2 cos? ) — ¢*}

which determines the principal wave-velocity ¢ from measurements of the
angle of the prism and the angle of minimum deviation of the extraordinary
wave, the other principal wave-velocity a having been determined. Equation
(23) is a quadratic in ¢ but since the double refraction of all known crystals
is weak, that root must be taken for which + is very nearly /2.

Returning to the general equations (18) and (19), let us next suppose
that at minimum deviation the wave within the prism is parallel to the axis
of £; then Y =m/2, a case that is characterised by the vanishing of the
lateral deviation, and we have

Q2 {sin® x’ + cos? x' (M — N)} — ¢* — (a* — ¢*) (sin w sin x’ + cos p cos ¥ sin ¢)*=0

(sin p sin x’ + cos p cos '’ sin ) cos wcos x' cosp = 0......... (25),

and .tanx'=tanx\/1‘ll_—TV=tanXSin§ sinA;AO_
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From (25) we have
sin u siny’ 4+ cos wcos ¥’ sing =0, or cosp =0, or cos¢p=0.

In the first of these cases, the optic axis is perpendicular to the wave-normal

and from (24)
A+ A,
2

in the second case u=m/2 or the optic axis is parallel to the edge of the
prism, and

sin?y’ + cos? x’ sin® —~/sm~ = c*?;

] d A,
0% {sm2 X + cos®y’ sin® 3 / sin? ——— - + }

2+ (a* —c*) sin®x';

and in the third case, ¢ = 7/2, or the plane through the edge of the prism
and the optic axis is perpendicular to the plane bisecting the angle of the
prism and we have

K {sm2 x + cos? y sin? —é sin? = -iz- } ¢+ (a*—c®) cos? (u — ).

147. Turning now to the case of a prism made from a biaxal crystal and
referring it to the same axes (&, », {) as before, let the direction-cosines of
these axes with respect to the axes of optical symmetry (z, y, z) be given by

z Yy z

£ o] B 91

n a; B. Y2

¢ a3 Bs Ys-
Then (z, , 2z) being the coordinates of a point referred to the crystallographic
axes, and (&, 7, §) the coordinates of the same point with respect to the axes
of the prism, we have

z=of +am +af

Y=BE+ B+ B v, (26),
z=mE+ym+vl
with the ordinary relations of orthogonal transformations.
Hence the equation of the surface of wave-quickness becomes

(axf + am + asf)z (Bxg'*' .82"7 1 ,83§)2 ('YIE + vam + 'Y3§)

a — o? b — w? c? — w?

=0..(27),

or since E=wcosYrcosy’, n=wsinycosy, {=wsiny/
the equation in polar coordinates becomes
S0, Y, X) = 0 — 0 (Ly; c08* Y cos* x” + L, sin?r cos? y" + Ly sin®
+ L sin 4 sin 2x" + Lg cos ¥ sin 2y” + Ly; sin 24 cos? x')
+ M, cos?r cos? x” + M, sin® fr cos? x” + My, sin? x
+ My sin  sin 2y + My, cos ¥ sin 2x” + M, sin 24 cos® ' = 0
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where Lyn = (B +¢) amay + (¢ + @) BB + (@2 + 1°) ymeyn
My = b2 0, + 2a*Bon B + a2y myn }
148. Arranged accdrding to a?, b? ¢?, the equation takes the form
F(o, ¥, ) = Ebc* + Fe’a? + Gah?

-0’ (F+@)a*— o*(G+ E) 0 — o (E+ F)c® + 0 =0...(30),

where E = (a, cos yr cos ' + a, sin ¥ cos x' + o, sin x')?
F = (B,cosyrcosy’ + B,siny cosx’ + B, sin O (81).

G = (71c08 cos ¥ + . 8in ¥ cos x’ + s sin y')?

Suppose now that we have obtained three sets of corresponding values of
®, ¥, ¥/, so that we have three equations

E b+ Foca? + Gra®h® — w2 (F+ Q) a?
— @0 (Ga+ B P — 0,2 (B + Fo) P+ w0, =0, (n=1, 2, 3)...... (32),
then solving for b%?, c%a?, a®?, we shall obtain three equations of the form
- bc*= Ad,a* + Bb* + Cct + D,

cfa? = A.0* + Bb*+ Cyc? + D,

a?b*= A,a* + B + Cyc* + Dy,
wherein 4,, B, ... D; depend only upon the coefficients £, F,... G, and
o of, o?; the first two equations give

o I (o PR Eag A"¢t + B¢t + C”
—A”'C4+Bl”cz+ a7 1 A/;/c4+B///cg+ g7’

the coefficients being functions of E,, F, ... G; and o2, o2, o, and substi-
tuting these values in the third equation, we obtain an equation that involves
only ¢? and coefficients deduced from measured quantities.

This equation is however of the fifth degree in ¢* and each root with the
corresponding values of a* and * gives a set of values that satisfy the three
equations (32). The problem is thus indeterminate, unless we know approxi-
mate values a2, b2 ¢ of a?, 02 ¢

One method of proceeding is as follows. If we obtain six sets of corre-
sponding values of w, ¥, %', we shall have six equations of the form (32),
from which we can deduce the values of b%?, c%?, a2b?, a2, b2, ¢ Calling these
A, B,C, A,, B, C, we have

blet=A4, c¢lal=DB, abt=0C, al=4, bi=B8, c'=0,
so that we have approximately
ay’ = “/BO/AVz b= me C' = AB/C: al=4,, bt=B, cf=0Ch.
Now if the observations were absolutelj exact, we should of course find
A2=BC/A, B#=CA/B, C2=AB/C,
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and since 4 ... (; are affected by errors, we can obtain more accurate values
a2 b2 ¢, for a2 b% ¢® by taking the geometric mean of the two values obtained
for a2 b2 and c¢2: thus

‘/BCA,; ‘/CAB? ‘/ABCe
a? = —Z—l, bf:«/—-——Bl, 612=/\/ 9] L,

Suppose now that the three values of a? b* and ¢* are

d=al+2 bB=b2t+y, E=c’+2z;

then substituting these values in the six equations of the form (32) and
neglecting squares and products of the small quantities z, y, z we obtain,
since K4+ F4+ G=1,

@ {Fp (0,2 = ¢®) + G (022 = 0D} + ¥ {Gn (@00 — ) + By (02 — ¢2)}
2 (B (0, = b2) + Fo (02 — 7)) — B (0,2 = b2) (0,7 — 0)
— By (ot = 0) (e — %) — G (o = 03) (e — ) = 0, (m=1,2, ... 6),
and from these six equations the values of #, y, z may be determined by the

method of least squares*.

149. It is possible by means of prisms, as has been pointed out in
Chapter I, to find any number of points on the surface of wave-quickness
and hence to determine completely the form and orientation of this surface,
and the question now arises whether in the case of crystalline media a deter-
mination of a plane central section suffices for this purposet.

Taking this section as the plane of &, the polar equation of the section
may be written

S (@, ¥) = 0* — 0 (Ly; cos® Y + Ly, sin® yr + 2L, sin 4 cos yr)
+ My cos? Y 4 My, sin?4fr + 2M, sinfrcosYr=0......... (33),

the values of L, ... M,, being given by (29), where q; ... v, are the direction-
cosines of the principal axes of the surface referred to the axes of €, 9, &

This equation contains six coefficients, so that six pairs of corresponding
values of w and 4 suffice for their determination, and the problem is to
deduce the values of a? 17, ¢ a;...q, ffom the expressions for Lj,... M,; in
terms of these quantities.

From the equations
=02+ B2+
L= 0+ &) a2 + (¢ + a?) B2 + (a® + b*) 22,
M, = bcPa? + ca?Be + aby?,

* Born, loc. cit. p. 40. F
t Bull, Sitzungsb. Bayer. Acad. (1883) 423; Math. Ann. xxx1v. 297 (1889). Liebisch, N.
Jahrb. fiir Min. (1886) 1. 31.
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and 0= a1, + B,8s + yiys,
L,= (0* + ¢®) ayat, + (c®*+ a*) BB, + (a*+ b2) YiYas
N M, = b*cCaya, + ca*BiB, + a2b2'Yl'Y2:

we have

— Lya?+ M, ; % — Lya? +M12
(@@= (a*—c?)’ WS (a2 =% (a® — &%)’
bt — L,,b® + M, — L,b* 4 M,
el e | 2 e 5 Linii
== o -y PP g

2__=_.C4"—L1102 + My, ¥ — Lyt + M, )
WERACH. e =B
and in the same way-a? B2 . are obtained. Hence writing a?=u and
forming the expression a%,®=(aa,)’, we find

(u? — Lyu + M) (u? = Lpu + My) = (= Lypu + Mp)e......... (34),

and b2 ¢® satisfy the same equation, as is easily seen.

alz =

Hence a?, 1%, ¢® are three of the roots of (34) and calling the fourth root
d?, we have

2+ttt di= Ln+L,2_ a? (1 + a?) + 0°(1 + B + 2 (1 + o2,
whence d? = aPag? + b*Bs? + crys
Thus d is the reciprocal of a semi-diameter of an ellipsoid, of which the
principal semi-axes are 1/a, 1/b, 1/c, and hence must lie between a and ¢, but

may be either greater or less than b. Also if (33) represent a real section of
the surface of wave-quickness, the four roots of (34) must be real.

Let us suppose that a*>b* > d*> ¢*: if we assume that a, b, ¢ are the
principal wave-velocities required, we have
b*c + a?d? — My, — M,

@=P@-d)

c*a? + b*d? — My, — M.
B=1 —B,”—B22= (bz_ 02)(1)2 _uaz) 22;

=]l—-a’—a?=

L 2=a2b2+c2d2—]l1u—1l[22
ARES i e (—a?) (=05 °

and if a;, B, v; be real, this assumption will give a surface of wave-quickness
with its axes of symmetry inclined to the normal to the given central section
at angles, of which the cosines are a;, 3;, vs.

Again if we take a, d, ¢ as the principal wave-velocities, we find that the
principal axes of the surface are determined by
e +abr—My—M, . ,0*—¢

(@F—d@—c) P a—d’

!
Ol 0=



238 The Analytical Theory of Light [cn. x11

B/ = ca? + b'd? — My, — My 82 (a* = B?) (b* — ¢
P @=o)d—a) T (@—d) (-0’
sy @+ bt — My — My o a? — b2
BT G- | P’
and a;, By, vs are real, if a5, Bs, vs be so. We have then a second real
solution, if we have one.

On the other hand the assumptions, that a, b, d, or b, d, ¢ are the
principal wave-velocities, will give us positions of the principal axes that are
imaginary, if a;, B,, v; be real; and it therefore follows that there are two
and only two real solutions of the problem of determining the surface of
wave-quickness from its central section, if there be one such solution, and
that the two surfaces determined will differ in respect of their mean axes -
while their greatest and least axes are the same.

The two surfaces will be identical only if b=d, which gives
vfas= 4 V@& — BIVE =,

that is if the given central section contain one of the optic axes.

150. Let us now take the case of minimum deviation with a biaxal
prism. We have seen that the velocity of a wave within the prism satisfies
the general relation (15), while on the other hand it is given in terms of the
angles 4 and ' by the equation of the surface of wave-quickness (28), and
eliminating o between these equations, we obtain
F(D, 4, x')= Q! {sin*y' + cos* ¥’ (M + N cos 2¢)}?

— Q2 [sin? " + cos? x' (M + N cos 2yr)} {Ly, cos® yr cos? x’
+ Ly sin? yr cos? x' + Lg; sin? ' + 2Ly, sin 4 sin x” cos
+ 2Ly cosyrsin ' cos y' + 2Ly, sin  cos Y cos? '}
+ My, cos®yr cos? x' + My, sin® r cos? x” + My, sin®
+ 2My sinyrsin x' cos ¥ + 2 My, cos Y sin x’ cos y’
+ 2Mysin g 008 Y 008 %15 O sin ooy b ans Joso e s (35).
When the deviation is a minimum, we have dD/dyr=0, or 9F/oyr = 0, which
gives
{sin?y’ + cos® x' (M + N cos 24)} {4Q4N cos?x’ sin 2y
— Q2 (Ly; sin 24 cos® ' — Ly, sin 24 cos? ' — 2L, cos yr sin ' cos x’
+ 2L, sin 4 sin ’ cos x’ — 2Ly, cos 24 cos? x')}
— 202N sin 2y cos? x' (L, cos? yr cos? ' + Ly, sin®4r cos? x’
+ Ly sin® x' + 2Ly sin Y sin x’ cos x' + 2Ly, cos Yrsin x” cos i
+ 2L, sin yr cos ¥ cos? x') + My, sin 24 cos? ' — My, sin 24 cos® i
— 2M,; cos Y sin x’ cos x' + 2Mj, sin Y sin " cos »
— 2. M €082 GOSP T =10 A A R el (36).
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Equations (35) and (36) contain the solution of the problem, but in their
general form they are too complicated to be of any practical use, and in fact
even when the incident waves are parallel to the edge of the prism, so that
x' =0, no result of any value is obtained with a prism, of which the crystallo-
graphic orientation is quite arbitrary.

151. Confining then our attention to special cases of interest, let us
first suppose that the refraction is direct and the normal section is the plane
of symmetry zy. Then if the angle £0x be u, the direction-cosines a;, A
are given by the scheme

x y 2
3 COS —sin p 0
7 sin cos u 0
fe .0 0 1,

and the equation of the section of the surface of wave-quickness by the
normal section of the prism is

S (@, ¥) = (? — ) {0* — b* — (a® = b%) sin? (Y — p)} = 0.

The minimum deviation of the wave propagated with constant
velocity, which is polarised in the principal section, gives at once the
principal wave-velocity ¢ by the ordinary formula: and in the case of mini-
mum deviation of the other wave, we have

O (M + N cos 24) — b*— (a? — b?) sin? (Yr — p) = 0),
202N sin 249 + (a?— b*)sin 2 (Y —pu) =0,
and eliminating +» between these equations, they give the relation
(0220, — a?sin® p — b? cos? u)(Q38,7*— a? cos? u — b sin? p) = (a?— b%)? sin? u cos?u.
152. Let us next consider the cases, in which the wave within the prism
is parallel to the inner mean line, that is the line of intersection of the plane
bisecting the angle of the prism and the normal section of the prism. The

lateral deviation then vanishes, and since v = 7/2, we have from equations
(35) and (36)

Q¢ {sin®>x’ + (M — N) cos’x'}?
— O {sin*y’ + (M — N) cosx’} (Ly cos’x’ + Ly sin’y’ + 2Ly sin ' cos x”)
+ My cos? ' + My sin® x' + 2My sin x cosx’=0............ (37),
and _
Q2 {sin®y’ + (M — N)cos? '} (Ly sinx’ cos x” + Ly cos?x")
: — (My sin ¢’ cos x’ + M;z GOSEVN=10.5.%. . (38);
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or writing in the values of L ...

Q¢ [sin®y’ + (M — N) cos® x'}?
— Q2 sin? ' + (M — N) cos? x'} {(b* + ¢*) (az cos x" + a sin x')?
+(ct + a?) (Bycos ¥’ + Bysin x ') + (a® + %) (. c0s X’ + o sin x')%}
+ b%c* (ay cos ¥ + azsin x')? + c*a?(B; cos x” + B sin x')?

+a%? (yaco8 x' +osiny P =0....coceuiiiiininnnnn.n, (I Y (39),
and 2

Q2 {sin?y’ + (M = N) cos® x'} {(b* +¢*) &y (ap cos ' + azsin x”)
(¢t ) B, (Byoos X+ Bysin ) + (@ + 1) , (3 c08 '+ s5in )}
- bc*a, (a cos x” + as sin x) — c*a?B, (B, cos ' + B;sin x”)
— by (pcosy’ +asiny) =0 .eeoiiiiiiiiiiiiii e, (40).
Now from the relations of orthogonal transformations, we have
ay (@, c08 ' +a58in ") + B, (B.cos ' + Bssin x’) + q, (yz €08 ¥ + 5 sin x') =0,
whence if
o, (e, cos ¢’ + agsin ") =0,
equation (40) becomes
[Q2 {sin?x’ + (M — N) cos? x'} = a*] (> — ¢®) g, (va cos '+ yssin ') = 0 ...(41)
and this is satisfied by
(A) 9 (y.cos )’ +y;sin ¥') =0, whence also B, (B, cosx’+B;sinx')=0,
or
(B) sin?’y’' + (M — N)costx’ = a?/Q2
(A) Let us first suppose that
oy (@ cos x’ +agsiny’) =B, (B, cos '+ Bssin x') =, (y2co8 ¥ + g5 sin x') = 0.
Then we have three caées to consider, of which the following are types:
(a) We may take
= by /o5 =1} 0
o, =0, Ba=1, 9, =0,
=0, B;=0, y=1,

which express that the coordinate axes (£, n, {) coincide with the axes of
optical symmetry of the crystal. Then equation (39) gives

[Q2 {sin? x' + (M — N) cos? x'} — a?] [Q? {sin® ' + (M — N) cos® x'}
—bsin? x' —c?cos? ] = 0.
Thus the minimum deviation gives in the one case the principal wave-

velocity a, and in the other a linear relation between the other principal
velocities b and c.
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(b) The conditions are also satisfied by
a =1, Bi1=0, v =0,
o, =0, B2 =cos p, Y= —sin g,
oy =0, Bs =sin p, s =COS & ;

the axis of symmetry « then coincides with £ and the axis y is inclined at
an angle p to the axis 7. In this case we have from (39)

[Q2 {sin? x' + (M — N) cos® x'} — a?]
x [Q2 {sin® " + (M — N) cos® x'} — b*sin? (¥ — p) — c*cos? (x" — u)] =0.
(c) Finally we can have
o, =0, B =—sin y, 91 = COS K,
o, = cos ', B2 = — cos w sin x’, . = — sin g sin x’,
os = sin ', Bs=cos p cosy’, . Ys=sinucosy’;

the axis of symmetry « is then perpendicular to the axis £ and the lateral
deviation only vanishes when the wave within the prism is parallel to the
plane of optical symmetry yz. In this case (39) gives

[Q2{sin?x' + (M — N) cos® x'} — b*] [Q? {sin® " + (M — N) cos?x'} — ¢} = 0,
and the principal wave-velocities b and ¢ are determined directly from the
angles of minimum deviation of the two waves.

(B) Taking now the case in which

ay (a,co8x’ +azsiny')=0, and Q2{sin*x' + (M — N)cos’ x'} = a?,
we have from (39), since

(2 co8 "+ agsin x ') +(Bacos '+ Bysin ') + (o cos x' + vy sin x')? = 1,
Q¢ {sin® x' + (M — N) cos® x'}?

— Q2 {sin? '+ (M — N)cos® x'} {¢* + a* — (a* — b?) (az cos " + a; sin x)?

+ (B — &) (yacos X' + va sin ')}
+c*a? — c*(a* — b?) (aycos ' + agsin ') + a? (b* — ¢?) (y.cos x' + 5 8in x ‘) =0,
and this equation which is independent of a, is satisfied if

oy cos ' +agsinxy’' =0
and 0 {sin*y' + (M — N)cos*x'} —a*=0.

In this case then a,cosy’+ a;siny’=0; that is the axis of symmetry =
is in the plane of the wave, which 'is therefore perpendicular to the plane of
symmetry yz, and the minimum deviation, characterised by the absence of
lateral deviation, gives the principal wave-velocity a. Similar results are

obtained when the wave within the prism is perpendicular to the planes of
symmetry zz and zy. ;

w. 16
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(C) Returning to the general condition (40), we have
0’ =Q? {sin*y' + (M — N) cos®x'}
b2cay (acosx’ +agsiny’) + ?a?B,(Bycos x'+ Basiny’ )+aﬂbﬂry1(ryzcosx +ryssiny’)

T () a(amcosy +asiny ) +(*+ @) By(Bocosx + Bssin ) +(@+ 5%y (yacosy +yssin ) °
and this is the expression for the square of the velocity of a wave, parallel to
the inner mean line of the prism with its light-vector in the direction of this
line. We have then the further case that the deviation is a minimum for
symmetrical passage through the prism, when the wave has its plane of
polarisation parallel to the line, in which the plane bisecting the angle of the
prism cuts the normal section.

Total Reflection.

153. When a single reflecting surface of a crystal is all that can be
obtained, recourse must be had to total reflection for the determination of
the principal wave-velocities of the medium, This method of finding refractive
indices was first employed by Wollaston* in 1802, but it is only in recent
years that instruments for measuring the phenomenon have been brought to
perfection or indeed that the theory in the case of crystalline substances has
been worked out with any approach to completeness.

The crystal must be in contact with a more highly refracting medium,
and this is effected, either by suspending it in a liquidt, or by placing its
reflecting surface against the flat face of a solid substance, such as dense glass,
in the form of a prism}, a cylinder§ or a hemispherical lens||, a drop of liquid

" being interposed between the solid and the crystal. If under these eircum-
stances diffused monochromatic light be directed upon the surface and the
reflected light be received in a telescope focussed on infinity, the field of view
with a proper orientation of the crystal will be divided into parts of greater
and less intensity by lines that mark the limits of total reflection corresponding
to the two streams that the crystal is capable of transmitting. When the
field is small, these lines are nearly straight.

Now each point of the focal plane of the telescope corresponds to a system
of parallel rays reflected from the surface, the direction of which is given by
ihe ling: joining the point to the optical centre C' of the object-glass, and the
lines Separating the brighter and darker regions are the intersections of the

M pla,ne with cones having their vertices at C and parallel to the limiting

W
ST ; 5 Tr.ems xor1. 381 (1802).
\{2;} o};‘l‘rsusch Wied. Ann. 1v. 1 (1878).
"'" , Diss. Marburg. (1882). F. Kohlrausch, Wied. Ann. xvi. 609 (1882). Liebisch,

Zm.@c‘ it Tt umentk. 1v. 185 (1884); v. 13 (1885).

§ Pulivieh, Wied. Ann. xxx. 193, 317, 487; xxx1. 724 (1887); xxxvI. 561 (1889).

I Thié‘(?* form adopted in Abbe’s refractometer: cf. Czapski, Zeitschr. fiir Instrumentk.
x. 246, 269 (1890); N. Jahrb. fiir Min. Beil-Bd. vix. 175 (1891); (1892) 1. 209. Pulfrich, Zeitschr.
fiir Kryst. xx%. 568 (1399).
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cones K, K’ of total réflection at the point O, in which the optical axis of
the telescope meets the surface of the crystal.

If then the telescope be so placed that its optical axis FO intersects one
or other of these bounding lines, OF will be one of the generating lines of
the cone X (or X’) and the angle y that the line makes with the plane of
reflection of the ray OF is the angle between this plane and the tangent
plane to the cone along OF. The ray OF is thus characterised by the angle
x and by the limiting angle of total reflection 7, (or 2,).

The problem then is to express these angles in terms of the optical
constants of the crystal and of the medium in contact with its face, and of
the angles that define the crystallographic orientation of the surface and of
the plane of reflection *.

We have seen in Chapter I, that the equations of the cones K and K’ are
obtained by equating to zero the discriminant of the equation

a, tan* r + 4q, tan®r + 6a, tan’? r + 4a;tan r + a,=0......... (42),
that gives the directions of the refracted waves in terms of the ‘angle of
incidence, the angles defining the plane of incidence and the refracting
surface and the constants of the contiguous media, and in Chapter XI we
have found the form that this equation assumes in the case of uniaxal and
biaxal crystals. We will now apply these results to certain special cases.

154. Let us take first the case of an uniaxal crystaf, and suppose that
cosa, cos B, cosy are the direction-cosines of the optic axis referred to
a system of rectangular coordinate axes, such that the reflecting surface
is the plane of zy and the plane of incidence is that of zz.

Then the directions of the refracted waves are given by

sin? r = a? sin? ¢/Q?
and a,tan?r + 2a, tan r + @, =0
where a, = [+ (a* — ¢?) cos? a} sin?1 — 2
a, = (a* — ¢?) cos a cos vy sin? ¢
a,= {¢® + (a® — ¢?) cos? o} sin? 3.
-Hence the limiting angles of total reflection are given by
ST T ()2 ) RS S s s S rs. .(43)
and - Aoy = Ay
(0% ¢+ (a* — ¢®) cos’
¢ ¢ + (a* — ¢?) (cos® a + cos? 7y)
Q2 c* + (a® — ¢?) cos? o
ra o —(a* — ¢?) cos? B
{0 ¢*+(a* — ¢*) cos*

¢* af — (a? — ¢?) sin® p sin? @

or “sin?1, =

* Liebisch, N. Jahrb. fir Min. (1885) 1. 245; 1. 181; (1886) 11. 47: Phys. Kryst. p. 404.
16—2
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if u be the angle that the optic axis makes with the normal to the surface
and 8 be the angle between the plane of incidence £ and the principal plane
of the surface, H.

Let us now take rectangular axes (& 7, {), such that the plane of &7 is
the reflecting surface, and that of £¢ is its principal plane; then if (& 9, {) be
the coordinates with respect to these axes of a point distant p from the origin
on the ray defined by the angles 7, (or 2,) and 8, we have

&= psin i, cos 6, 7 = p sin 4, sin 6, &= p cos i,
and the equations of the cones K and K’ become respectively

(@@= (B+7)—Q=0.ccceveiiininininnnnns (45),
and

v — 2] g 2 __ 02 m? — 023 —
(a”cos’,u+cﬂsin2# Q>f+(c Q) — Q=0 ... (46).

The difference of these equations gives
a?cos? u £ + (a® cos? w + ¢*sin? p) 7* = 0,
and therefore the cones in general have only their vertices in common, but if
the optic axis is in the surface of the crystal (u = 7/2), the cones touch one
another along the axis of .

The cone, K, is a right circular cone with its axis perpendicular to the
surface: hence for this cone the angle y between the tangent plane along
any ray and the plane of reflection for that ray is a right-angle.

In the case of the cone, K’, the plane of incidence of the ray defined by
the angles 2, and 8 is

E=cotf.q
and the tangent plane to the cone along this ray is
ac® A T o £ i Aol
(azcos“p+czsin’p. Q)cos 0.5+(C—-0%)sind.p—Q%coti, . &=0.
Hence
cos y =c (a*— ¢?)sin® usin fcos §/D..................... (47)

where introducing the value of cot??,” from (44)
D = a? {a*c* — Q* (a® cos® p + ¢* sin® )} cos® 6
+ (¢ — Q%) (a*cos® u + ¢?sin? w)*sin® 4...... (48)
and 7 is only equal to /2, if the optic axis of the crystal be perpendicular to

the reflecting surface (u=0), or the optic axis having any direction, if the
plane of incidence be parallel or perpendicular to the principal plane of the

surface (8 = 0 or 7/2).
Now when 6 =0, we have

sin?4, = Q%/a?, sin? 4y = 02 {a™? + (¢7? — a7?) cos? u} = 0?/o?
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where o is the ray-velocity along the line of intersection of the surface of
the crystal with its principal plane: and when 6 = /2
sin? ¢, = O%/a?, sin?7y = Q2/c*.

Hence from measurements of the limiting angles of total reflection, when
the lines separating the regions of partially and totally reflected light are
perpendicular to the plane of incidence, we can determine the principal
wave-velocities and the angle that the optic axis of the crystal makes with
the normal to the reflecting surface.

155. With biaxal crystals the most interesting cases are those in which

equation (42) assumes the form
a, tantr + Ga, tan? r + a,= 0,

as we then have two pairs of equal and opposite roots + tan », and + tan 7, and
equality of the roots of either of these pairs can only occur when both are
either zero or infinity. Hence since the value zero corresponds to normal
incidence, we must have at the limit of total reflection infinity as the common
value of the roots and the critical angles are given by

a,=0.
These cases occur when either the reflecting surface is a plane of symmetry
or its intersection with the plane of incidence is an axis of optical symmetry.

Let us suppose that the reflecting surface is parallel to the plane of the
optic axes xz: then 6 being the azimuth of the plane of reflection measured

from yz,
e el
P (ﬁng b — 1) {33—2} (a? cos? 6 + ¢* sin® ) — 1} )

Hence the limiting angles of total reflection are given by
sin, = 0307, sin? 2, = Q%/(a? cos? § + ¢ sin? 0)

and the two cones of limiting rays K, K' can be represented as distinct.

Taking new axes (&, 9, {), such that the surface of the crystal is the plane
of £y and the plane of symmetry yz is that of £{, the equations of the cones
K, K’ are respectively

(02— @) (€ + 1)~ 0g =0
a,nd (az = Qz) E2 4L (62 i « Qe) ,,'2 v Q?{Z = 0 .
for the cone K, x is always a right-angle, while for the cone K’
o (a®—c¢*) sin @ cos 9
xS e (¢ — Q?)sin? 0 + a? (a? — Q?) cos?

The other cases in which the reflecting surface is parallel to a plane of
optical symmetry are obtained at once from this by changing @, b, ¢ and
@, y, z in cyclical order.
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156. The present case is however of special interest both because the
cones K and K’ have four lines in common, namely those that lie in planes
through the optic axes normal to the reflecting surface, and because the
limiting rays of total reflection, in addition to being generating lines of these
cones, form part of the surfaces of two other cones L and L’ that correspond
to refracted rays in the directions of the ray-axes, and that are determined by
the singular tangent planes to the surface of wave-slowness. These tangent
planes are perpendicular to the plane of the optic axes and pass through the

common tangents to the ellipse and the circle, in which this plane cuts the
surface.

Hence a tangent cylinder to the surface of wave-slowness of the crystal,
perpendicular to the plane of the optic axes, touches the surface not only
along this ellipse and circle, but also along the four circles of contact of these
tangent planes, and the cones L, L’ are determined by joining the centre O of
the surface to the curves in which these singular tangent planes intersect the
sphere with the same centre and of radius 1/, that is the surface of wave-
slowness for the outer medium.

Now since these tangent planes are perpendicular to the ray-axes, their

equations are
62_62 ak_b?
“«/m-fi%/m-"ﬂ’

and combining this with the equation
E+nt+ =1/,

so as to form an homogeneous equation of the second degree, we obtain as the
equations of the cones L and L

. 2 2 __ b2 2

(4459 ={a N PN =28
Each of the cones L and L’ has a line in common with each of the cones
K and K'’: that common to K and L or L’ is in the plane through the corre-
sponding ray-axis normal to the reflecting surface ; that common to K’ and L
or I/ is in the central plane perpendicular to the reflecting surface through the
point of contact of the corresponding singular tangent plane with the ellipse,
in which the plane of the optic axes cuts the surface of wave-slowness of the
crystal. It is clear that only the part of the cones L and L’ between these
two lines give limiting rays of total reflection : all rays on these cones outside
this portion are totally reflected, since the perpendiculars on the reflecting
surface from the points, in which they meet the sphere of radius 1/€, neither

touch nor intersect the surface of wave-slowness of the crystal.

It is now easy to determine the nature of the phenomenon of total
reflection, when the plane of incidence is nearly parallel to one of the optic
axes. Let IV be the foot of the perpendicular on the reflecting surface from
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the point in which the incident wave-normal meets the sphere of radias 1 /2,
and let us suppose first of all that the plane of incidence passes through the
optic axis Od: then if this direction meets the common tangent to the
ellipse and circle in the point B, it is clear that total reflection does not com-
mence until IV falls outside OB, for until this occurs the perpendicular cuts

o
Fig. 317.
the surface of wave-slowness in two points within the crystal; only when N
is at 4, two of the infinite number of streams into which the light is divided
are at the limit of total reflection, viz.: those polarised in planes parallel and
perpendicular to the surface of the crystal.
Next let the trace of the plane of incidence on the surface be OPQR,
P, Q, R being the points in which it meets the ellipse, the circle and the
common tangent to these curves respectively. When XN falls between O and
P, the perpendicular meets the surface of wave-slowness at two points within
the crystal, there are two refracted waves and no total reflection ; when I is
between P and @), the perpehdicular intersects the surface of wave-slowness
at only one point within the crystal and one wave is totally reflected: when
N is between @ and R, the surface of wave-slowness is again cut by the
perpendicular in two points, where the surface bends over, so that there are
again two refracted waves and no total reflection; and finally when N is
beyond R, total reflection is complete, as the perpendicular is entirely outside
the surface of wave-slowness. The appearance presented will consequently
be that represented in fig. 38*.

157. When the reflecting surface is parallel to an axis of optical
symmetry, the limiting angles of total reflection are determined by a,=0 if

* Soret, C. R. cvir. 479 (1888); Zeitschr. fiir Kryst. xv. 45 (1889). Mallard, J. de Phys. (2)
v. 389 (1886). 'W. Kohlrausch, Wied. Ann. vi. 113 (1879).
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the plane of incidence contain this axis, and a, is then the product of two factors
that are linear functions of sin?s. On the
other hand, if the plane of incidence be
perpendicular to the axis of symmetry, equa-
tion (42) takes the form

(a, tan®r + a,) (4, tan®r + 24, tan r + A,)=0,
wherein a, is a linear function of sin?7, and
the critical angles are then given by
a,=0 and A, 4,=A42
Thus if the surface of the crystal be
parallel to the axis of # and if x be the

angle between the axis of y and the normal
to the face, we have

sint,=Q/b; sinz, =Q/c

when the plane of incidence passes through «, and

sin %, = Q/a, sin?v’ = Q?{c™? + (b2 — c72) cos® p}
when the plane of incidence is parallel to the plane of symmetry yez.

Hence from measurements in these planes, which are experimentally
determined from the fact that in these cases the lines bounding the regions
of total reflection are perpendicular to the planes of reflection, we can find

the three principal wave-velocities and the orientation of the face of the
crystal.

158. Let us now suppose that the reflecting surface is neither parallel
nor perpendicular to a plane of symmetry of the crystal*, and that it cuts the
three planes of symmetry in the lines ON,, ON,, ON,, the points N,, N;, N,
being on circular sections of the surface of wave-slowness in these planes, the
radii of which are 1/a, 1/b, 1/c respectively.

Then N,, N3, N, are points on the tangent cylinder to the surface per-
pendicular to the face of the erystal, and the corresponding critical angles are
given by

sin 4o = Q/a, sinig=Q/b, sin i, =0/c. .
Now the greatest and least radii of the section of the surface of wave-slowness
made by the face of the crystal are 1/c and 1/a respectively, and 1/b will be
the greatest radius of the inner curve of the section or the least radius of the
outer curve, according as the section cuts the plane of xz within or without
the angle between the optic axes that is bisected by the axis of .

* Soret, C. R. cvir. 176, 479 (1888); Arch. de Geneve (3) xx. 263 (1888). Perrot, C. R. cviL.
137 (1889); Arch. de Gengve (3) xx1. 113 (1889). Hecht, N. Jahrb. fiir Min. Beil-Bd. v1. 241
(1889). ;
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It follows then that measurements of the greatest and the least critical
angles, that can be obtained by varying the azimuth of the plane of reflection,
give the extreme wave-velocities of the crystal. But we cannot determine
without having recourse to other considerations, whether the mean principal
wave-velocity b corresponds to the greater critical angle of the inner cone or
to the less critical angle of the outer cone of rays of total reflection.

This ambiguity may in general be removed, as Viola* has pointed out, by
a determination of the polarisation of the rays: for the planes of optical
symmetry of the crystal are the planes through the limiting rays, that deter-
mine the principal wave-velocities, perpendicular to their respective planes of
polarisation, and if A, B, C' be the corresponding planes of reflection, the
angles a, B, v between the planes of optical symmetry and the crystalline
surface are given by

cos*a=cot 4B . cot C’:‘l, cos; B =cot BC'. cot A'P, cos?y = cot (4 . cot BC
S i A v I e A i St i il S e (49).

On the other hand these angles may easily be determined by an analyser
placed in the eye-piece of the observing telescope, and the agreement of the
measured with the calculated angles will indicate the plane of reflection of
the limiting ray that gives the wave-velocity b.

Cornu+ has suggested another method of procedure. If w be the wave-
velocity calculated from the fourth angle, we have the relation

o ?=qa"2cos’a+ b~2cos B + ¢ i cosry,
where cos?a, cos? 3, cos?y have the values (49), and the verification of this
formula will decide whether the proper angles have been selected for the
calculation of b, «, B and ¢.

* Zeitschr. fiir Kryst. xxx1. 40 (1899); Rend. Lincei (5) vir. [1] 276 (1899).
t J. de Phys. (4) 1. 136 (1902).



CHAPTER XIII

CRYSTALLINE REFLECTION AND REFRACTION.

159. BEFORE considering the question of the intensity of the light reflected
and refracted at the surface of a crystal, it is necessary to obtain the differential
equations of the polarisation-vector in crystalline media and to determine the
surface conditions that must be satisfied at the confines of such substances.
This may be done, as in the case of isotropic media, by the application of the
principle of interference.

According to Fresnel’s laws of double refraction, the polarisation-vector of
any wave is in the direction of one of the axes of the central section of the
ellipsoid of polarisation parallel to the plane of the wave, and the corresponding
wave-velocity o is given by the reciprocal of that axis. Hence if the equation
of the ellipsoid be

U@+ A Y? + g2 + 2005y2 + 20522 + a2y =1........... 1),
we obtain as in § 122
(an — o®) a+ @B +ayy=Fl
Ui+ (A= %) B+ Aoy =Fm 5 venvninivinnnnnnnnns )

An 2+ B + (A5 — ) y = Fn
and

F=(ano+ 0:8 + an7) L+ (0220 + 08 + ay)m + (ana + a8 + amy)n...(3),

a, B, v being the direction-cosines of the polarisation-vector, and I, m, n those
of the normal to the wave-front,

Now the principle of interference is expressed by
w=73aD, v=28D, w=3yD, D= A4 exp{ik (lz +my+ nz — wt)}...(4),
where x=27/\: whence
i = — 3xfaw?D, ¥ =—3k'Bw’D, W=—Zxiyw?D,

and from (2)
aw® = (a3 + a8 + a5 y) (12 +m? + n?) — I,
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and two similar equations; whence substituting for aw? Bw? and yw? and
eliminating the direction-cosines, we find at once

o ey L R
(u,’U,’N))—V?(-a—-u, 55: %)

0 0 O0\/00DP 00 0 0P
sim A oyt R
where
2D = U + Aoy + A W? + 2050w + 2 WU + 20U0 ... (6).

These equations, as in the case of those relating to isotropic media, may
be put into the more convenient form,

D=—curlm, =curlZ coeeoevvrvevevenernn.. (N,
where the components of £ are given by '
D
(B, By, By) = (E)u =, 87”) B L e (8).

As regards the vector F, it is clearly parallel to the normal to the ellipsoid of
polarisation at the point in which the polarisation-vector meets it, and is
therefore perpendicular to the ray corresponding to the given wave, and if
x be the angle between D and £

cos x = (2B, + BE, + yEy)|E =(a,,0* + a3* + ...) D|E
= w*D/E.
Equations (7) having the same form as those that relate to isotropic bodies,
the surface conditions will'be the same as those that hold at the interface of
such media. Thus the interface being the plane = 0 we have that
- Wy, E3J @3, -E2

are continuous across the surface, to which we may add the further conditions,
clearly dependent upon the former, that « and =, are also continuous.

160. We can now determine the significance of the ray in the theory of
double refraction. Proceeding as in § 109 we obtain

+ (w3 By — =, Ey) cos ny + (w, By — @, E,) cos nz} dS...(9),

the integration being extended over a certain region T, dS being an element
of the surface of 7, and n the normal to diS drawn outwards, and this equation
may be regarded as representing the change of energy within the space 7'
that results from a flow of energy across its surface. We see then that the
direction of this flow is perpendicular to the vectors £ and = and is therefore
along the ray.
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161. Since the three vectors D, =, and £ are connected merely by
geometrical relations, we may take which we please as characteristic of a
stream of light, and we shall in the remainder of this chapter employ the
light-vector =, as by so doing the calculations are somewhat simplified.

Let the plane of incidence be taken as that of xz, the reflecting surface
being the plane of yz and the medium in which the light is incident lying on
the side of negative z: then since the vector = is in the plane of the wave,
we may write

(@, @, w)=(n, k, =) D exp {¢ (lz + nz + st)} ......... (10),
where k=2mrtan /A, D=rcosp. A/(2m)...cccevevinnnnis 11),
¢ being the angle that the vector makes with the plane of incidence. Now
the vector @ being independent of y, we have from equations (7)
SO, iy AL L %_3_%)_ sy
i, az bt Tt ( 0z ox) " ta
Plnlt aw2 (Ba', ) am}
2N 11 31 B
aZ i - AN 12);
0w, A 0w, 8w3> 0w,
ax s aZ 23 ( (427} ax
Ko an 0w, Bws) 0w,
g 8x{ 0z “”(az Z’ax}a
whence, substituting the values of @, @, o,;, we have
S —an (PP + n?) =k (axl — apn
T e } ......... (13),
k(s® — agl? — ayn® + 2a5In) = (P

+ 72) (sl — ayym)
which give .
{8* — ayn (I + 07} {8* — agl? — ayn? + 2a4In} = (ayl — apn) (12 + n2)...... (14),

and e (Oml—an) (Pt 8 —an(l+n?) :
'Sg_a”lz—aun2+2a3lln azsl—azﬂn d

Similar equations with b written for @ apply to the second medium.

The first of these two equations determines the value of I when n and
s are given: since it is of the fourth degree, it is evident that there are four
possible values corresponding to waves of given period, the traces of which
on the interface of the media travel at a given rate. Two of these waves
approach the surface and two leave it, and the question which of the values
of [ correspond to the receding, that is the reflected or refracted waves, is

decided by the position of the corresponding rays as determined by Huygens’
construction.
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The quantity ! having been thus determined, equation (15) gives the
corresponding value of k, and thus the directions and the polarisations of the
reflected and the refracted waves are known.

162. Let the suffixes (;), (;), the accents (), () and the suffixes (,), (,)
refer respectively to the incident and to the reflected waves in the first
medium and to the refracted waves in the second medium, and suppose that
there are no incident waves in the latter medium.

Then introducing the boundary conditions, we have from the continuity
of w; when z=0

LD+ LD, + VD' +1"D"=1,D,+1.D, ............... (16),
from the continuity of E, or of =,
D+ D+ D'+ D"=Dy+ D, uuuuanneannennnnnn, 17),
from the continuity of @, or of u
kD, + ke Dy + D' + k' D" = kyDy + ko D,............... (18),

while the continuity of ; gives
2 {ankn — ay (13 4+ n*) — agkl} D =35 {bykn — by (12 + %) — agkl} D...(19),

the summations extending to the four waves in the first medium and to the
two waves in the second medium respectively.

The last of these equations may be put into a different form, that is
somewhat more convenient. The direction-cosines of the vector £ are
proportional to %), ¥,, E, and from (13) we have

E, = knay — (I* + 7°) ay, — klag, = (ks® + LE;)/n,
E,=kna,, — (12 + 12) @ — klay = — &,
E, = knagy — (12 + 12) ay — klag;

and since the ray is perpendicular to the vectors E and =, its direction-
cosines are

(kE;+1E,)|R, —(IE, +nkE,)|R, (nE,—kE)/R,
where R = (kEs+ B, + (LK, + nky) + (nE, — kE,)?
= {(I* + n*) B2 + 2kis* By + (B2 + n?) 8} (12 + k2 4+ n*)/n?,
and the angle between the ray and the wave-normal is given by

U (kE,+E,) + n(nk, — kE))
‘R VI3 + n?

cos y
-l SnVE+ e+ n?

T TN+ NP+t By + 2B, + (B + ) s

(12 + n?) E; — kls*

SaVE+ B +n?

We thus obtain

tan y = —

3
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K avViik 4w
and E3=“32{lg+ﬂz+’ P+ n2 tanx},
and (19) becomes

=3 (kl+nVI*+ k4 n.tany) s 19").

Fyw
Introducing the angles of incidence, reflection and refraction, and the
values of k and D from (11), the equations (16)...(19") become

S costcos pA =2 cosreos pB........ceuuennenn.n, (20),
S sinicos pA =Z8inrcosdB..euecernrernnnnnnnn. (21),

Zoin Sl =3 S LL o 5t s s et (22),

and

2 {(ag sint— O COS 1) SiD b — @y COS ¢} s%;,

=3 {(by, sin 7 — by cos 7) sin ¢ — by cos ¢} i
or
3, sin¢(cos ¢ sin ¢ + sin ¢ tan x) 4 = 3 sin 7 (cos r sin ¢ + sin 7 tan ) B...(28'),

B representing the amplitude of the vibrations in the second medium.

163. As a first application of these formulw, let us take the case in
which the first medium is isotropic. Then
an=0p=05=0% ap=ax=ay3=0,
Q being the wave-velocity in the medium.
The values of { for this medium are + ! and k& becomes indeterminate, but
introducing the components of the vector = parallel and perpendicular to the

plane of incidence, and calling the amplitude of these components G and F
for the incident waves and G’ and F” for the reflected wave, we have

(G — G')cos 1 =cos 1,008 ¢y By + €08 7, €08 P By eevvvvnrenininninnnnnn, (24),
(G + G')sin = sin 7,08 P By + SIN 7, COS P By v evvvvvnnininvnninnnnen. (25),
T+ I = g0y By sinhe By v in cosseont sdennttlbers ubwigs 48 gt d (26),

cos ¢ B,

W (F-F") = {(bss cos 7y — by, sin 1) Sin ¢, + byg cos Py} =5

+ {(bgs cOS 7, — by, Sin 7,) Sin ¢, + b3 COS b} si% 8 (20T
[

or
(#'— F") sin ¢ cos 1 = sin 7, (cos 7, sin ¢, + sin 7, tan ,) B,

+ sin r, (cos 7, sin ¢, +sinr, tan ) B,...... 27),
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where
w? —b * by cosry — by, si
tan¢o= o 2 23 0 12 SIN 7

bas COS 7y — bypsin 7, @ — bgs cos? 7y — by sin? 7, + 2by, sin 7, cos r,’

with a similar expression for tan ¢,, w, and , being the propagational speeds
of the two waves within the crystal.

For the further consideration of these equations it is convenient, in
accordance with a plan due to MacCullagh*, to consider first of all the special
cases in which only a single wave of amplitude unity exists in the second
medium. TUsing the suffixes (,) and (,) to distinguish the cases in which
B,=1, B,=0 and B,=0, B,=1, we have

(G, — @) cos © = cos 7, cos ¢y,
(G, + GY) sin 2 = sin 7, cos ¢,
F,+ F/ =sin ¢,,
(F,— F))sin 1 cos ¢ = sin 7, (cos 7, Sin ¢, + sin 7, tan y,),

with similar equations for the second case. We thus have eight equations,
from which the eight quantities F;, G,... F,, G/ may be determined, and
then the ratios F,/G,, F./G, give the azimuths of the vector = with respect to
the plane of incidence, for which the wave (.) and the wave (;) vanish within
the crystal, while F\'/G,, F,/G, give the correspondmg azimuths in the
reflected stream of light.

If now B, and B,, instead of being either O or 1, have any values, it

follows that -
F=F0B0+FeBey G= G0B0+ GeBe;

F'=F01B0+Fe’Be: G = Go,Bo'i' Ge,Bea
whence if F and G be given, F’, G’, B,, B, may be determined ; for

p_FG—GF. o _GF-FG,
=R G—GF,’ T FG-GF’
and (FoGo— G F) F' = F(F/G.— F. G) + G (F,F. — F.F,),

(F,@,— QF,) G =F(G/G,— G/ @)+ G (F,G — F.G)
Also if ¢, ¢’ be the azimuths of the vector @ with respect to the i)lane of
incidence in the case of the incident and reflected streams
F/B,+ F.B,
ton ' =g 1 G
wherein the ratio B,/B, is determined from
F,B,+ F,B,
G,B,+ G, B,’
Now tan ¢’ is independent of tan ¢, if F)|G;/ =F//GQ,, and this condition
* QCollected Works, p. 98.

tan ¢ =
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determines a special value of the angle of incidence, that is called the polar-
ising angle of the crystalline surface with respect to the isotropic medium.
A stream of common light incident at this angle is reflected as a plane
polarised stream ; for we may represent the incident light by two independent
streams of the like intensities polarised in perpendicular planes, and since
each of the streams incident at the polarising angle gives the same azimuth
for the plane of polarisation of the reflected stream, it follows that the stream
of common light will give a reflected stream plane polarised in this azimuth
given by

tan ¢ = Fy |G, = F//G..

164. Suppose now that the crystalline medium is uniaxal, and that the
direction-cosines of its optic axis are p,, p,, p;, then the equation of the
“ellipsoid of polarisation is

a* (" + y* + 2) + (¢ — @) (P2 + pay + pu2)* = 1,
whence
bm'm =a’+ (c2 - a’z)pmga bm" = (C2 T a'z)pmp"'

When the refracted wave is ordinary, the propagational speed is constant
and equal to a and we have

P2

. (1)
SIN 7y = — SIn 2, tan = —————————— |
P2 SIN 7 — Py COS 7

)

and x, = 0, since the ordinary ray coincides with its wave-normal. Thus the
ordinary uniradial system is determined from

(G, — Gy') cos & = cos 1, cos ¢by, F,+ F/=sin ¢,
(G, + GY))sin ¢ = sin 7, cos ¢, (Fy— F) sin @ cos @ = sin 7, cos 7, sin ¢,.
The extraordinary wave-velocity is given by
w2 = ¢+ (a® — ¢*) (p, cos 7, + Py sin 7,)?

D
and sin®r, = 5132 E {¢*+ (a® — ¢®) (p, cos 7 + Py sin 7,)}?

s PsCOS T, — Py SIN T,
WP btk B o oL
Pe {
whence the extraordinary uniradial system is determined from

tan

(G.— G.")cost = cos r, cos ¢, (G, + G,)sin ¢ =sin 7, cos ¢,
) F,+ F, =sin ¢,

cos 1

sin 2

Q2 (F, - F,)

e [a? cos 7sin ¢, + (¢* — a?) ps {(ps cos 7, — p, sin 7,)sin ¢, + p, cos ¢.}].
e '

When the plane of incidence is the principal plane of the reflecting
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surface, p, =0, p, =sin u, p,= cos u, where u is the angle that the optic axis
makes with the surface. Then

$=0, ¢ =m/2
and for the ordinary uniradial system
(Gy— Gy)cost = cosr,, (G, + G)sint=sinr,,
F.+F/'=F,—F/=0,
while for the extraordinary uniradial system
G.-G'=G+G/=0, F+F'=1

cos ¢ 1

oy P 9: 5 29
R {a? cos 7, 4 (c* — a®) cos p cos (. + 7))

O*(F. - F.)

where Q?sin®r, = sin?4 {¢® — (¢* — a®) sin? (u +7,)}.

Thus the vector @ is parallel to the plane of incidence in the ordinary
uniradial system, and perpendicular to it in the extraordinary system.

In this particular case, the polarising angle is determined by the condition

R, Gy =0,
or since (7, can only be zero, if ¢ =7,, by the condition
F/=0.

In this case, F, =1, so that if J be the polarising angle, R, the corre-

sponding angle of refraction for the extraordinary stream

s ee Loty T - e
0 = W {a® cos R, + (c* — a®) cos wcos (u+ R,)},
where
02sin® B, =sin? I {¢* — (¢ — @) sin? (u + R,)} ;

whence eliminating R, between these equations

Q2 (2 —a?sin® p — c? cos? u)

m2 7 —
sin? [ = O — e

165. Another interesting case is that of reflection at a twin surface of
a crystal*. Taking the surface as the plane #=0, the only difference
between the two media is then that which corresponds to a rotation through
180° about the axis of # perpendicular to the twin plane.

Let us assume that there is a plane perpendicular to the twin surface,
with respect to which each medium is symmetrical, and let us consider only
the two cases in which the plane of incidence is parallel and perpendicular
respectively to this plane of symmetry.

* Lord Rayleigh, Phil. Mag. (5) xxv1. 246 (1888).
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When the plane of incidence is coincident with the plane of symmetry
the axis of y is a principal axis, and we have
e =dig=10} b,=b5=0,
D=0 "Dz — Oy MU ==l0 SERDS E= TSR
Then the values of [ are determined from
{8* — o (1P + )} {8* — agl? — ayn® £ 2a41ln} =0,
the upper and lower sign corresponding to the upper and lower medium
respectively and k=0 or ¢ according as
sS=an(lP+n?) or $SP=auxlita;n®F 2a5in.

When the vector = is in the plane of incidence, §* = ay, (I* + n?) and
U!=-—1, [,=1, and the conditions (16) and (17) give

D,-D'=D,, D, +D'=D,
. D’'=0, and there is no reflected wave.
Again, when @ is perpendicular to the plane of incidence,
S =aul? +a,n* F 2a,ln,
and the conditions (18) and (19) give
D, +D"=D,, (Gul,—ayn)D,+(asl" — agn) D' = (ayl+ ayn) D,,

whence as (" = 1,) D" = {ass (I, — l.) + 2ayn} D,.
But 8 = Aggly? + Ay + 25,0 = agxl? + ayn® — 20410,
et (U2 =0 + 2050 (1. + 1) =0,
or s (le — 1) + 2a5n = 0.

Hence D" vanishes and in this case again there is no reflected wave.
It follows then that when light, whether common or polarised in any manner,
is incident in the plane of symmetry there is no reflection at the surface of
the twin plane.
Next let the plane of incidence be perpendicular to the plane of symmetry,
then the axis of z is a principal axis, and we have
Uy =05 =0, by = by =0, by = — e
by = ay, by = G, bas = atgs,

and consequently for both media

{82 = an (P + 72} {$* — agl* — ayn?} = (I + n?) a,s? ......... (28),
2 2\ _ o2
while k= “—”% ........................... (29),

the upper and lower sign referring to the upper and lower medium
respectively.
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The values of ! are thus + ! and + " for both media, and the corresponding
values of k are k& and %’ for the upper, and —k, — %’ for the lower medium,
and taking the positive values of ! to refer to the incident waves, we must
also take the positive values for the refracted waves.

The boundary conditions then give
ID,+!D,— D' —I'D"=1D,+ 1D,
» D,+D,+ D +D'=D,+ D,
kD, + KD, + kD + ¥ D" = — kD, — k'D,
kD, +kEVD,—klD' — Kl D" = - klD, — k'TD,,
or writing K =k'/k, L=1U/l,
D -D+ L(D,—D")=D,+LD,
D+ D + D,+ D" =D,+ D,

.D1+.D'+ K(D2+D” =—D0—K_De ............ (30).
D,—-D +KL(D,~D"y=-D,— KLD,
Solving these equations we obtain
o K(L-1)
= (L—K)(l—KL){(L+1)D‘+L(K+1)D"} A
ki ...(31).

D=~ gy =& (E+ DD+ K@ +1) Dy

166. We will now introduce the simplification, that the doubly refracting

energy is small. Then a;, as, @ are nearly equal and a;, is small, under
which circumstances ! and {’ are nearly equal, so that L =1, and

LKA =0) £ 20
RO Y b [t ¥y e e 32).
L Al rEEy (
D" = l——(k_k,)“(k+k)Dl+2ch2}

If now the waves D,, D, be regarded as due to a stream of light from an
isotropic medium passing into the crystal through a surface parallel to the
twin plane, under the condition (such as gradual transition) that no light is
lost by reflection, and if the optical power of the medium be so nearly the
same as that of the crystal that the refraction may be neglected, then
denoting the amplitude of the components of the vector = perpendicular and
parallel to the plane of incidence by ¥ and G for the incident stream and by
F’ and @ for the reflected stream, we have

F=kD,+¥D,, G=v0+n(D,+D,)
F=kD +¥D", @=VE+n*(D +D")
: 17-19



260 The Analytical Theory of Light [en. xm1

and in these equations we may identify D,...D"” with the quantities in
equations (32), provided the thickness of the plate is so small that its effect
may be neglected.
We have then
; kk (U —1) k-0 G
F=e—"2>"""(D,+D)=~ —,
Ik — k) Dt Lk = k) ViE+n

¢ = VFT 7 =5 6D+ ¥D) = ;o= i .
Now eliminating s* between (28) and (29), we obtain
U I® — {(Agy — Qag) P4 (O — @) 2} b — @y (B2 + 02) = 0,
and this equation may be regarded as a quadratic for determining the two
values of k if the difference between ! and !’ be neglected : hence
kK = — (I + n?).
Also Mok = G (P +12) — 8%, ik’ = ap (12 + n2) — 8,
e apn (K = k) = ax (I 1),
V=1, apn
and iy A Sanl’
We thus have finally
VI f 0 e v _ sint  ay,

F=—. = et
A0E gy 2 cos®1

G,_7z'\/l2+112 Do Sint @,
202 Aoy 2'cost Qo

and if I, I’ be the intensities of the incident and the reflected light

2 sin? 2 an)2 I
dicostt \ay/

Thus the intensity of the reflected light is proportional to that of the
incident light, whatever the state of the latter as regards polarisation: the
reflected light is unpolarised, if the incident light be so; while, if the
incident light be polarised in a plane parallel or perpendicular to the plane
of incidence, the reflected light is polarised in the opposite manner.

If the thickness of the plate cannot be neglected, the retardations of the
streams in their passage to and from the twin surface will generally modify
the relations between the polarisations of the light before entering and after
leaving the crystal. It is clear, however, that if the incident light be
unpolarised, so is also the light reflected from the crystal; for there is
nothing to alter this character in the passage of the light through the plate,
neither is it lost, as has been shown, in the act of the reflection. On the
other hand, if the plate be thick, the reversal of the polarisation of the
reflected light, when the initial stream is polarised in one of the principal
azimuths, will only occur in all probability for small angles of incidence *.

* Lord Rayleigh, loc. cit. p. 255.
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167. The interest of this investigation lies in the explanation that it
affords of the chief features of a remarkable phenomenon of crystalline
reflection exhibited by iridescent crystals of chlorate of potash, that is
ascribed by Stokes* to a thin layer, that he regards as twin stratum,
situated within the crystal and about a thousandth of an inch in thickness.

The chief peculiarities of this internal coloured refléction, as described by
Stokes, have been summarised by Lord Rayleight as follows:

(1) If one of the crystalline plates be turned round in its own plane,
without alteration of the angle of incidence, the peculiar reflection vanishes
twice in a revolution, viz—when the plane of incidence coincides with the
plane of symmetry of the crystal.

(2) As the incidence is increased, the reflected light becomes brighter
and rises in refrangibility.

(3) The colours are not due to absorption, the transmitted light being
strictly complementary to the reflected.

(4) The coloured light is not polarised. It is produced indifferently
whether the incident light be common light or light polarised in any plane,
and is seen whether the reflected light be viewed directly or through a Nicol’s
prism turned in any way.

(5) The spectrum of the reflected light is frequently found to con-
sist entirely of a comparatively narrow band. When the angle of incidence
is increased, the band moves in the direction of increasing refrangibility and
at the same time increases rapidly in width. In many cases the reflection
appears to be almost total.

To these Lord Rayleigh has added the further peculiarity, first predicted
by his theoretical investigation, that when the light is incident in a plane
perpendicular to the plane of symmetry, the polarisation is for small angles
of incidence reversed in the reflected stream, if it be either parallel or
perpendicular to the plane of incidence.

The theory of reflection at a twin plane is however incompetent to explain
the copiousness and the highly selective character of the reflected light, and
Lord Rayleigh} is inclined to attribute these characteristics to repeated
alternations of structure due to a large number of twin planes, within the
thin stratum that is the seat of the colour. He has in fact shown that the
narrowness of the band in the spectrum of the reflected light at nearly
normal incidence and its widening as the incidence increases is what wouid
be expected in the case of reflection from such a laminated medium. while
the movement of the band towards the blue end of the spectrum is.iccounted
for by the increasing obliquity within the crystal, as in the orfinary theory
of thin plates.

* Proc. R. S. xxxvin1. 174 (1885).
+ Phil. Mag. (5) xxv1. 256 (1888). ¥ loc. ci. p. 257.



CHAPTER XIV.

THE INTERFERENCE OF POLARISED LIGHT.

168. THE first discovery of the interference that occurs when a stream of
polarised light is transmitted through crystalline substances was made by
Arago in 1811*. Malus had already observed that, when a plate of a doubly
refracting crystal is interposed between a polarisert and an analyser regulated
for extinction, the light is partially restored; and Arago found that in the
case of white light and with a plate that is moderately thin, the light is no
longer white but coloured, and that a variation of brilliancy but not of tint
is produced by a rotation of the plate in its own plane, the polariser and
analyser remaining fixed, while a rotation of the analyser, the plate and the
polariser retaining their positions, causes a change of colour, which passes
through white into the complementary tint.

On the publication of Arago’s memoir this chromatic polarisation, as it is
sometimes called, was subjected to a searching investigation by Biot, who
during the years 1812 to 1814 succeeded in establishing the experimental
laws of the phenomenon. Biot’s earliest researches were limited to the case
in which a stream of nearly parallel light fell upon the plate of crystal: the
phenomena of rings and brushes, that are seen when the incident penecil is
conical, were first discovered by Brewster§ in the case of uniaxal crystals in
1813, and in that of biaxal crystals in 1814.

169. The first to apply the principles of the wave-theory to the
explanation of Chromatic Polarisation was Thomas Young|. From the

* Mém. de la prem. Classe de UInstit. xi1. 93 (1812): Buvres Complites, x. 36.

1 A polariser is an instrument for obtaining a polarised beam of light: it is called an
analyser, when it is used for investigating the character of a stream of light or for reducing it to
a given plaine of polarisation.

Y Mém. de @y prem. Classe de VInstit. xir. 185; xir. 17 partie 1, 2° partie 1, 31 (1812). AMém.
d’Arceuzl ut, 132 (we13).  Traité de Phys. 1v. (1816).

§ Treatise on New \Philosophical Instruments. Edinburgh (1813), p. 336, Phil. Trans. c1v.
187 (1814).

|| Quarterly Review, Xx 42 (1814) : Misc. Works, 1. 269.
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results of Biot’s experiments he observed, that a plate of crystal in polarised
light exhibits the same tint as a thin plate of air in transmitted light, when
its thickness is such that the relative retardation of the ordinary and the
extraordinary streams produced by the crystal is the same as that of the
interfering streams in the case of the plate of air, and from this fact he drew
the inference that the phenomenon is the result of the interference of these
two streams.

This explanation is, as was recognised by its author, incomplete, for it
makes the phenomenon of colour depend upon the plate alone and leaves out
of account the action of the polariser and the analyser that are found to be
necessary for the production of the interference. In order to remove this flaw
in Young’s explanation, Fresnel and Arago* devised a series of experiments
to determine whether and in what manner polarisation of the light modifies
the ordinary laws of interference. The results of these researches are summed
up in the following five laws of the interference of polarised light.

(1) Two streams of light polarised in perpendicular planes do not
interfere under the same circumstances as two streams of common light.

(2) Two streams polarised in parallel planes give the same phenomena
of interference as two streams of common light.

(8) Two streams, polarised at right angles and coming originally from
a stream of common light, can be brought to the same plane of polarisation
without thereby acquiring the faculty of interfering.

(4) Two streams, polarised in perpendicular planes and coming originally
from a beam of polarised light, interfere as common light when brought to
the same plane of polarisation.

(5) When two streams, coming from a stream of polarised light, are first
polarised at right-angles and then brought to the same plane of polarisation,
it is necessary in calculating the conditions of the interference to add a half
wave-length to the actual relative retardation measured in length, unless the
initial and final planes of polarisation lie in the same angle between the two
perpendicular planes.

These laws are a direct consequence of the transversality of the polarisation-
vector, already deduced in Chapter II as a result of the first law. Thus the
gain or loss of half an undulation required in accordance with the fifth law
appears at once as due to the process of resolution of the vector; and this
explains the necessity of the polarisation of the primitive light for the
production of interference with two streams polarised at right-angles and
subsequently analysed, for common light may be represented by two in-
dependent streams polarised at right-angles, and as the interference

* Fresnel’s experiments were commenced in 1816 (Euvres Completes, 1. 385); Fresnel and

Arago published their memoir in 1819 (4nn. de Ch. et de Phys. (2) x. 288; (Guvres Completes de
Fresnel, 1. 509; Fuvres Complétes d’Arago, x. 132).
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phenomena due to these two streams are complementary, they will obliterate
one another.

170. In the final series of experiments by which Fresnel and Arago
established the laws of interference of polarised light, the arrangement was
adopted that had already been employed by Young for producing interference
fringes with common light.

A stream of light from a luminous point fell upon an opaque screen
pierced with two parallel slits near to one another, and after passing through
these apertures was received in an eye-lens. The light that traverses the
slits gives rise to two systems of diffraction bands, with which we need not -
concern ourselves, and intermediate to these a set of interference fringes, that
will be displaced to the right or the left, according as the stream from the
slit on the right or the left side is retarded relatively to the other.

On placing a thin plate of selenite before the two slits it was found that
no change in the phenomenon occurred, a single system of fringes being
produced exactly as was the case before the plate was introduced. From the
position of these fringes it is clear that they are due to streams that have not
acquired any relative retardation in traversing the selenite, and they must
consequently be ascribed to the superposition of two systems of bands, the
one produced by the ordinary streams, the other by the extraordinary streams
coming from the two slits. It follows then that two streams polarised in
parallel planes interfere as common light.

If streams polarised in perpendicular planes also interfere, there could be
two additional systems of fringes, situated on either side of the former and
arising from the interference of the ordinary stream from the one slit and the
extraordinary stream from the other slit. No trace of these fringes was
however seen under any circumstances, nor did they become visible when
the light after passing the eye-lens was analysed in a plane inclined to the
principal section of the selenite.

In order to place this result beyond a doubt, the plate of selenite was
then cut in half, and replaced in front of the slits, after the half covering one
slit had been turned in its own plane through a right-angle. The central
system of fringes then disappeared and was replaced by the two lateral
systems, due to the ordinary stream from the one slit interfering with the
extraordinary stream from the other, these now being polarised in parallel
planes and retarded relatively to one another. The two ordinary streams, as
also the two extraordinary streams, no longer interfered, as they were polarised
in perpendicular planes.

Returning to the arrangement of the first experiment, the light incident
on the selenite was next polarised in a plane at 45° to its principal section,
and a rhomb of Iceland spar was placed before the eye-lens with its principal
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section parallel to the primitive plane of polarisation: then in each image
given by the spar the central system of fringes, together with the two lateral
ones, was produced, and the lateral systems in the extraordinary image were
seen to be displaced so as to become complementary to the lateral systems in
the ordinary image. This experiment proves the fourth and the fifth laws;
but in order to check this result, Fresnel substituted for the rhomb of spar
a plate of selenite too thin to give sensible separation of the images, and then
found that the six systems of fringes gave by their superposition only one,
the lateral systems being blotted out, which proves that these systems in the
case of one plane of analysation are obtained from those analysed in the
perpendicular plane by the addition of a half-wave to the actual difference
of path.

171. Fresuel’'s and Arago’s experiments have been modified and extended
by subsequent observers*, and we owe in particular to Macht an experiment
that may be described, as it possesses a special theoretical interest.

We have seen that, when a telescope is focussed on a narrow line of
monochromatic light and the object-glass is limited to a slit parallel to the
line, the geometrical image of the line is bordered by a system of diffraction
fringes, and that on covering one half of the slit with a retarding plate the
bands of an odd order are shifted towards the side of the retarded stream,
while those of an even order retain their position. If the light that passes
be white, the diffraction phenomenon may be analysed by a spectroscope with
its slit in the plane of the pattern and perpendicular to the fringes, and
a spectrum is then obtained with dark bands running along it, that approach
one another as the blue end of the spectrum is neared.

This was the arrangement that was adopted by Mach, who covered the
two halves of the slit with equal plates of quartz cut parallel to the optic
axis and so placed that their principal sections were perpendicular to one
another.

If we suppose that the slit is vertical and the plate on the left-hand side
has its principal section vertical, the streams that we have to consider are L,
and L, from the left-hand half polarised respectively in a vertical and
horizontal plane, and the corresponding streams E, and R, from the right-
hand half of the slit, and of these L; and R, are retarded relatively to L, and
R;, by an amount that increases from red to violet light.

Now L, and R,, being polarised in parallel planes, will give rise to
a system of fringes, and as R, is retarded relatively to L,, the bands of
an even order will retain their former posmons but those of an odd order
will be displaced towards the right by an amount that increases considerably
as the wave-length diminishes. A similar result is obtained from the streams

* Stefan, Wien. Ber. Lin. (2) 548 (1866); Lxvr. (2) 425 (1872).
+ Mach and Rosicky, tbid. Lxxi. (2) 197 (1876).
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L; and Ry, the displacement being in this case to the left. Finally, as regards
the stream resulting from L, and R,, as also that resulting from L; and R,
these are polarised in perpendicular planes and consequently give rise to no
interference. Hence instead of the bands ¢ and b seen with an uncovered
slit, the spectrum will be traversed by three series of lines @, ¢, d.

a b _a b b a b ac dac dce dac da

e |
\ \ |
\\ | \ / ,“ //

Fig. 39. Fig. 40.

The insertion of a polarising prism either before the slit or in the
eye-piece does not affect the phenomenon, unless the plane of polarisation
or of analysation is either vertical or horizontal, but in these two cases the
bands d and ¢ respectively disappear.

Next let a polarising prism be introduced both before the slit and in the
eye-piece of the telescope, the planes of polarisation and analysation being
inclined at an angle of 45° to the vertical : then we have four streams L,, L,
R,, B, of equal intensity coming from the same polarised stream and finally
brought to the same plane of polarisation. If then the planes of primitive
and final polarisation be parallel, the streams L, and Ry, as also the streams
L, and R, will give the system of bands @ and b, since they start from the
slit without any relative retardation, and in addition, inasmuch as the stream
resulting from L and R, is retarded relatively to that resulting from L, and
R; by an amount that is constant for any one wave-length, and increases from
the red to the violet, there will be a set of horizontal bands e, exactly the
same as would be obtained if one of the plates of quartz were placed between
the polariser and the analyser and the light traversing the system were
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analysed by the spectroscope. When the planes of polarisation and analysa-
tion are crossed, we have to add A/2 to the actual retardation in length, and
the system @ will remain unchanged, while the system b will be displaced by
an amount corresponding to A/2, which will bring them into coincidence with
the bands a, the central band becoming dark : similarly the horizontal system
of bands ¢ will be replaced by the complementary system ¢’

b a. b aa g ‘li
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Fig. 41. Fig. 42.
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172. Returning now to the interference phenomena produced by crystal-
line plates, let us suppose that a stream of light is received on a screen after it
has traversed an optical system containing a polariser, a plate of crystal and
a second series of lenses containing an analyser. The interference at any
point on the screen is the same as at its image formed by the second set of
lenses, when the light emanates from the image of the actual source due to
the first optical system, and we may consequently suppress the lenses and
consider merely the passage of light from a polarised source L through the
plate of crystal to a screen S, the streams on arrival being supposed to be
reduced to a common plane of polarisation. For the sake of simplicity we
may assume that L and S are parallel to the faces of the plate.

. Let us first consider a single point O of the source. Since the two
streams from O that meet at a point P of the screen pass through the crystal
in different directions, their planes of polarisation after traversing the plate
are not strictly at right-angles, but this effect of the double refraction on
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the polarisation may be left out of account in most practical cases, and to the
same degree of approximation we may also suppose that these planes of
polarisation and the initial and final planes of polarisation intersect one
another in the same straight line. -

Hence if a, B, Y be the angles that the primitive and final planes of
polarisation and the plane of polarisation of the quicker wave within the
plate make with a fixed plane, and if & be the relative retardation of the
streams at P measured in length in air, the effect at P for light of wave-
length A is represented by the vector

{ax cos (Y — a) cos (Y — B) + ax sin (Y — a) sin (Y — B) e} e,
where « = 2m/\, n =27/, the change of amplitude due to the refractions

being neglected, and if @,® represent the primitive intensity, that at the
point P will be

I = a,? cos? (Y — a) cos® (Y — B) + ax? sin® (Y — a) sin? (Y — 3)
+ 2a,? sin (Y — a) cos (Y — a) sin (Y — B) cos (Y» — B) cos «d
= ap?cos? (B — a) — aa? sin 2 (Y — a) sin 2 (Y — B) sin?(w8/N)......... ).
Hence when the light that passes is white, the intensity is
I =cos*(B —a) Zpax? — Zpaa?sin 2 (Y — a) sin 2 (Y — B) sin? (w8/N)...(2),
the summation extending to all the constituents of the composite stream.

The first term in these expressions represents what may be called the
. fundamental intensity, that is the intensity when the plate of crystal is
removed, and in the second case has no effect in producing colour at P; but
in the second summation 8/A and in general 4+ depend upon the wave-length,
so that the different constituents of white light enter in different degrees,
and this summation is the representation of a stream of more or less coloured
light.

173. We must now determine the relative retardation at P of the two
streams emanating from 0. Let
. T be the thickness of the plate,
‘R, K. the distances of its surfaces from O and P respectively,
&;;t,‘; 'b, :phe angles of incidence on the plate,
T, 7% the corresponding angles of refraction,
'y iy the refractive indices: then
\- 8= (k4 1) (seci, —sec ) + T (uy sec Ty = pnSECTY).oinnne, (3),
with the condition .

0 = (R4 Ay (tan i: ~ tan ) + T (tan 7y — (AR T3 wecervereenne. @);
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whence multiplying (4) by sin s, and subtracting it from (3), we have

8=(h7}-h’)1_cos(i2_i‘)+ T{,U'n—sini,sinrg_yl—sinilsinrl}‘

COS 1, COS 7y cos 7,
(o}
h
A% A,
Bl B?
L'
P
Fig. 43.
Let w=I—e t4=I+e n=R—n, r=R+n,,
where sin I = p, sin R, = y, sin R,,

e 71, 1: being small quantities, since the doubly refracting energy is in most
cases weak ; then

s — SID % SIN 77

COS Ty

> sm I cos® R, + ecos I sin? R, — n,sin I sin R, cos R, 1 sin R,
sin R, cos R, ( ™ Gos Rg)
= sin I cot R, + ¢ cos I tan R,,
py — Sin g, sin 7y
cos 1,

= sin 1 cot R, +ecos I tan R, ;

whence neglecting e*

8= Tsin I (cot R2 — cot R,) + Tecos I (tan R, — tan R))

= T'sin I (cot R, — cot R,) + TeCOSI%
= Tsin'T(cot By— cot R,) voo..oon.ooe BRENEREY L. (5),

since esin (R, — R,) is of the order of the terms neglected:

To this approximation then the relative retardation is independent of the
distances of O and P from the plate, and depends upon the mean of the
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angles of incidence on the plate, or on the mean of the angles at which the
interfering streams meet the screen at P.

174. Suppose now that the colour due to the light from O appears to be
the same over a circle B surrounding the point P, then for all points of this
circle the second term in the expression (2) must represent a stream of light
of a practically constant tint, which may be expressed by the inequality

M+e>3Sraisin2 (Y — a)sin 2 (Y — B) sin® (wé/A) > M —e...... (6),

the colour represented by M being independent of the actual value of a,,
provided 2a,* constitutes a stream of white light, and e representing a very
small variation of tint.

Let us now limit the source to a circle 4 round the point O, such that
the rays from any point of the contour of A that meet at P are parallel to
the rays from O that intersect at some point on the edge of B. Then the
intensity at any point of the area B will be

T {cos? (B —a) Zaan? — Zaa?sin 2 (Y — a) sin 2 (Y — B) sin? (w3/A)}...(7),

the summation X extending to all points of 4 that contribute to the illumi-
nation of the point in question. But the rays from any point of 4 to any
point of B are parallel to those from O to some point of this circle B and
therefore the relation (6) holds for each term of the summation 3 and each
contributes to the illumination light of practically the same tint, so that the
colour of the area B is unaffected by an extension of the source to the
amount assumed, this result being independent of the distance of the screen
from the plate.

Now the relative retardation of the streams from O at any point of the
screen is, as we have seen, independent of the distance of the point from the
plate and depends upon the mean angle of incidence on the screen and
therefore the area B, for which the relation (6) holds, increases as the screen
is moved parallel to itself away from the plate. From this it follows that
with a source of given size there is a limiting distance of the screen from
the plate,at which the interference is first seen and beyond which it is
always visible.

The expression for the retardation shows that for an uniform tint over
the whole field the light must consist of nearly parallel rays. In this case
the colour is‘,@bﬁble on the surface of the plate itself, and the fringes
seen with crystalline wedges and the patterns given by the superposition of
plates of varying thickness are localised on the crystalline surface, since in
other planes the %’to a given point from the different available points
of the source travem mystal at places where the thickness is different
and the relation (6)‘me‘lenger holds for the different constituents of the
summation (7). ihinggs.

A
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On the other hand with a conical pencil, giving the phenomena of rings
and brushes, there is partial localisation, as an extension of the source leads
to an obliteration of the interference until the screen is at a considerable
distance from the plate, and in most cases, particularly when the light is
monochromatic, the rings and brushes are only seen in the principal focus of
the observing system of lenses, an indefinite extension of the source being
then permissible.

175. The two classes of interference, produced by crystalline plates,
though very different in appearance, are in reality explained by the same
principles: in the case of nearly parallel light, the expressions (1) and (2)
have the same value over the whole extent of the field, while in the case
of the rings and brushes, observed with conical pencils of light, the intensity
varies from point to point of the plane, in which the phenomenon is
observed.

Let us first consider the simpler case, in which the light is nearly parallel.

When the light is monochromatic, the intensity is given by
I = a? {cos? (B —a) —sin 2 (Y — o) sin 2 (Y — B) sin® (w/\)},

and if the polariser and analyser remain fixed, while the plate is rotated in
its own plane, there are eight positions given by

Y=a, =w/2+a w+a 37/2+a B, w2+B, w+B, 372+,
in which the intensity is the same as before the introduction of the plate, and
between these positions the intensity becomes a maximum or a minimum.

If however 8= n), the intensity is unaltered by the rotation.

In the special case in which the planes of polarisation and analysation
are parallel, the intensity is

a? {1 — sin® 2 (¥ — @) sin? (w8/M)},

and is a maximum when the planes of polarisation of the streams within the
plate are parallel and perpendicular to the primitive plane of polarisation

and is a minimum when they are inclined at 45° to this plane, the field
being completely dark in this case, when 8= (2n+ 1)A/2.

When the planes of polarisation and analysation are crossed
I =a?sin® 2 (¥ — a) sin® (wé/\),
and the field is dark if § ==\, and in other cases the light is entirely cut off
when the planes of polarisation of the transmitted streams coincide with the
initial and final planes of polarisation.
When the initial light is white, the intensity is given by the expres-

sion (2). In strictness, the angle 4~ is dependent upon the wave-length, but
when the dispersion is weak relatively to the double refraction, the product
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sin 2 (Y —a) sin 2 (Y» — B) has sensibly the same value for all terms of the
summation, and we may take as the expression for the intensity
I = cos?*(B — a) 2a,? —sin 2 (Y — &) sin 2 (¥ — B) Za,’ sin? (w8/\).

Since then the first term in this expression represents a stream of white
light, the plate will appear uncoloured, when the plane of polarisation of
either of the streams transmitted by it coincides with either the primitive or
final plane of polarisation. In intermediate cases the field is coloured, the
tint changing to its complementary as the plate passes through one of these
eight positions, since the second term in the expression for the intensity then
changes sign.

The plate exhibits only one colour during its revolution, when the planes
of polarisation and analysation are either parallel or crossed ; as the intensity
in these cases is given by ?

I =Za,*—sin® 2 (Y — a) Za,? sin? (w8/N),
and I =5in*2 (Y — a) Za,? sin? (wd/0),
respectively, the colours being thus complementary.

If the polariser and plate remain fixed, while the analyser is turned, the
plate exhibits no colour for four positions of the analyser given by

B=v, ¥v+m/2, ¥+m Y+37/2
and the colour changes to its complementary tint, as the analyser passes
through one of these positions.

176. The crystalline plate shows no colour when it is very thin and also
when its thickness exceeds a moderate amount. The reason for this is
obvious: in the former case, the retardation of phase varies so little with
the wave-length, that the resulting intensity is practically the same for all
colours; in the latter case it alters so rapidly that for a slight change in the
wave-length the intensity passes from a maximum to a minimum, and con-
sequently so many constituents of the white light are weakened and these
are so close to one another in colour that the light presents to the eye the
appearance of being white. The true character of the light may be ascer-
tained by analysing it with a spectroscope, when a spectrum is obtained
traversed by dark bands corresponding to the tints that are weakened or
annulled.

It is however possible, even with thick plates, to obtain the phenomenon
of colour by combining two of them in a suitable manner between a polariser
and an analyser: in order that this may be effected, the retardations of phase
introduced by the two plates must nearly balance one another.

Making the same assumptions with respect to the polarisations as in the
case of a single plate and neglecting the effect of the refraction from: the
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first into the second crystal, let the primitive and final planes of polarisation
and the planes of polarisation of the quicker waves in the two plates make
angles a, 8, ¥, ¥, respectively with some fixed plane, and let § be the
relative retardation in length in air for the two streams of given wave-length
that traverse the.second plate with the same speed, 8, that for the two
streams that pass through'the first plate at the same rate; then after
traversing the analyser, the resultant stream will be represented by the
vector

a [[cos (Y, — @) cos (Yrz — ;) — sin (Y, — &) sin (Y, — V) e84} cos (Y, — B)
+ {cos (Y, — @) sin (Y, — Y,) e
+ sin (Y, — @) cos (Yry — ) e~ it} sin (Y, — B)] ent
= {4 + Be~ % 4 Ce=% 4 De=Gitd} gt (say),

and the intensity, obtaining by multiplying this by the conjugate ex-
pression, is

A*+ B*+ C*+ D*+ 2 (AB + CD)cos k8, + 2 (AC + BD) cos 8,
+ 2BC cos « (8, — 8,) + 24D cos « (8, + &,)

=(4+B+C+ Dy —4(AB+ CD)sin® (w8,/A) —4 (AC + BD)sin? (78,/\)
—4BCsin? {7 (8, — &,)/A} — 44 D sin? {7 (8, + 8,)/A}

=q? {0052 (B—a)+sin 2 (Y, — a) cos 2 (Y, — B) sin 2 (Y, — V) sin? -71;%“

—cos 2 (Y, — a) sin 2 (Y, — B) sin 2 (Y, — Yr,) sin? 7;:82
+ sin2 (Y, — @) sin 2 (Y, — B) sin? (Y, — 4r,) sin? 7"—(8—17\‘:—82—)
— bin 2 (4, — @) 8in 2 (W, — B) 008 (s = ) sin? ﬂ{ﬁ)} ......... ®).

It follows from this that the combination acts as if only the first plate were
present, when the plane of polarisation of the quicker wave in the second is
parallel or perpendicular to the plane of analysation (Y,=p or 8+ 7/2) and
that the first plate is inoperative, when the plane of polarisation of the
quicker stream within it is parallel or perpendicular to the primitive plane
of polarisation (Yo, =a or a + 7/2). According as the planes of polarisation
of the quicker waves in the plates are parallel or crossed (Yr,=+n or
v + m/2), we have

I=a {cos* (B — &) — sin 2 (Y, — a) sin 2 (Y, — B) sint T2+ (31; 52)}

and

A
w. ? 18

a=1a {cos2 (B—a) —sin 2 (Y, — a) sin 2 (Yr, — B) sin® M} ;
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that is, the combination acts as a thicker or a thinner plate than either
of the two constituent plates.

From the foregoing investigation we obtain a very delicate test for slight
traces of double refraction in a plate. When the retardation of phase for
light of mean wave-length amounts to = or to a small multiple of m, a
crystalline plate between a crossed polariser and analyser shows in white
light a distinctive greyish violet colour, known as a sensitive tint from the
fact that it changes rapidly for a slight alteration in the retardation, becoming
blue or red according as the retardation is increased or diminished. If then
the plate to be tested be combined with a plate giving the sensitive tint, a
slight trace of double refraction will be made manifest by a change of colour.
The test is rendered still more delicate by cutting the sensitive plate in two
and reuniting the halves after the one has been turned in its own plane
through a right-angle: since now the planes of polarisation of the quicker
waves in the two halves of the plate are perpendicular to one another, the
tint of the one half will be raised and that of the other will be lowered,
if the compound plate be combined with a second plate giving double
refraction*.

177. If instead of a parallel beam of light a conical pencil be incident
on a crystalline plate, the intensity varies from point to point of the field and
the complete discussion of the phenomenon becomes very complicated. If
however we confine our attention to directions making no great angle with
the axis of the pencil, we may simplify the investigation by assuming that
the planes of polarisation and analysation are constant over the field and that
the planes of polarisation of the streams within the plate are at right-angles
to one another and intersect the planes of primitive polarisation and of
analysation along the axis of the pencil. The intensity is then given in the
case of monochromatic light by the expression (1), namely

faat {cos’ (B — &) —sin 2 ( — @) sin 2 (y — B) sin?® ”TT} ...... ),

wherein 4 and 8 alone depend upon the direction under consideration.

The interference phenomenon is thus characterised by three systems of
curves; the curves of constant retardation, & =const.; the curves of like
polarisation, yr = const.; and the curves of constant intensity, / = const.

At all points of the field, for which
sin 2 (Y — &) sin 2 (Y — B) sin? (w8/A) = 0,
the intensity is the same as when the plate is removed. This equation

defines (1) a system of curves, for which the relative retardation is an
integral number of wave-lengths 8 = n, (2) lines of like polarisation Y = a

* Bravais, Ann. de Ch. et de Phys. (3) xri11. 129 (1885).
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or a+ /2, yr =B or B+ m/2, that is lines joining the points for which the
streams within the plate are polarised in planes parallel and perpendicular to
the planes of primitive and final polarisation. These systems of curves are
called respectively the principal curves of constant retardation and the
principal lines of like polarisation. The latter lines divide the field into
regions in which the intensity is alternately greater and less than the
fundamental intensity, but when the planes of polarisation and analysation
are parallel or crossed (8 =2 or 7/2 + a), the two pairs of lines coincide and
the intensity of the field except on these lines and on the principal curves of
constant retardation, is in the former case less and in the latter case greater
than it was before the introduction of the plate.

Unless the dispersion of the optic axes is considerable, the principal lines
of like polarisation vary but slightly with the wave-length and thus with
white light appear practically uncoloured : they are hence often called the
achromatic lines. The principal curves of constant retardation on the other
hand depend upon the wave-length, but in general each curve within a region
bounded by principal lines of like polarisation, has the same colour in white
light throughout its length, which changes into the complementary tint on
passing into the adjacent region: when however the pairs of principal lines
of like polarisation coincide, the hue is the same along the whole curve of
constant retardation, whence they are sometimes called the isochromatic
curves. When the dispersion of the optic axes is large, this is not the
case and the curves of constant retardation are far from isochromatic.

178. The principal curves of constant retardation and the principal lines
of like polarisation divide the field into spaces, in which there is a point
of maximum or of minimum intensity surrounded by curves of constant
intensity

cos? (8 — a) —sin 2 (Yr — &) sin 2 (Y — B) sin? (78/\) = const.
in which ¥+ and & are regarded as variables.

The points of maximum and minimum intensity are situated at the
intersection of the curves of constant retardation &=(2n+1)A/2 with
the two pairs of lines of like polarisation

v=(+8)2 ¥ =(a+B+m)2
and Y=(@+B)2+m/t, P =(a+PB)2+3m/4
respectively..

Let us consider the region of the field between the lines 4y =a and =2
and write

—sin 2 (Y —a)sin 2 (Y — B) sin? (wd/\) =k ;
then curves in this region with intensity-constant & are touched by the lines
of like polarisation Y = (a + B)/2 £ 5, where
—sin(2n+B —a)sin(2n— B+a)=k,
18—2
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or sin 29 = V/sin? (B — a) — k,

at the points in which they are cut by the curves of constant retardation
8=(2n +1)A/2, and are also touched by the curves

d=nr+4, d=(Mn+1)rA-A,
where sin? (B — a) sin® (mA/N) =,
at the points in which they are intersected by the line of like polarisation
Y= (a+ B2

Further each curve with intensity-constant % is cut by a curve of constant
retardation 6 =nA + ¢, (¢ > A) in points on the lines of like polarisation

¥=(@+8)/2+7,

where sin 27 = Vsin? (B — a) — k cosec® (me/\),

and the other points in which these lines meet the curve are on the curves
of constant retardation §=(n+1)A—e Hence if §,, &, be the relative
retardations at the points in which a line of like polarisation meets an
intensity-curve k in a space of order n, &', — 8, = A — 2¢ is independent of the
order of the space and &', + 8, =(2n + 1) A is independent of e and hence of
the intensity-curve k. Moreover if 8,_;, &',_, be the relative retardations
at the points in which the same line of like polarisation meets the curve
with the same intensity-constant 4 in the space of order (n—1), we have
&p_1=n\—¢ whence 3,—&,_,=2¢ is independent of the order-number =
and 8, + &',—; = 2n\ is independent of the intensity-constant %.

Similar results will clearly hold for the other regions of the field*.

179. We have seen that the relative retardation of the interfering
streams at a given point of the pattern is 7'sin<(cot r,—cotr,), where 7' is
the thickness of the plate, + the mean of the angles of incidence of the
streams, and 7y, 7, the corresponding angles of refraction. Since by Huygens’
principle the traces of the incident and refracted waves on the face of the
crystal travel with the same speed, this expression is equal to QT (n, —n,),
where Q is the distance traversed by the light in air in unit time, and n,, n,
are the reciprocals of the intercepts on the normal to the plate through
a point O of the surface made by the refracted waves in unit time after
passing through O..

Hence if the axis of { be normal to the plate and
lf+m”l+n1§=1, lf’*'m"?‘*'"z::l,
* Lommel, Pogg. Ann. cxx. 69 (1863); Wied. Ann. xxxrx. 258 (1890). Niven, Quart. J. of

Math. xir. 174 (1874). Glazebrook, Proc. Camb. Phil. Soc. 1v. 299 (1883). Spurge, ibid. v. T4
(1885); Camb. Phil. Trans. x1v. 63 (1884).
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be the equations of the waves in unit time after passing through O, their

relative retardation is
8=QT (n,—n,);

also 6 being the azimuth of the plane of incidence with respect to that of £¢
l=sin 7 cos 6/Q, m =sin ¢ sin 6/Q.
Let the plane of £¢ be chosen so as to contain the greatest axis Oz of the
ellipsoid of polarisation, the plate lying on the side of positive ¢, then if Oz,
Oy, Oz be the axes of the ellipsoid, and yOn = ¢, 20¢ = x, the transformation

from the axes of optical symmetry to the new axes, may be effected by the
following successive transformations, each in one plane :

(1) through an angle ¢ in the plane of zy from Oz, Oy to Ow,, O,
(2) through an angle y in the plane of zz, from Oz, Oz, to 0O, OF.
The formule for these transformations are :
x =z, cosp— 7 sin ¢, Yy =z, sin ¢ + n cos P,
" my=Ecos y+ {siny, z=—§siny+ {cosy,
from which we obtain
x=§cos ¢ cos y —msin ¢ + ¢ cos psin y,
y=Esin ¢ cos y +ncos ¢ + ¢ sin $sin y,
z=—Esiny + Lcos .
Now the equation to the wave-surface referred to the axes of optical

symmetry is
a’r? b2y2 c2z?

ol—at ot—-0b? o"—62=0’

and the condition that the plane lz + my +nz=1 should be a tangent plane
to it, is obtained by eliminating » between the equations

0.

& m? n?
*= (I +m*+ n*)™ and e A AT

Hence the condition that in the new system of coordinates the plane
lE+my+nE=1

should touch the wave-surface is found by eliminating o between the

equations -
ot () 4 WY 7o o T SR (10),

(lcosq’)cosx—msinqS+ncos¢sinx)“+(lsin¢cosx+mcos¢+nsinquinx)’

a® — o? b — o?

+(lsinx—ncosx)2=0

62_ (02

The result of this elimination is a biquadratic in m, that from the nature of
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the problem has two real positive and two real negative roots, and if n,, n, be
the positive roots, the relative retardation is

8= QT (n,— ).

Writing b =a for the case of an uniaxal crystal, equation (11) gives the
two equations

©®—-a*=0 and {( cos yx +nsiny)* + m?} (0 — c?)

4 + (Isin ¥ — n cos x)* (0* —a?) = 0,
and the values of n are given by

a?(P+m+n?) =1,
(P +m+n?)—1+(a®—c*)(Isin y —ncos y)=

2
whence Ny == \/l - E}I;T R

ny= {¥/(a? cos® x + ¢*sin’ x) (1 — ¢* sin?1/Q?) — ¢* (a* — ¢?) sin? iy cos? @ sin? 7/ Q2
+(a*— ¢*) sin y cos cos 6 sin 1/Q} + (a? cos? x + ¢? sin® )

and

N —a*sin’s (a2 — ¢?) sin 7y cos  cos 6 sin ¢

a a? cos? y + ¢?sin?y

)3l o

"/(az cos® x + ¢?sin? y) (2 — ¢?sin*s) — ¢* (@ — ¢*) sin® y cos® B sin*¢ (12)
a?cos?  + ¢* sin? A A ¥

In the special case of a plate perpendicular to the optic axis (y = 0)
8/ T={NQ?—c*sin? ¢t — ¥V — a?sin’i}/a,
and when the plate is parallel to the optic axis (y = 7/2)
8/T = VO* — (a* cos? G + c*sin? 0) sin?1/c — ¥ O* — a* sin?i/a.

Taking now the case of a biaxal plate perpendicular to the greatest axis
of the ellipsoid of polarisation, the biquadratic becomes

(bzczlz i ctaim? EL aab2n2) ( l2 +m2+ 71,2)
_(be+c2)lz_(cz+a2)mz __(az+ bz) n+ 1___0,

or
a?bint — (a2 + %) — b* (¢* + a?) 12 — a2 (b + ¢®) m?} m?
+ {1 - (PP+m?)} {1 - b1 — a*m?} = 0,
and 7,, n, being the positive roots
(ny— m)'a?b? = a® + b — b (¢ + a?) I* — a? (b* + ¢*) m?
— 2ab V{1 — ¢ (I*+ m?)} {1 — b* — a*m?},

whence
a’b? % =(a*+b*) Q* — {b*(¢* + a?) cos® @ + a2 (b* + ¢*) sin? 0} sin? ¢
— 2ab V(92 = ¢*sin? 5) {Q2 — (b° cos? 0 + a?sin? 6) sin? ¢f...... (13).
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In the general case of a biaxal plate cut in any direction, the relative
retardation cannot be expressed in finite terms, and it is necessary to have
recourse to an approximate solution*,

To obtain the Cartesian equations of the curves of constant retardation,
we have to write

E=fcosftanv s feos O sing, 1 =fsin @ tan ¢ = fsin @ sin <,
since ¢ is supposed small. In these expressions fis a constant and when the

interference is observed in the principal focal plane of a system of lenses, is
equal to the focal length of the optical system.

180. Let us now determine the lines of like polarisationt. If 04, 04’
be the directions of the optic axes of the crystal, we know that the planes of
polarisation of the waves, that travel in a direction .OM within the crystal,
bisect the angles between the planes MOA, MOA’, that is they are tangent
planes to the cones through OM that have the optic axes for their focal lines.

Referred to the principal axes of the crystal, let the general equation of
the cones be

iy Al ey

A+t o= 0;
then the equation of the focal lines is

z* 2

A= BB
so that 2¥ being the angle between the optic axes, 4, B, C are connected by

the relation
tan* ¥ = (4 — B)/(B - 0).

The tangent plane to the cone along the line #/z’ =y/y = z/2' is

and if this be perpendicular to the plane Az + uy +vz=0 we have
' [|A + py' |B+vz'/C =0.
Eliminating then 4, B, C between this equation and
#?|A + y?/B+2?/C=0 and tan* ¥ =(4 —B)/(B - 0),
we obtain the equation of a cone, such that the planes of polarisation of the
waves, that travel along its generating lines, are parallel and perpendicular to
a given plane.
* Proc. R. 8. Lxur. 83 (1898): cf. also Zech, Pogg. Ann. XcviL 129 (1856); cm. 354 (1857).

+ Macé de Lépinay, J. de Phys. (2) 1. 162 (1883). Lommel, Wied. Ann. xviL 56 (1883);
Pogg. Ann. cxx. 69 (1863). Pitsch, Wien. Ber. xo1 (2) 527 (1885).
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First we have

1/4 » 1/B - 1/C
V7 ud — vy~ 7 (ol —22) &y Oy — )’
or A:B:C::&[(ue —vy): o (v =NZ') : 2/(Ny’ — pa') ;
but Acos“I’——B+C’sﬁn“I’=0,

whence substituting for 4, B, C,

z' cos* ¥ y 5 Zsin? ¥
pd —vy v — AN Ny —px

a cone of the third degree passing through the two optic axes.

Now to the approximation adopted in finding the expression for the
intensity, the direction (X, u, v) is parallel to the surface of the plate, whence
these direction-cosines are connected by the relation

cos¢psiny.A+sin¢psiny.u+cosy.v=0,
and the form of the lines of like polarisation is determined by finding the
section of the cone (14) by the surface of the plate

cos psiny.z+singsiny.y+cosy.z=1.

181. In the case of an uniaxal plate, ¥ =0, and the surface of like

polarisation becomes the plane
pa’ — Ay’ =0,
and the cone of the second degree
y(@ 4y~ £ (' + py) = 0.

Taking the same axes as in the case of the curves of constant retardation,
we have to write £cosy + ¢siny for &, 5 for 3/, — Esiny + { cos ¢ for 2/, and
Ncosy+ v siny for A, u’ for u, — A\ siny+v cosyfor »: but the line, for
which the original direction-cosines were A, y, v, is parallel to the surface of
the plate, hence »'= 0 and if it make an angle v with the axis of £,

# =sin, A =cos
Making these substitutions and writing {= 7, the equations of the lines of
like polarisation become

E—ncoty+ Ttan x =0,
[ 7 tan y — Entan 4 tan x + T (E+ ntany + T'tan x) = 0.

The first of these equations represents a series of straight lines through
the extremity of the optic axis (§= — T'tan y, n = 0), and the second a system
of hyperbolas through the same point, the asymptotes of which are the trace
of the principal section of the plate and the line

7n— & tan = 0.
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The curves of constant retardation are in this case given by (12) or to
terms of the second order by

_8__9_(_)._{_1(&’ 21n2 s 6 si
=3 g —gi Sin 2y co in ¢
1 = Woan e
+2(Q Qd)sm@sm%+2(Q st)cosﬂsmz

where d? is written for a? cos?x +c?sin?y. Hence their equation is
o _ O 0. -lat-¢ f 1 Ny 1l/a a* &
T Rl s 4Ry 2(9 Qd>f2+ (Q st)fﬁ'

The centre of the curves is at the point

E=—§'a:(d3 )sm2x, 7=0

and is at infinity, if d*= ac? and as the coefficient of £ is then zero, the curves
are parabolas with their axes in the principal section of the plate: the value
of y corresponding to this case is given by
ot (a} — c%) ot

F— gty giettct

2 —
Ccos* y =

which always gives a possible value of x. According as x is less or greater
than this value, the curves will be ellipses or hyperbolas.

The curves can never become straight lines, as the coefficients of £ and »*
cannot simultaneously vanish.

182. When the uniaxal plate is perpendicular to the optic axis, the
curves of constant retardation are given by

3 VO —csins VP —a?sin’s_ (aF—¢)sin’e

7. a i a L 2R
when i is small. For the principal curves of constant retardation =7\ and
with small fields the squares of the sines of the angular radii of these curves
form an arithmetic progression.

The lines of like polarisation in this case are
E—mncotr=0, E+ntany =0, -
and the principal lines of like polarisation are two pairs of straight lines
parallel and perpendicular to the planes of polarisation and analysation.
The illumination of a small area pdpdiyr of the field is
a? {cos? (B — a) — sin 2 (Y — a) sin 2 (Y — B) sin? (wp?/ F)} pdpd,

: 2aQNf? )
if we take the approximate value of 8 and write ¥ for @ ga {;‘ T Integrating
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this with respect to p, we obtain for the amount of light that falls on the
area of a curve of constant intensity included between the radii 4 and

Y +dy
$a? cos? (B — a) (p? — p?) dyr — 1a?sin 2 (Y — a) sin 2 (Y — B)

x ipf ipii= 2%_ (sin 27;’.’,722 B )‘l» dy,
where p,, p, are the distances from : the centre of the field to the points in
which the radius-vector cuts the curve. But we have (§ 178)

pl/F=n+ ¢/, p/F=(n+1)—¢/n,
whence the expression becomes
ta*cos? (B — a) F(1 — 2¢/\) dfr — Ja?sin 2 (Y — a) sin 2 ( — B)

{F(l 2e/x)+ 7 in 2—7’6} dopr,

which is independent of the order n of the space in which the curve is
situated, and is the same for all curves having the same intensity-constant.
This is true for each strip of the curves, and as all curves in a given region
that have the same intensity-constant, are touched by the same pair of radii,
it follows that the total illuminations of the areas bounded by each of the
curves of a given intensity are the same.

183. With an uniaxal plate parallel to the optic axis, the curves of
constant retardation are to terms of the second order

3

i RGN T angm N 20
T—a—c( )+ 50 (sm H—Ecos 0)s1n 1.

Hence their equation is

202 { acd

% Epd a Q(a—c)T_l}’

which represents a series of hyperbolas with asymptotes 7/&= + ¥a/c.

If the field be small, there are no lines of like polarisation, as the
polarisation of the streams within the plate is practically constant over the
field, and when the principal section is parallel or perpendicular to either the
plane of polarisation or that of analysation, the intensity is uniform. The
isochromatic curves are most marked, when the planes of primitive and final
polarisation are crossed and the principal section of the plate inclined to them
at an angle of 45°.

With larger fields, the lines of like polarisation are a system of hyperbolas
7= Entany + I = |
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having for asymptotes the lines =0, p=Etan+r. The real axis of the
hyperbolas is inclined at an angle yr/2 to the axis of £ and the real semi-axis is

TW2 cos ¥/(1 —cos ).

The principal lines of like polarisation can be best observed in white light
with plates so thick that the coloured bands are invisible: with a crossed
polariser and analyser they are seen as a black cross with its arms in the
planes of primitive and final polarisation, when the principal section of the
plate is in either of these planes, and in other cases they are a pair of
hyperbolas with their real axes in the quadrant containing the optic axis and
equally inclined to this direction, only one hyperbola being in the field, when
the angle between the principal section and the plane of analysation or
polarisation is small.

This affords a ready method of determining the direction of the optic axis
in the case of a plate parallel to it. Starting with the case in which the
achromatic curve is a black cross, the optic axis is parallel to one of the arms
of the cross: if the plate be now slightly turned in its own plane, the cross
becomes an hyperbola with its real axis in the quadrant, into which the optic
axis has turned*.

184. Taking now the case of biaxal plates, let us first suppose that the
surfaces of the plate are perpendicular to the mean line. The curves of
constant retardation are then determined from (13), which may be written

(a2 — )2 {Q*sin® ¥ + b* cos? @ sin? ¢ + a? cos? W sin? f sin? 1]*
— 4 (a* — ? b* *sin? ¥ cos? Osin?

azbz 82

TZ

athe ot
e =0

where 2V is the angle between the optic axes, and their equation is

(a*— 2 (B8 + a® cost W . o? + 2 f2sin® V)P — 482 (a2 — ¢ 1* Q* 2 sin* W

s : 4b4 484
_2Lbj{—28{(a2+bﬂ)Q’f”—b’(a“’+c’)‘g'2—az(b“+02)"f}"”a =0

-2 {(a? 4 8?) Q2 = b* (a? + ¢*) cos* O sin* ¢ — a? (b* + ¢*) sin* O sin* 1}

The lines of like polarisation are given by
g2 cost ¥ — (cos? ¥ cot Y — tan ) En — 7° = ESInEAPRT S (16).
A system of hyperbolas through the points corresponding to the optic axes
(£= + Ttan ¥, 5 = 0) having for their asymptotes the lines
. Ecost V4 ntany =0, E—ncoty=0.
* Lommel, Wied. Ann. xvii1. 56 (1883).
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When the angle between the optic axes is very small, the equations take
simpler forms, as we may write a =5 in the small terms : neglecting &¢ and
8% sin? 7, the curves of constant retardation become

2a2 (az 4 bz) 9282
bz(az_cz)z 72
where 2% is the apparent angle between the optic axes. In Cartesian

coordinates if the points corresponding to the optic axes be +a, 0, the
equation becomes

(sin? ¢ + sin? )2 — 4 sin? ¥’ cos? @ sin® ¢ =

202 (a? + b%) Q2 4 &

(E? A 772 i a2)2 — 4o’ E2 i b? ((12 =3 cg)ﬁ Tz J

a system of Cassini’s ovals.

If #’, 7" be the angles of incidence corresponding to the points in which a
given curve cuts the plane of the optic axes, the complete equation gives
- . ad H , 2a?(a? +c?) &
sin?¢’ + sin?7” = 2 sin? ¥ —%LXT):;Z)T’
and if the curves be Cassini’s ovals
sin® ¢ + sin®¢” = 2 sin® ¥,

When the angle between the optic axes is small, the lines of like
polarisation become the equilateral hyperbolas

£2— 2Encot 24y — = I"sin? VP,
and since dn/d§ = tan 2 for n =0, the angle that an hyperbola makes with
the trace of the plane of the optic axes at the point corresponding to an
optic axis is 2 and hence at this point the angle between the principal
lines of like polarisation is twice that between the planes of primitive and
final polarisation. When these planes are crossed, the principal hyperbolas
coincide, and if either of these planes coincide with the plane of the optic

axes, the principal lines of like polarisation are straight lines in and perpen-
dicular to this plane.

185. With a plate parallel to the plane of the optic axes, the relative
retardation is obtained from (13) by changing ¢, b, a in cyclical order, if we
take the axis of ¢ perpendicular to its faces, and that of £ parallel to the
greatest axis of the ellipsoid of polarisation, and as far as terms of the second

order
@?¢?8T?* = (a — c)* Q* + (a —¢) (ac — b%) (@ cos? § — ¢ sin® f) sin®z;
whence the curves of constant retardation are the system of hyperbolas

fz azczsz Lhad
<a—c>(ac—b2>{ B, ”}

having the lines 7/ = Va/c for their asymptotes.

af?— o=
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Making the same changes in (16), the lines of like polarisation are
given by
1 — cos 2¥ cos 24
sin 24
and are thus hyperbolas with asymptotes
Esinyr—ncosy =0, Ecosyrsin?® ¥ — g sinyr cos? ¥ =0,
The real axes of the hyperbolas make angles
4 tan= {(1 — cos 2'¥ cos 24)/(cos 2V sin 24r)}

with the axis of £ and referred to their principal axes their equation becomes

(V1 +cos? 2¥ — 2 cos 2¥ cos 24 — sin 24} 2?

—sin*W. £+ £y —cost¥ . 2= T,

— (V14 cos?2¥ — 2 cos 2¥ cos 24 + sin 24} y* = 27" sin 24

The principal lines of like polarisation are however scarcely visible, as the
polarisation of the streams within the plate varies but slightly within the
field of view.

186. The interference phenomenon, observed with a biaxal plate per-
pendicular to one of the optic axes, has a certain resemblance to that produced
by an uniaxal plate similarly cut; the rings, when the field is small, being
circles round the point corresponding to the optic axis.

This may be seen from the following approximate calculation. The relative
retardation of the interfering streams is
8 = T'sin i (cot 7, — cot ;) = QT (cos 7y/w, — cOS T1/w,).

When the double refraction is weak and the field is small, we may replace the
angles r,, 7, by their mean value » and regard w,, w, as the propagational
" speeds of the waves travelling in a given direction making angles ¢, ¢> with
the optic axes, then

o — 0
w, @, (@) + w,)

2 - 2
8=0Tcosr =T cosr azb—sc sin ¢ sin ¢,

if we write for w,, @, in the denominator their common value b corresponding
to normal incidence : but
sin ¢’ = sin 2V = 2#/(a?— b?) (* - &)/ (a® — ¢),
sin ¢ = sin r & bsin 7/,
whence retaining only the first power of sin ¢
8=T (V(a® — b%) (b* — c*)/b% sin .
To this approximation the curves of constant retardation are circles with

radii proportional to the relative retardation, instead of the square root of
this quantity, as in the case of the uniaxal plate.
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To obtain the lines of like polarisation, we have to write in (14)
&' =Ecos ¥+ T'sin P, y =7, Z=—Esin ¥ + Tcos V¥,
A =coscos ¥, p=siny, v=—cosyr sinV,
which gives

7 (€ sin Y —ncosY)* — 2T cot 2V (€ sin Y — 7 cos ¥) (£ cos Y + 7 sin )

—T?(Esin 24 — 5 cos 2¢r) =0,
and when the field is very small i g ¥

£ sin 24 — 5 cos 24 = 0.

Thus in this case, the principal lines of like polarisation are two straight
lines through the centre of the field inclined to one another at an angle equal
to twice that between the planes of polarisation and analysation. When
these planes are at right-angles, these lines coincide and the planes of
polarisation and analysation bisect the angles between this line and the trace
of the plane of the optic axes. Hence as the plate is turned in its own plane,
the principal line of like polarisation turns at the same rate in the opposite
direction. In the case of the uniaxal plate perpendicular to the optic axis
between crossed polariser and analyser, the principal lines of like polarisation
form a black cross, that remains fixed as the plate is rotated about its
normal.

187. When a conical pencil of white light is employed, coloured rings or
bands are obtained, provided, as in all cases of interference, the relative
retardation of the interfering streams is not too great. The isochromatic
curves follow more or less the course of the curves of constant retardation,
unless the dispersion is excessive, and the principal lines of like polarisation
become, when the polariser and analyser are crossed, dark brushes fringed
with colour. The phenomena may however be considerably modified, if the
axes of the ellipsoid of polarisation not only vary in magnitude, but also
change their position, as the wave-length alters,

An uniaxal crystal has its optic axis in an invariable direction for all
colours, determined by the principal axis of the erystallographic system to
which it belongs, and the dispersion only affects the law of distribution of
colour in the coloured curves. There are however a small number of crystals,
such as the uniaxal Apophylite and Brucite of Texas, that are of opposite
sign for the extreme spectral colours, becoming isotropic for some inter-
mediate wave-length.

In biaxal crystals the optic axes have, in the majority of cases, different
directions for the different colours and the plane in which they are situated
may also vary, and crystals may exhibit both dispersion of the optic axes and
dispersion of the mean line. The different cases of dispersion may be most
conveniently examined with plates perpendicular to the first mean line placed
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in the diagonal position between crossed polariser and analyser, that is with
the plane of the optic axes for light of mean wave-length bisecting the angle
between the planes of primitive and final polarisation.

With crystals of the prismatic system, the axes of the ellipsoid of
polarisation coincide with the crystallographic axes for all wave-lengths and
are fixed in direction, but in some few cases, such as Brookite, their order of
magnitude changes, so that the plane of the optic axes for red light is at
right-angles to the plane of the optic axes for blue light, the crystal being uni-
axal for some intermediate colour. More generally the optic axes are in the
same plane for all colours, the dispersion only affecting the angle between them,
which may be the greater for blue light as in Aragonite, or for red light as is
the case with Topaz. In these more common cases the system of rings is
coloured symmetrically with respect to the plane of the optic axes and to the
perpendicular line, while the colour for which the apparent separation of the
axes is the least is that on the concave side of the summit of the hyperbolic
brushes and on the concave side of the first ring round the point corresponding
to the optic axis at the part nearest the centre of the field.

Crystals of the monoclinic system have one axis of the ellipsoid of
polarisation fixed in direction, while the other two may have any directions at
right-angles to one another in the perpendicular plane—the one plane of
symmetry of the system. In a few rare instances, as is the case with crystals
of Magnesium Ammonium Chromate, the fixed axis changes with the colour
of the light from the greatest to the mean or to the least axis of the ellipsoid,
but we need only consider the more ordinary cases, in which for all colours
the fixed axis is (1) the first mean-line, (2) the second mean-line, (3) the
intermediate axis of the ellipsoid of polarisation.

(1) When the first mean-line is in the direction of the fixed axis, the
dispersion affects the angle between the optic axes and, if the position of the
second mean-line vary in the plane of symmetry of the system, the plane in
which the optic axes lie. This is known as “crossed dispersion,” of which
Borax affords an example, and is recognised by a symmetrical distribution of
colour in the interference pattern with respect to the centre alone.

(2) If the fixed axis determine the second mean-line, and the position of
the first mean-line in the perpendicular plane be dependent upon the colour,
the optic axes for the different colours are in planes that intersect in the
normal to the plane of symmetry. We then have dispersion of the optic axes
accompanied with dispersion of the mean-line in the perpendicular direction,
with respect to which the colour of the fringes is symmetrical. This is called
“ horizontal dispersion ” and is exhibited by Adularia.

(3) “Inclined dispersion” occurs when the intermediate axis of the
ellipsoid of polarisation is given by the fixed direction, while the other axes
change their direction in the perpendicular plane. The plane of the optic
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axes is then the same for all colours, but there is dispersion of the mean-line
in this plane. This variety of dispersion is shown by Gypsum, Diopside and
Sphene: it results in a symmetrical distribution of colour with respect to the
trace of the plane of the optic axes on the plane of the interference pattern.

In crystals of the anorthic system none of the axes of the ellipsoid has a
prescribed direction and nothing can be inferred & prior: respecting the
character of the dispersion of the optic axes.

188. The rings and brushes obtained with crystalline plates underge
considerable alteration and even entirely change their character, if the light
employed be elliptically or circularly polarised and be subsequently either
plane, circularly or elliptically analysed.

All varieties of polarisation from plane to circular may be obtained by
associating an ordinary polariser with a plate of crystal of such a thickness
that a relative retardation of A/4 is introduced between the components, into
which it divides a stream of polarised light. Such plates are termed quarter-
wave plates and are usually of mica or selenite, on account of the facility with
which these erystals can be split into extremely thin lamine.

In the case of mica, which is a negative biaxal crystal, the lamina are
perpendicular to the plane of the optic axes and the stream polarised in this
plane is less retarded than that polarised in the perpendicular plane: while
with selenite, a positive biaxal crystal, the plates are parallel to the optic axes
and the stream polarised in a plane parallel to the first mean-line is the one
that is least retarded.

Let us then suppose that we place before a plate of crystal an ordinary
polariser followed by a quarter-wave plate and that the light after passing
through the crystal traverses a second quarter-wave plate and an analyser:
we will further assume that though the light converges on the plate of crystal,
it is so nearly parallel during its passage through the polariser, quarter-wave
plates and analyser, that the polarisations may be regarded as constant over
the whole beam for each of these portions of its course.

Let a be the angle between the primitive plane of polarisation and the
plane of least retardation of the first quarter-wave plate,

. 4, the angle between this plane and the plane of polarisation of the
quicker wave in the plate of crystal,

¥, the angle between this plane of polarisation and the plane of least
retardation of the second quarter-wave plate, and finally

B the angle between this plane and the final plane of analysation.

Then resolving in turn along directions parallel and perpendicular to the
planes of polarisation of the quicker waves in the successive plates and
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remembering that a retardation of A/4 is introduced by a factor — ¢, the light
emergent from the analyser is represented by the vector
a[{cosr; (cos o cos Y, + ¢ sin asin Yr,)

+ sin Y, (—cos a sin Yr, + ¢ sin & cos ) €%} cos B

+ ¢ {sin Y, (cos @ cos Y, + ¢sin a sin yr,)

— c0s Y, (— cos a sin Y, + ¢sin & cos Yr,) 74} sin B] et

=a {4 + Bu+ Ce=® + 1 De™%} ¢, (say),
where A = cos a cos B cos Y cos Y, — sin a sin B sin Y, sin Y,

B = cos a sin B cos 4, sin 4, + sin a cos B sin ¥, cos I,

C = — cos a cos B sin Y, sin 4, + sin a sin B cos Y, cos Vs,

D = cos a sin B sin yr, cos ¥, + sin « cos B-cos Y, sin V.

Whence the intensity, obtained by multiplying this by its conjugate ex-
pression, is

I=¢a {4+ B*+ C*+ D*+ 2(AC + BD)cos k842 (AD — BC) sin «8)
=gt {(A +0F +(B+ Dy~ 4(AC+ BD)sint 2

+4(AD - BC) sin —8 cos r_xb‘}

-l {“‘)S" (2= ) cos® (Y + )+ sint (a + B) sin® (¥ + )

— (sin 2a sin 28 — cos 2a cos 23 sin 24 sin 24fr,) sin? ?

+ (cos 2a sin 23 sin 24, + sin 2z cos 28 sin 24,) sin 7%8 cos 7%8} ...... (17),

in which expression the first two terms represent the intensity when the plate
of crystal is removed. ;

We have then, as in the case of plane polarisation and analysation, prin-
cipal curves of constant retardation é=n), along which the intensity is the
same as before the introduction of the plate, but there are in general no
principal lines of like polarisation. The intensity is a maximum or a mini-
mum when

S __cos 2a sin 283 sin 24, 4 sin 2a cos 243 sin 24,

e X sin 2asin 28 — cos 2a cos 28 sin 2y, sin 2y,

having then the values

2
= % {1 + cos 2a cos 28 cos 24, cos 24,

+ V(1 — cos? 2a cos? 24,) (1 — cos® 23 cos? 24y }.
[ 19
w.
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189. The above equations contain the solution of all the cases that may
arise, but the most interesting ones are those in which either the coefficient of
sin? (w8/\) or that of sin (27r8/\) in equation (17) vanishes*.

The coefficient of sin®(w8/\) is zero, when a=+7%/4, 8=0 or 7/2, and
when a=0 or m/2, B=+ w/4

In the first case the light is plane analysed and circularly polarised in
a right- or left-handed direction according as a =+ 7/4 or = —7/4; and
calling - the angle between the plane of polarisation of the least retarded
stream in the crystalline plate and the final plane of polarisation, the intensity
is in the two cases

Tias %' {1 £ sin 24 sin (278/N)}. -

In the second case the light is plane polarised and circularly analysed in
a right- or left-handed direction, according as 8=+ 7/4 or = — w/4, if we
understand by a right-handed circular analyser one that permits the trans-
mission of a right-handed circularly polarised stream, in other words a com-
bination of a quarter-wave plate and a plane analyser that, used as a polariser,
produces a right-handed circularly polarised stream. Calling v’ the angle
between the original plane of polarisation and the plane of polarisation of
the quicker wave in the plate of crystal, the intensity is

I= %2 {1 £ sin 24" sin (278/N)},

according as the circular analysation is right- or left-handed.

Let us suppose the light to be plane polarised and circularly analysed in
a right-handed direction, then 4 and % being the angles that the primitive
plane of polarisation and the plane of polarisation of the quicker wave in the
plate make respectively with a fixed plane in the erystal, the intensity is

given by ;
a* : ;
I=§{1+ sin 2 (9 — ) sin 271-—)\}.
Hence the illumination is the same as before the insertion of the plate along

the curves of constant retardation &=nA/2 and along the principal lines of
like polarisation 9 =ry, 7 =m/2 +4: while in the region for which

y<n<w/2+7y
the dark curves are given by
d=m+3/4)\, n=0,1,2...,

the absolute minima occurring on the line 5=+ 7/4, and outside this

region the curves
d=n+1/4)\, n=0,1,2...

* Bertin, Ann. de Ch. et de Phys. (8) Lvir. 257 (1859); (5) xviir. 495 (1879).
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4

are dark, the absolute minima being on the line %=+ +37/4. Thus the
interposition of the quarter-wave plate has had the effect of pushing the
bands outwards by a quarter of an interval in the first region and pulling
them in by the same amount in the remainder of the field.

Similar results are obtained when the analysation is left-handed, and
when the polarisation is circular and the analysation plane.

In order to fix our ideas, let us assume that the primitive and final planes
of polarisation are at right angles ; then the principal lines of like polarisation
are determined by these planes and the dark curves are expanded in the -
region bounded by these lines that contains the line of like polarisation, for
which the plane of polarisation of the quicker wave in the crystalline plate is
parallel to that of the quicker wave in the quarter-wave plate.

Moreover we see that there is a distinction between the behaviour of
positive and negative crystals ; for » being the angle between the fixed plane
and the plane of polarisation of the least retarded stream in the crystalline
plate, the region for which v <5 <y 4 /2 in the case of a positive plate is
that for which ¢y + w/2< 5 <y + 7 for a similarly orientated negative plate
and vice versd, so that on passing from the one case to the other the parts of
the field, in which contraction and expansion occur, are interchanged.

Now in the case of a positive uniaxal crystal the stream polarised in the
principal section is the least retarded : hence with a plate perpendicular to
the optic axis, the primitive and final planes of polarisation being crossed,
expansion or contraction of the rings will occur in the quadrants that contain
the plane of least retardation of the quarter-wave plate, according as the
crystal is positive or negative.

Turning now to the case of a biaxal plate cut perpendicularly to the first
mean line, let us again suppose the primitive and final planes of polarisation
to be at right angles, and the plate placed in the diagonal position, so that
the plane of least retardation of the quarter-wave plate is either parallel or
perpendicular to the plane of the optic axes of the biaxal plate under con-
sideration. Then the principal line of like polarisation is a rectangular
hyperbola with its asymptotes inclined at 45° to the trace of the plane of the
optic axes and the contraction of the rings will occur in the region of the
field bounded by this hyperbola that contains the line of like polarisation, for
which the plane of polarisation of the quicker wave in the crystal is perpen-
dicular to the plane of least retardation of the quarter-wave plate.

Now if the biaxal crystal be positive, the greatest axis of the ellipsoid of
polarisation coincides with the first mean line, and 1t follows that corresponding
to points on the trace of the plane of the optic axes lying on the concave side
of the hyperbola, the plane of polarisation of the quicker wave is parallel to the
plane of the optic axes, while it is perpendicular to this plane for the other

19—2
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points of this trace and for points on the line perpendicular to it through the
centre of the field. Hence with a positive plate, expansion or contraction of
the rings will occur on the concave side of the hyperbola according as the
plane of the optic axes of the biaxal plate is parallel or perpendicular to the
plane of polarisation of the least retarded stream in the quarter-wave plate,
the reverse being the case with a negative biaxal plate.

190. The coefficient of sin (278/)\) in equation (17) vanishes when

(1) a=0or 7/2 and 8=0 or 7/2,
(2) a=+7/4 and B=4+7/4,
3) vi+4Y=0 and 8=a or a +1/2,
or Y+ =7/2 and B=—aor —a+ 7/2.

The first of these three cases need not concern us further, as the light is then
plane polarised and plane analysed.

In the second case the polarisation and analysation are both circular, the
direction being the same if a =8 = + 7/4 and opposite if a = — 8=+ 7/4, and
the corresponding intensities are

I =a?cos*(w6/\) and I =a?sin®(wd/N).
There are then no principal lines of like polarisation and the dark curves are
continuous; circles with uniaxal plates perpendicular to the optic axis and
Cassini’s ovals with biaxal plates normal to the first mean line.

In the third case the light is polarised and analysed elliptically, the
quarter-wave plates being parallel if ¥, +yr, =0 and crossed if yr, + A, =7/2.

The character of elliptic polarisation is determined. by the ellipse traced
out by the extremity of the polarisation-vector that characterises the stream,
and two elliptic polarisers are similar, if the ellipses be similar for the streams
that they produce; they have the same sign, if the ellipses be traversed in
the same direction; and the angle between them is that included between
the planes of maximum polarisation of the emergent streams. An elliptic
analyser is defined by the nature of the polarisation produced, when its
position being retained the light is transinitted through it in the opposite
direction and the position of the observer is.reversed.

With these definitions we see that the polariser and analyser are similar,
parallel and of the same sign, when yr, + 4, =0, 8 =a and when ¥, + Y, = 7/2,
B=m/2—a; that they are similar, crossed and of opposite sign, when
Y+ Y.=0, B=7%/2+a and when ¥y, + Y, =7/2, B=—a.

The intensity in the first case is

I=a*{1 — (1 —cos® 2a cos® 24n,) sin? (w8/N)},
and in the second case ;
I =a?{1 — cos® 2a cos® 24} sin® (w8/).
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As these two expressions are complementary, we need only consider the
phenomenon represented by the second. The principal curves of constant
retardation are given by 8=mnA and these curves are black, the curves
8=n\/2 being bright : there are no principal lines of like polarisation, since
the expression 1 — cos? 2a cos? 24, is never zero, but the intensity of the bright
curves is a minimum where they are cut by the lines y, =0, Y, = 7/2, that is
by the lines for which the plane of polarisation of the quicker wave in the
plate is parallel or perpendicular to the planes of polarisation of the least
retarded streams in the quarter-wave plates, and the intensity is a maximum
along the lines yr, = /4, r; = 37/4.

191. When a conical pencil of polarised light passes through a com-
bination of two ¢rystalline plates and is subsequently analysed, the intensity
at any point of the field is given by (8) and since the angles v, and , as
well as the retardations 8, and &, in general vary over the extent of the field,
the interference pattern in monochromatic light becomes very complicated.

Thus writing the equation in the form

I=a [cos’ (B~ o) — sin 2 (Y — &) sin 2 (Y, — B) sin® @

fid
A

— sin 2 (Y, — &) sin 2 (Yr, — B) sin? WT&"

—25in 2 (Y, — @) sin 2 (Y, — B) sin Ef— sin 7')?2
. o
X {cos 7%8, ’ cosz% —c08 2 (Y, — yry) sin Z% sin %}] 5

We see that when the polariser and analyser are crossed (8- a=m/2) the
intensity is zero only if

sin 2 (Y, — a)sin 7’781: +5sin 2 (Y, —a)sin 7’%

70, 70s, i e g
cos 5= €08 x——cosQ(«}q,-«}r,) sin —= sin i_—+l

so that there are no longer continuous dark curves, but only isolated dark
spots given by the intersection of the systems of curves (18)*.

192. When however the field is very small or when the primitive light
is white, so that the interference is visible only for small retardations, the
problem may in many cases be reduced to one of much less complexity by

* Cf. Langberg, Pogg. Ann. Erg.-Bd. 1. 529 (1842). Ohm, Abhandl. Bayer. Akad. vIiL 43,
265 (1855). Van der Willigen, Arch. du musée Teyler, 111, 241 (1873). Bertin, Ann. de Ch. et de
Phys. (6) 11. 485 (1884). Pockels, Gott. Nachr. (1890) 259. Hecht, N. Jahrb. fiir Min. Beil.-Bd.
x1. 318 (1898). ‘
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the possibility of regarding the polarisations of the streams within the com-
pound plate as constant over the part considered.

As an instance of this simplification of the investigation, let us consider
the case of a Savart’s plate, which consists of two plates of an uniaxal crystal
of equal thickness, cut at the same inclination—about 45°—to the optic axis
and superposed with their principal sections at right angles.

Taking as the fixed plane of reference the principal section of the first
plate and regarding the polarisations of the streams within the plate as °
invariable over the field, the expression for the intensity reduces to

I=a {cos’-‘ (B —a) —sin 2a sin 28 sin®* 7 :8%—63} /

Hence the interference pattern depends upon the single system of curves of
constant retardation &, —&,=const., and the principal curves of constant
retardation are given by 8, —&,=mnM, and these are bright, black or of inter-
mediate intensity, according as the polariser and analyser are parallel, crossed
or inclined at some other angle.

To determine the form of the curves, we have from § 181

i‘ Q(d ) % d2~s1112xcos0smz

ac®
+3 (Q Qd)sm 0 sin® z+%(Q Qd’) cos? @ sin® ¢
where + is the angle that the optic axis makes with the normal to the plate
and d*=a’cos®y + c*sin’y; while §, is obtained from this expression by

wntmg 6 — 90° for 6. Hence the principal curves of constant retardation are
given by

m\ _ (a* — ¢*) sin y cos
T = a*cos’y +c*sin’y

(cos @ —sin ) sin¢

¢ (a*—¢)sin’y
"~ 20 (a*cos? x +¢*sin® )

3 (cos® @ —sin® §) sin® <.

The curves are thus equilateral hyperbolas seen at a considerable distance
from their vertices, with asymptotes parallel to the bisectors of the angles
between the principal sections of the plates. They appear as a system of
parallel straight lines bisecting the angle between the principal sections that
is related in the same manner to the directions of the optic axes of the two
plates.

The terms of the first order attain their maximum importance when
cos 2y = — (a? — ¢*)/(a* + ¢*), which corresponds to an inclination of the optic
axes of nearly 45° and in this case the bands are very close together.
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193. Returning to the general formula (8), let us consider the inter-
ference phenomena exhibited by a twin uniaxal plate*.

Taking the principal section of the plate as the fixed plane of reference,
let OL represent the normal to the plate,
0A4,, OA4, the optic axes of the first and L
second constituents respectively, OM the g A,
direction of the wave-normal in the
plates, neglecting as we have done in
obtaining (8) the effect of the refraction
at the twin plane: then we have

sin 4, =sin » sin @/sin 4, M,
sin 4, = sin r sin §/sin 4, M,

and S

cos A, M = cos 7 cos x + sin r sin y cos 6, Fig. 44.
cos 4,M = cos r cos x — sin 7 sin x cos 6.

The character of the interference pattern depends upon the four systems
of curves of constant retardation
6, = const., &,=const., &, &, =const., &, — &, = const.,
of which the first two are called the primary curves of the first and second
kind ; while the last two may be termed the secondary curves of the first and
second kind respectively. There are in general no principal lines of like
polarisation.

The primary curves of the first kind are given by the equation

(u a-c-) cos? @ sin? 1 + (

Q- aF > sin? fsin%e

Q Qd
2 ___ 2

—dz——'sin2xcosﬂsini+2 (%—%) =%,)»,

1

where 7| is the thickness of the first plate, and those of the second kind are
given by an equation obtained from this by changing 7} into 7, and writing
6 + 7 for 6. Hence the equations of the secondary curves of the first and
second kind are given by

(% — ?2%3> cos® @sin%z + ((_2 -0 d) sin® @ sin® 1

TFT, a*—c* . SO 2(9_9_)=_ﬂ_
+Tl.i_1_72,—d?-s1n2xcos€smz+ d a) Tz T’

the upper and lower sigus referring to the curves of the first and second kind
respectively.

+

* Pockels, loc. cit.
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Thus in general the curves of the four systems differ from one another
only in their dimensions and in the positions of their centres in the trace of
the principal section of the plate on the screen of observation. If the plates
have the same thickness, the secondary curves of the second kind become a
system of straight lines perpendicular to the principal section ; those of the
first kind have their centre at the middle point of the field and when the
primary curves are parabolas, become straight lines parallel to the principal
section.

Let us now suppose that the planes of polarisation and analysation are
crossed and parallel and perpendicular to the principal section of the plate—
the so-called normal position. Then the expression for the intensity becomes

e a“{a,s]nz §+az3111‘ 8+a3 sin? (8;»+82)+a i T(sx 2)},

where

@, = sin 24, cos 24, sin 2 (Y — V), @y = cos 24, sin 24y sin 2 (Yo, — ),

;= sin 24y, sin 29, cos? (Y, — ), @y = —sin 29 sin 24, sin? (Y, — ).

Even in this case the equation is too complicated for general treatment
and it is necessary to obtain an idea of the principal features of the inter-

ference pattern by considering different parts of the field, at which one or
other of the four systems of curves attains a primary importance.

(¢) Along the trace of the principal section of the plate, Y, =0 or =,
Y= or 0 and a,, @, a;, a, are all zero: hence through the centre of the
field and parallel to the principal section there is a black brush, that has
its greatest width near the centre, where the increase in the value of the
coefficients is slowest.

Fig. 45.

(b) On lines perpendicular to the principal section through the points
corresponding to the optic axes, either \]rz + /2 or Yo, =+ 7/2 and in these
two cases respectively only @, =sin? 24y or a, = sin* 24, differ from zero. Con-
sequently on these lines the primary curves of the first or second kind are
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alone visible, and the intensity of the bright curves of these systems increases
with their distance from the axial points, while near these points there is a
short dark brush perpendicular to the principal section, sin 24, and sin 2y,
being there very small.

(¢) On the circle having the line joining the axial points as diameter,
Y — Y= 1 w/2 and all the coefficients vanish except a,=sin? 2+, so that on
this circle the secondary curves of the second kind alone appear; but in no
part of the field are the secondary curves of the first kind isolated, since the
case, in which all the coefficients except a; are zero, cannot occur.

(d) For points near the black brush in the centre of the field,
\!I‘2=i(7T—G), l‘lrl= iex

where e is a small angle, and neglecting powers of e above the second
Il O (8 +0,)
I =4¢a {2sm2 3 + 2 sin® = R o
the maximum value of which is 1,, = 16e2a?, whence
e I, {% sin® W£i+ 1 sin? WS—"-’ —}sin ™ (Sl;-—i"’)} 3
When 8, + 8,=(2n+ 1) 1/2
I=1, {{; sinﬂrfl +1 cos’—w—f1 — }} =4 I,

and thus the secondary curves of the first kind are here of uniform intensity
and will appear relatively dark, as their intensity is only one-fourth of the
maximum.

On the secondary curves of the first kind between these dark curves,
8, +8,=nr and for n even, I=1I,sin?{r(§ —&)/(2\)} while for n o'dd
I=1I,co8 {m (8 —8,)/(21)}. Hence on these curves the intensity varies
between 0 and Z,,, and the parts for which 0 < 7 < §I,, have the same width
as those for which § 71, < I < I,,, so that since the parts appear bright when
I=}1,, the dark parts of these curves are narrower than the bright.

When 8, — &= nA, I = I, sin* {7 (8, + &)/(2M\)}
or = I, cos* {mr (8, + &;)/(2\)],
according as n is even or odd and consequently the portions of tbe secondary
curves of the second kind cut off by the curves of constant intensity

S +8,=2n+1)N2 ‘

are alternately bright of intensity between I,./4 and I, and dark of intensity
between 0 and 1,,/4.

Hence the general appearance near the centre of the field will be relatively
dark continuous curves of the secondary system of the first kind and between
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these dark spots arranged in chess-board fashion in a direction perpendicular
(the plates having equal thickness) to the principal section of the plate.

T

Fig. 46.

(e) For points near the circle through the axial points, we may write

‘;"2_‘}’1=i’(7r/2+5);

whence
a,=7F esindyr, + 4e®sin® 2y, @, = + € sin 4, + 4€? cos® 24,
a; =— €?sin® 2y, a,=sin® 2¢r, + esin 4y, — 3¢? sin? 24,
and
} ] : : o, — 9,
I=q? [(sm” 24r; + € sin 44, — 3¢ sin® 2%) sin® W—(l—x—s—z
<S1FN RO 3 7732)
. S 4 258 C 0 e
F esin 44, <sm X n X

+e <4 sin? 2y, sin® ™" f ' + 4 cos? 24, sin? —7%?2»

— sin? 24, sin? ﬂs'x+—§2)>] .

But sin?zr%;l — sin? Wf’ =g (81;- %) sin " (8‘)“— %) , and hence on the

secondary curves of the second kind &, — 8,=nA the intensity is given by the
term containing e* as a factor, which is very small throughout the region in
question. Hence these curves will appear dark for a certain distance on each
side of the circle on the line joining the axial points as diameter.

(f) In order to determine the nature of the transition from the chess-
board pattern (d) to the dark secondary curves of the second kind in the
vicinity of the circle through the axial points, let us consider the part of the
field for which

Y =m/8, Y.=m—7/8.
We hate in-this case
a=1/2, a=1/2; a=-1/4, a,=1/4,
and

4 S S L 271’8.2_ (8 + 8,) g4 271'(3,—82)}
I=%a {sm2—>\—+sm = 1 sin AV ok Ll Fees o
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Hence for

S+ 8&=Cn+1)r2, I= ;{a{l_,_smg (& 8)}

and these curves, instead of being continuous and dark, have an intensity
varying between a?/4 and a?/2 and thus appear less marked.

Further for §, + 6, =nA

I = a?sin? (Béx % ){1 + cos? 71@2—;—8—2} when 7 is even,
I=atcost ™ e, 82){1+ sin? (é )J» when n is odd ;

hence on passing along the curve §, + 8, =n\ from a dark spot the intensity
increases more rapidly than in the former case (d), so that the dark portions
of these curves in the direction of the secondary curves of the second kind
are narrower than they are near the centre of the field.

Finally for 8, — 8, =nx,
7 (8, + &)
A

I = a*sin! when n 1s odd,

, when n is even, I =a? cos* ™G +8)

2\
and hence the changes of intensity on the secondary curves of the second
kind follow the same law as before.

The result of this is that in the region under consideration, the main
features are isolated portions of the secondary curves of the second kind.

(9) Foryn= + 7 ot SEW and r, néarly ';'r,. the coefficient ¢, is the most

important, and for = ig or + %’r and r, very small, the principal co-
efficient is a.; hence the primary curves of the first and second kind occur
most strongly near the first and second axial point respectively in the middle
of the sectors between the arms of the black brushes.



CHAPTER XV.

THE STUDY OF POLARISED LIGHT.

194, WE have assumed in what precedes the possibility of obtalning
a stream of polarised light without giving any definite specification of the
means by which this may be effected. It has, however, been shown in the
course of our investigations that the light reflected at the polarising angle
from the surface of an isotropic medium is at any rate nearly plane polarised,
and that the polarisation of the stream transmitted by a pile of transparent
isotropic plates tends to become perfect as the number of the plates is
indefinitely increased and when the angle of incidence on the pile approximates
to the polarising angle.

Certain crystals, conspicuous among which is Tourmaline, also polarise
the light that they transmit,—a property that is due to the variation of the
absorption of light with the position of the plane of polarisation in the
crystal. Thus tourmaline absorbs light polarised in a plane parallel to
the optic axis more energetically than light polarised in the perpendicular
plane, and a moderate thickness of a plate, cut parallel to the axis, transmits
sensibly the extraordinary stream alone. The polarisation is however seldom
quite perfect and the intensity of the extraordinary stream is also much
weakened by absorption in its passage through the plate.

195. By far the most effectual mode of obtaining a plane polarised stream
of strong intensity is to separate a beam of common light into two oppositely
polarised streams by double refraction and to subsequently isolate one of the
streams. This is done by what are termed polarising prisms, of which there
are two types; in the one such a lateral separation of the streams is produced,
that it is possible to block off one of the emergent pencils by a screen; in
the other the second stream is prevented from emerging by total reflection®.

Of the first class of polarising prisms there are three principal forms.

* For a discussion of polarising prisms, see Feussner, Zeitschr. f. Instrumkd. 1v. 41 (1884).
Grosse, Die gebriuchlichen Polarisationsprismen, Clausthall, 1887; Verhandl. d. Ges. deu‘tsch.
Naturf. x1. (2) 33 (1891).
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The earliest example is a polariser devised by Rochon* and exhibited to the
Paris Academy in 1777. This consists of two prisms of Iceland spar, baving
the same angle and so cut that in the one the optic axis is perpendicular to
one of the faces, while in the other it is parallel to the refracting edge. The
prisms are mounted together with their edges in opposite directions, and in
such a way that the light is incident on the face that is normal to the optic
axis. The ordinary stream passes through the polariser without deviation
and is achromatic, while the extraordinary stream is deviated towards the
edge of the second prism by an amount dependent upon the colour of the
light. ’

For the second prism of Rochon’s combination, Senarmont+ substituted
a prism in which the optic axis is parallel to the face of emergence and
perpendicular to the refracting edge. The separation of the streams is less
than in Rochon’s form, but the prism is easier to make and less costly of
material.

On the other hand in a combination due to Wollaston? there is a larger
angle between the emergent streams, but neither pencil is achromatic.
This polariser, as in Rochon’s and Senarmont’s forms, consists of two prisms
of equal angles, but the optic axis is parallel to the face of entry and
perpendicular to the edge of the first prism, and parallel to the refracting
edge of the second prism. Both streams are deflected by their passage
through the polariser, the deviatious being in opposite directions.

196. Polarisers that depend upon the total reflection of one of the
streams may be divided into two groups, according as it is the ordinary or
the extraordinary pencil that is prevented from passing.

In the prisms of the first group§, which are modifications of a type
devised by Nicol, a prismatic piece of Iceland spar is divided into two halves
by a cut and the pieces are joined together again with a thin layer of some
medium between them, the refractive index of which is less than that
corresponding to the ordinary stream in the spar. If then the angle of
incidence on this layer be in excess of a certain value, the ordinary stream

* Recueil de Mém. sur la Mécanique et sur la Physique, Brest, 1783; Gilb. Ann. xr. 141
(1812); J. de Phys. imt. 192 (1801); Acta nova Acad. Petropolitane, v1. Part 1. 37 (1788).

+ Ann. de Ch. et de Phys. (3) 1. 480 (1857).

% Phil. Trans. cx. 126 (1820).

§ Nicol, Edin. New Phil. Journ. vi. 83 (1828); xxviL 332 (1839). Spassky, Pogg. dnn. xurv.
168 (1838). Radicke, ibid. . 25 (1840). Hasert, ibid. cxir. 188 (1861). Potter, Phil. Mag. (4)
x1v. 452 (1857); xvi. 419 (1858). Foucault, C. R. xrv. 238 (1857); Pogg. Ann. cir. 642 (1857).
Hartnack and Prazmowski, C. R. Lxir. 149 (1866) ; Pogg. Ann. cxxviL 494 (1866); Carl Eeport,
1. 325 (1866); 1x. 217 (1867); Ann. de Ch. et de Phys. (4) vir. 181 (1866). Glan, Carl Report,
xv1. 570 (1880); xvir. 195 (1881). Glazebrook, Phil. Mag. (5) x. 247 (1880); xv. 352 (1883).
S. P. Thompson, ibid. (5) xw. 349 (1881); xv. 435 (1883); xxr. 476 (1886). Madan and Ahrens,
Nature, xxx1. 371 (1885).
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will be totally reflected and absorbed by the blackened sides of the spar, but
the extraordinary stream, the refractive index for which is in the case of spar
always less than that for the ordinary stream, will in general pass through
the layer and emerge from the prism.

Prisms of this class differ in the crystallographic orientation of the faces
and of the cut and in the medium placed between the two halves. In the
earliest form, devised by Nicol, a natural crystal of spar is taken, the length
of which is about 3} times its breadth, and instead of the end faces, that
make an angle of about 70° 52’ with the side edges, new faces are cut
inclined to these edges at an angle of 68°. The crystal is then cut in half
by a section perpendicular to these new faces and to the principal section of
the prism, that is to the shorter diagonal of the faces, and the two halves are
cemented together with canada balsam.

Considering only the principal section of the prism, the total reflection
of the ordinary stream commences from a certain direction /K of the
incident light, that of the extraordinary stream from the direction JL of
the incident peneil.

Fig. 47.

For light incident in intermediate directions, only the extraordinary
stream 1s transmitted and the angle between IK and JL defines the field of
the prism.

Looking at an uniformly illuminated surface along the axis of the prism,
so that the cut slopes away from the eye from left to right, the appearance
is as follows:—on the left is a black space bounded by a violet edge, then
a bright space due to the extraordinary stream alone, and lastly on the right
a space illuminated by both streams, terminated on the left by an orange
border and traversed by coloured bands. These bands are fringes of
transmission analogous to Herschel’s bands in the neighbourhood of total
reflection. The blue border of the black space shows that the total reflection
of the extraordinary stream comiences first for red light, which is explained
by the fact that the extraordinary dispersion of spar is less than that of the
balsam, so that the relative refractive index increases from violet to red.
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To determine the field of the prism, suppose that PQRS represents the
principal section and OK, OL the limiting wave-normals of the ordinary and

extraordinary streams. Let u,, . be the principal refractive indices of the
spar and n the index of the balsam.

Then for the total reflection of the ordinary stream, if the angle POK =g,
we have

U3 () = 5 0000500 aoonoo o P (1),
and the corresponding angle of incidence %, is given by
sin 7, = u, sin B =n tan 8

For the extraordinary stream, if the angle POL =+, and the optic axis
04 make an angle o with the cut, we have

Qo gt/ . L0, SR AR s 3),
where K=t e (Y + @) + e SIn® (Y + ) eiieennnnnnn. 4),
and the corresponding angle of incidence 7, is found from
sin 7, = usiny=n tany,
whence from (3) and (4)

—n (po® — pe2) Sin & cos a + pop, Vit cos? a + p,? sin® a — n?

sin 4, = : ...(5).
E e cos?a + p,ksinta o

The optic axis makes an angle of about 45° 23" 30” with the original
end faces of the rhomb, so that for the Nicol described above we have
a=41°44"30" nearly. Hence taking n =1548, u,= 165846, u,= 148654,
we obtain

o =36°31'30", y=6°10'0", i,=9°37 40"

Thus the field of polarised light is 26° 53’ 50", and the ratio of the length
to the breadth of the prism, which is nearly the cotangent of the angle
between O and the axis of the prism, 1s 3'53.

Without discussing the various forms that have been suggested for
a Nicol’s prism, let us determine under what circumstances a prism on this
principle with its end faces at right angles to the axis has a maximum field
symmetrical with respect to the axis.

From equations (1) and (3) the field within the prism is
X =B =y =eos ! cos (nVjag £ (ue = ) sin? )
(]

6 being the angle between the optic axis and the extraordinary wave-
normal at the limit of total reflection. For this to be as large as possible,
we must have

(1) 0=m/2, x=cos™(n/p,) —cos™ (n/u.).
(2) n=p,, since for a greater value of n, B decreases while v cannot
be less than zero, and for a less value of n, B increases less rapidly than .
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Thus the maximum field within the prism is

X = 087" (tae/po)-
In order that the external field may be symmetrical with respect to the
axis of the prism, we must have

sin ¢ = p, sin ¢ = pu, sin (y — ),
where ¢ is the angle between the cut and the normal to the end faces.
This gives
s i) MoSIny o smy
e+ pocosx 2,
The field is then 2¢ and the ratio of the length to the breadth of the
prism is cot ¢. In the case of Iceland spar we have

Cx=26°19"10", ¢=13°53' 30", 2i=41°49
the ratio of the length to the breadth is 404. Since the optic axis must be
at right-angles to the limiting extraordinary wave-normal, it can have one
of two directions :—either it may be in the normal section of the prism at an

angle of 13°53"30” to the end faces, or it may be perpendicular to the normal
section and parallel to the cut.

By selecting the second position for the optic axis, a prism is obtained in
which several defects of an ordinary Nicol’s prism are considerably reduced.
In the first place it gives no lateral displacement of a stream of light directly
transmitted through it; secondly a conieal pencil incident directly on the
prism emerges with a polarisation that is more nearly constant over its whole
extent; and thirdly the error in the determination of the plane of polarisation
of a parallel pencil slightly inclined to the axis of rotation is reduced to
a minimum*.

197. The second group of ‘prisms+ depending upon the total reflection
of one of the polarised streams is made by fixing a thin crystalline plate
between the two equal prisms of glass, turned in opposite directions, by
means of a cement with a refractive index equal to that of the glass.

Considering only the normal section of the prisms, an investigation
similar to that of the last section shows that for the maximum field, the
refractive index of the glass and cement should be equal to the greatest
index of the plate, and that with a biaxal plate the mean axis of the ellipsoid
of polarisation should be parallel to its faces and the plate arranged so that
this axis is in the normal section of the prisms: while with uniaxal plates the
optic axis should be in a plane perpendicular to the normal section, which can

* Glazebrook, loc. cit.
t This type of prism was first suggested by Sang in 1837: cf. Proc. R. 8. Edin. xvi. 337

(1891). Jamin, C. R. 1xvir. 221 (1869); Pogg. Ann. cxxxvii. 174 (1869). Zenker, cf. Zeitschr.
f. Instrumkd. iv. 50 (1884). Bertrand, C. R. xc1x. 538 (1884).
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always be managed with a plate of any crystallographic orientation by
turning it in its own plane. In order that the field may be symmetrical,
the angles of the glass prisms must be equal to

90° — § cos—1£¢

He
o and p, being the least and the greatest indices of the plate.

With these prisms (considering only the normal section) light polarised
in a plane perpendicular to the greatest axis of the ellipsoid of polarisation
is totally reflected, when the inclination to the plate is less than cos™ (uq/pc):
the angular field on emergence is 2y, where

Sin x = pesin (} cos™ (ua/po)}
and the ratio of the length to the breadth is cot {4 cos™ (ua/uc)).

With a plate of Iceland spar, such prisms give a field of 44°22" and the
ratio of the length to the breadth is 4-28.

_ With a plate of sodium nitrate (u,=1587, u,=1336), the field is
increased to 53° and the ratio of the length to the breadth is reduced
to 342

198. Any one of the above forms of polarisers may be employed as an
analyser and will work sufficiently well, provided the analysation merely
consists in bringing streams of light to a common plane of polarisation; but
when it is a question of the exact determination of the plane of polarisation
of a stream of plane polarised light, an analyser that works by extinction has
not the required accuracy, as after the illumination has been reduced to
a small quantity, the eye is unable to perceive any further diminution in the
intensity and there is in consequence considerable uncertainty in the deter-
mination of the position of the analyser, at which the light is entirely
quenched.

A- delicate test of the existence of polarisation in a stream of light is
afforded by the rings and brushes obtained when a conical pencil of polarised
light traverses a crystalline plate and is subsequently analysed. This is the
principle of a sensitive analyser due to Savart*. It consists of a Savart’s
plate (§ 192) connected with a Nicol’s prism, the principal section of which
bisects the angle between the principal sections of the double plate. We
have seen that when a slightly convergent stream of polarised light is viewed
through this combination, a series of parallel straight bands is in general
perceived, but it is clear that these bands will vanish, when the analyser is
so turned that the plane of polarisation of the incident light is coincident
with either of the principal sections of the plate, as then there is no
separation of the light into two oppositely polarised streams and consequently

no interference.
* Pogg. Ann. xuix. 292 (1840).

w. 20
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199. A still more sensitive plan is that adopted in the “ half-shade”
analysers* which depend upon the readiness with which the eye can compare
the intensities of two streams seen in juxtaposition, when the illumination
is slight. ,

Suppose that the field of view is divided along a straight line into two
parts of equal intensity by some apparatus that introduces a small angle
between the planes of polarisation of the two halves, so that the plane of
polarisation of the one is parallel to OP, that of the other is parallel to OP".
Then if the field be viewed through a Nicol’s prism, the whole will appear
uniformly illuminated only when the principal section of the Nicol is the
interior or exterior bisector of the angle POP’. Conversely the apparatus
that produces this difference in the polarisations of the two halves of the
field may be employed as an anpalyser, and if it be turned until the whole
field has the same illumination, the plane of polarisation of the incident light
will then bisect the interior or the exterior angle between the planes of
polarisation of the analyser. When however the plane of polarisation of the
incident light bisects the acute angle between the planes of polarisation of
the analyser, the two parts of the field are too bright to admit of an accurate
comparison of the intensities.

The first analyser of this type was devised by Jellett. A long rhomb of
spar is taken and the ends are cut off by planes perpendicular to the
longitudinal edges: the prism thus obtained is then divided into two by
a plane perpendicular to its ends and making a small angle with the longer
diagonals of these faces, and the parts are joined together along the plane of
section after one of the halves has been reversed.

Suppose now that a cylindrical stream of polarised light falls normally on
the end face of the prism, so as to be equally divided by the plane of section :
on entry into the prism the extraordinary streams in the two parts will be
deviated and if the prism have a sufficient length, can be blocked by
a diaphragm, but the ordinary streams will pass undeviated and the planes
of polarisation of the two halves of the emergent pencil will make equal
small angles with, the normal to the plane of section. Hence in order to
render the two halves of the field equally dark, the prism must be turned
until the plane of section coincides with the primitive plane of polarisation
of the light.

A similar result is obtained with Cornu’s analyser. A Nicol’s prism is

* Jellett, B. 4. Report, 1860, 11. 13; Proc. Ir. Acad. virr. 279 (1863). Cornu, Bull. Soc. Chemn.
(2) x1v. 140 (1870).  Righi, Mem. dell’ Acc. R. di Bologna, (4) vi. 599 (1885). Lippich, Zeitschr.
f- Imstrumkd. 1. 167 (1882); xi1. 333 (1892); Wien. Ber. Lxxxv. (2) 268 (1882); xc1. (2) 1059
(1885); xcrx. (2*) 695 (1890). Laurent, Dingler Polytechnisches Journal, ccxxim. 608; J. de
Phys. m1. 183 (1874); C. R. rxxviit. 349 (1874). Dufet, J. de Phys. (2) 1. 552 (1882). Poynting,
Phil. Mag. (5) x. 18 (1880). Macé de Lépinay, J. de Phys. (3) 1x. 585 (1900); C. R. cxxx1, 832
{1900).
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cut in half by a plane through the short diagonals of its end faces: and
a wedge-shaped piece is removed from one half, its edge being parallel to the
length of the prism and its angle about 3°. The two parts are then re-united,
forming a prism that consists of two half-Nicols with their principal sections
inclined to one another at a small angle.

A different method of obtaining a half-shade analyser has been adopted
by Laurent. This depends upon the action of a half-wave plate of quartz
cut parallel to the axis, in traversing which a stream of plane polarised light
has its polarisation changed, the new plane of polarisation being inclined
to the principal section at the same angle as the primitive plane, but on the
opposite side of the axis. Half the field of view is covered by the plate, to
which is attached a Nicol’s prism with its principal section inclined at
a small angle to that of the plate. In examining a stream of light the eye
looking through the Nicol’s prism is focussed on the edge of the plate, and
the instrument is rotated until both halves of the field are equally dark:
when this is the case, the principal section of the plate is parallel to the
plane of polarisation of the stream.

200. Half-shade analysers present the same appearance when the light
examined is partially or elliptically polarised, as when it is plane polarised,
the direction determined in these two cases being the plane of partial
polarisation and that of maximum polarisation. An ellipticity, even though
slight, in the polarisation of a strean of white light may however be readily
detected by means of a Bravais’ plate* (§ 176).

Let us suppose that a stream of elliptically polarised light traverses the
plate and is subsequently analysed in a plane inclined at an angle ¢ to the
principal section of one of its halves. We may represent any one of the con-
stituents of the primitive composite stream by its components polarised in
planes parallel and perpendicular to this principal section with the polari-
sation-vectors ;

aemt and be‘("“"’),

respectively, and if 8 be the relative retardation of phase introduced by the
plate; the polarisation-vector for the stream emerging from the analyser will
be for the one half of the field

{a cosy + bsinye (A=9} g,
and for the other

{a cosye~® + bsin ye'd} e,
giving as the intensity in the two cases
ATS

(@ cos vy + b sin ¢)* — 2ab sin 2y sin® 5+

* Ann. de Ch. et de Phys. (3) xur. 129 (1855). Quincke, Pogg. Ann. cxxvir. 199 (1866).
20—2
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and for the intensity of the composite stream

3. (@ cos y + b sin y)* — 2 sin 2yZab sin? =

When the incident light is plane polarised, A =0, and the two halves of
the field have the same colour, and this is the sensitive tint, if the analyser
be set for extinction of the light, when the plate is away. If however the
initial stream be elliptically polarised, the tint of one half is raised and that
of the other is lowered and under no circumstances can these be made
alike, unless the analyser be set so as to render the whole field free from
colour.

201. Before proceeding to the study of the means employed for the
investigation of an elliptically polarised stream, we will first consider
a method of representing geometrically the state of polarisation of a train
of waves of light*.

Taking the axis of z in the direction of propagation, a stream of polarised
light may be represented by its components polarised in planes parallel
respectively to the axes of # and y with the polarisation-vectors

E=ae™, 7 =_66‘"t,
wherein @ and b are in general complex, and their ratio
bja = (bla) e’ = (b/a) cos A’ + ¢ (b/a)sin A’ = u + v, say,

a and b being the amplitudes of the components, and A’ the acceleration of
phase of the second relatively to that of the first.

This ratio defines the form and the orientation of the elliptic vibration of
the extremity of the polarisation-vector of the stream ; and we may therefore
represent the state of polarisation by a point on a plane, for which the
abscissa is w and the ordinate is v, the length of the radius-vector to the
representative point giving the ratio of the amplitudes and the angle that
it makes with the axis of abscisse being the difference of phase. Since the
polarisation is right- or left-handed according as A’ lies between 0 and 7 or
between 7 and 27, the vibrations in the stream will be right- or left-handed
according as the representative point is above or below the axis of w.

When the point is on the axis of %, the stream is plane polarised in an
azimuth tan=u with respect to the plane of #z; if the point be on the axis
of v, the difference of phase is 7/2 and the planes of maximum and minimum
polarisation are parallel to the axes of # and .

Points p, p’ on the axis of ordinates at unit distance from the origin
represent circular polarisation.

Now if 6 be the angle that the planes of maximum and minimum

* Poincaré, Théorie Math. de la Lumiére, 11. p. 276.
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polarisation make with the coordinate axes, tan B be the ratio of the axes of
the elliptic vibrations and tan o = b/a, we have

tan 26 = cos A’ tan 20, sin 28 = sin A’ sin 20,
which give, since
u=cosA'tano, v=sinA’tanag,

u*+v*+ 2ucot 20 -1 =0, u* 412 — 2v cosec 28 + 1 =0,

ql

k

r

t t

m

[e) n

P
Fig. 48.

Thus if @ be constant, the points representing the different states of
polarisation lie on a circle through p-and p’, and if the ratio of the axes
of the elliptic vibrations be constant, the points corresponding to different
orientations of the axes are on a circle cutting the first system of circles
orthogonally.

Any point is the intersection of a circle of the one () system with
a circle of the second (B) system: the distance from the origin of the point,
in which the circle of the first (6) system cuts the axis of u, is the tangent
of the angle that the plane of maximum or of minimum polarisation makes
with the axis of 2, according as the representative point is within or without
the circle of radius equal to unity with its centre at the origin.

The polarisation-vectors of the component streams being

E = aec(nH-t#), 7= bel.(7llt+¢ +A'),
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referred to the axes of # and y, let the polarisation-vectors of the components
polarised in the planes of maximum and minimum polarisation be

£ =ccos Benttote) 7’ = (¢ sin Be (rttdte)
then the angle between £ and £’ being 6
¢ cos Bets = a cos @ + bsin B¢, (¢ sin Bets = — q sin 6 + b cos e,
whence
ccosBsine=>bsinfsin A’, c¢sinBcose=bcosdsinA’,
and tan e = tan B tan 8 = On/Oq’ = tan Og’n,

n being the point in which the circle (8) cuts the axis of w and ¢ the point
furthest from the origin in which the circle (8) intersects the axis of v. But
it is easy to show that the line ¢'n passes through the representative point
m, so that ¢ is the angle Og’m or the complement of the angle Onm.

The effect of changing from one set of rectangular axes to another is to
move the representative point along the circle (8). Now the difference of
phase between the component streams polarised in planes parallel to the axes
is the angle that the line joining O to the representative point makes with
the axis Ou: hence if Ot, Ot’ be the tangents from O to the circle (B), the
difference of phase between any two rectangular components of the stream
lies between tOu and ¢'Ou. Now Ot =1, Ok = cosec 23, where k is the centre
of the circle (8); therefore

sin t0u = cos tOk = 0t/Ok =sin 28 and tOu =28,
so that the difference of phase varies between 283 and = — 23.

It is now easy to represent the etfect on the polarisation that is produced
by passing the stream normally through a crystalline plate. Let a be the
angle between the plane of xz and the plane of polarisation of the most retarded
stream in the plate, A the relative retardation of phase that the plate intro-
duces; then we have first to find the polarisation-vectors of the components
polarised in planes parallel to those of the streams in the plate; secondly, to
introduce the difference of phase A between these components; and finally,
to determine the nature of the polarisation when the stream is again referred
to the original axes.

The primitive polarisation being represented by the point m of the circles
(6) and (@), the final state of polarisation of the stream is, therefore, found
by the following successive operations :—Firstly, a motion of m along the
circle (B) to the point m’ in which it cuts the circle (8 — a) ; secondly, a rota-
tion of Om’ through the angle A, bringing m’ to m”, the point of intersection
(say) of the circles (6') and (B’); thirdly, a motion of m” along the circle
(8’) to the point in which it intersects the circle (8 + a).
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202. The final polarisation may, however, be determined in a far more
simple fashion by another method of representation that is derived from the
foregoing by a stereographic projection.

Describe a sphere of unit diameter touching the plane of uv at the
origin of the coordinates, and let the points of the plane be projected on the
surface of this sphere by joining them to O’, the extremity of the diameter of
the sphere through O.

(8] P v
m
M
P
[
0 '
Fig. 49.

Then the axes of u and v project into great circles at right-angles to one
another, the former of which may be called the equator; the points p, p’
become the poles; the circles (6) will be represented by the meridians 26 and
the circles (8) by the parallels of latitude 28; and if tan o be the length of
the radius-vector Om and the angle mOu = A’, the point m will be projected
into M, where the arc OM =20 and the angle MO0’ =A'.

Thus any point on the sphere will represent the state of polarisation of a
stream of light, the azimuth of its plane of maximum polarisation being half
the longitude, and the ratio of the axes of the elliptic vibrations being the
tangent of half the latitude of the point ; and the polarisation is right- or left-
handed according as the point is in the northern or the southern hemisphere.

This being the case, the effect of the transmission through a crystalline
plate is represented by three successive rotations:—(1) round the polar axis
PP' through an angle —2a, (2) round the diameter 00" in a left-handed
direction through the angle A, (3) round the polar axis through an angle 2a;
and these three operations are clearly equivalent to a single rotation in a
left-handed direction through an angle A round an equatorial diameter 44’
where the arc 04 =22

203. The investigation of a stream of elliptically polarised light consists
in determining the elliptic path traced by the extremity of the polarisation-
vector, and this may be done in two ways:—
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(1) by finding the ratio of the amplitudes and the difference of phase
of the vibrations of the polarisation-vectors of the component streams polar-
1sed in two rectangular directions;

(2) by determining the ratio of the axes of the ellipse, their position
with respect to some given line and the direction in which the path is
traversed.

The principle adopted in both cases is the same and consists in the
reduction of the pencil of light to a plane polarised stream and the subse-
quent determination of the plane of polarisation of the pencil.

204. In the first of these methods of studying a stream of elliptically
polarised light, the reduction to plane polarisation is effected by means of a
compensator, which introduces an adjustable relative retardation between
the rectangular components of the stream. Compensators are of two kinds:
the first class of instruments introduces a retardation that is variable over
the whole extent of the field and gives rise to interference fringes that are
localised on the surface of the compensator; in the second class, the retarda-
tion introduced is the same for the whole field, which is of uniform colour or
intensity according as the light is white or monochromatic.

The compensator of the first type, known as Babinet’s compensator,
consists of two prisms of quartz having the same very small angle, mounted
together to form a plate and cut so that the outer surfaces are parallel
to the optic axis of the crystal, which is in one prism perpendicular and in
the other parallel to the refracting edge. One of the prisms is fixed, while
the other can be moved over it by means of a micrometer screw, and the
prisms should be so arranged that the one with its edge perpendicular to the
optic axis receives the incident light.

When this is the case, a stream of light falling normally on the compen-
sator traverses the first prism with a speed Q/u,, and the second with a
speed Q/u,, if it be polarised in a plane perpendicular to the edge, while
these speeds will be interchanged in the case of polarisation in a plane
parallel to the edge: consequently passage through the compensator will
retard the second stream relatively to the first by an amount (x, — g,) (dy — d,)
measured in length in air, where d,, d. are the distances traversed in the first
and second prisms respectively, since, the phenomenon under consideration
being localised at the compensator, these distances may be regarded as
sensibly the same for the two streams.

Thus the retardation, that is introduced, is the same along each line
parallel to the edges of the prisms, but is different along the length of the
compensator: hence if a stream of light polarised in an azimuth a with
respect to the principal section of the first prism fall normally on the instru-
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ment and be subsequently analysed, a series of coloured bands will be seen,
when the light is white, and a set of bright and dark bands, when it is
monochromatic.

Since the difference of phase is not constant along the whole compensator,
it is necessary to confine the attention to a small portion of the field, within
which the relative retardation may be regarded as practically constant.
This is marked off by two spider-lines parallel to the edges of the prisms.
If the prisms be of equal thickness at the place thus indicated, the emergent
light is plane polarised in the same azimuth « as the incident stream, since
the changes of phase and amplitude due to passage into or out of each prism
are sensibly the same for both component streams. On moving one of the
prisms over the other a varying retardation is introduced: the emergent
light is elliptically polarised and cannot be quenched by a rotation of the
analyser, though for two positions the intensity becomes a maximum and
a minimum respectively. By a further motion of the prism the relative
retardation becomes + A/2 and the light is again plane polarised in an azimuth
of w—a: if the distance that the prism has to be shifted between the two
positions that give plane polarised light be w, then a shift of w’ from the

4
initial position of zero-retardation gives a relative retardation of + %}%,
and the compensator is thus graduated.

Before using the compensator it has to be ascertained which of the two
prisms is the one that can be moved, and which is the direction of its motion
that increases or diminishes its thickness at the point between the spider-
lines. We must also find out whether the prism, that receives the incident
light, has its edge perpendicular or parallel to the optic axis, as in the latter
case the sign of the retardation is the opposite to that given above.

This may be determined in the following manner* :—Light from a slit
parallel to the edges of the prisms falls on a Billet’s divided lens arranged to
give two real images of the slit on the surface of the compensator at the part
opposite the spider-lines, and the compensator is set so that the prisms have
the sume thickness at this place. The light from these images after traversing
the compensator gives rise to two systems of interference fringes polarised
in perpendicular planes, and these can be separated from one another by
examining them with a double-image prism. Now it is easy to see that of
these systems of fringes the one that has its centre nearest the edge of the
first prism is due to light polarised in the principal section of that prism:
and hence the edge of the first prism will be parallel or perpendicular to the
optic axis, according as the system of bands nearest to or furthest from it is
due to light polarised in the parallel plane.

* Quincke, Pogg. Ann. cxxvir. 211 (1866).
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205. Suppose now that a stream of elliptically polarised light falls
normally upon the compensator, arranged so that the light enters by the
prism that has its edge perpendicular to the optic axis, this also being
the prism that can be moved. Then starting from the zero position of the
instrument, in which d,=d, at the place marked out by the spider-lines,
the micrometer screw is turned in one direction or the other until the least
motion is found that renders the light, emergent between the lines, plane
polarised, and the azimuth a of its plane of polarisation with respect to the
plane at right-angles to the edges of the prisms is observed.

Now the polarisation-vectors of the components of the incident light

polarised in planes perpendicular and parallel respectively to the edges of
the prisms may be represented by

E=acosnt, n=bcos(nt+A),

the polarisation of the stream being right-handed if A be between 0 and r,
or between — 7 and — 27, and left-handed when A is between 7 and 27 or
between 0 and — 7.

Suppose that the phase of the second component is retarded relatively.
to that of the first in its passage through the compensator by an amount
A’, this being positive or negative according as the motion of the prism
has increased or diminished d,, and being in all cases less than 7. Then
on emergence from the compensator the components may be represented by

E=kacos(nt+¢), n=kbcos(nt+A—A+¢),

and hence the azimuth of the plane of polarisation « is tan~!(b/a) or
7 — tan~' (b/a), according as A — A'=+ 2n7 or + (2n+1) .

Hence if a be less than /2, the polarization is right- or left-handed
according as A’ is positive or negative, and if a exceed 7/2, the polarisation is
right- or left-handed, according as A’ is negative or positive: thus the polar-
isation is right- or left-handed according as tan a sin A’ is positive or negative.

Since the numerical value of tana gives the ratio of the amplitudes of
the polarisation-vectors of the component streams polarised in planes parallel
and perpendicular to the edges of the prisms, the elliptic polarisation is
completely determined.

206. Babinet’s compensator may also be used for a direct determination
of the position and ratio of the axes of the elliptic vibrations in a stream
of light.

A beam of elliptically polarised light may be represented. by the polar-
isation-vectors

E=ccosBcosnt and 7=—csinBsinnd

corresponding to the component streams polarised in the planes of maximum
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and minimum polarisation of the beam, B being less than /4 and positive
or negative according as the polarisation is right- or left-handed.

Now suppose the compensator is so set that it retards the phase of the
stream polarised in a plane perpendicular to the edges of the prisms by‘an
amount /2 relatively to that of the stream polarised in a plane parallel to
the edges, and let us first suppose that it is turned until the former of these
planes coincides with the plane of maximum polarisation of the incident
light, then the polarisation-vectors of the emergent streams will be

& =kccos Beos(nt+ @), m=—kcsinBsin (nt+ ¢+-72—r>=—k'csin/8005(nt+¢),

and the emergent light will be plane polarised in an azimuth a with respect
to the plane perpendicular to the edges of the prisms, given by tan a = — tan f3,
and tan o will be positive or negative according as the polarisation is left- or
right-handed.

Similarly if the compensator be so turned that the plane perpendicular
to the edges of the prisms coincides with the plane of minimum polarisation
of the incident light, the azimuth « of the plane of polarisation of the
emergent stream, measured from this plane, is given by tan a= — cot 8.

Hence when the emergent light is plane polarised, the plane perpendicular
to the edges of the prisms will give the plane of maximum or minimum
polarisation of the stream according as tan a is numerically less or greater
than unity; its numerical value is the ratio of the axes of the elliptic vibra-
tion; and the polarisation is left- or right-handed according as tan a is positive
or negative. '

207. The chief objection to the use of Babinet’s compensator is that the
fringes are localised at the instrument*, and it is therefore necessary to
focus the eye on its surface, which renders it difficult to fix the direction
of the stream of light that is studied. This disadvantage is overcome by
employing a compensator of the second kind, that introduces the same relative
retardation over the whole field.

An instrument of this type was devised by Biot, and consists of a plate
of quartz cut parallel to the optic axis, followed by a second plate of adjust-
able thickness also parallel to the optic axis, and so placed that its axis is at
right-angles to that of the first plate: in order that the thickness of the
second plate may be capable of adjustment it is formed of two quartz wedges
with the edges parallel to the optic axis, one of which can be moved over the
other by means of a micrometer screw.

208. Instead of using the compensator in the second of the two methods
described above, it is perhaps more convenient to employ a quarter-wave

* Schmidt, Wied. Ann. xxxv. 360 (1888). Macé de Lépinay, J. de Phys. (2) x. 204 (1891).
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plate for the determination of the elements of the elliptic polarisation.
Unfortunately it is difficult to obtain quarter-wave plates that are absolutely
correct, and if perfect for one wave-length, they are of necessity imperfect
for light of a different frequency. It is, however, pussible to use an imperfect
plate for the investigation of the polarisation*, provided the relative retarda-
tion of phase that it introduces lies between 28 and a7 — 243, the limiting
differences of phase between the rectangular components of the stream of
elliptically polarised light.

P
M
0/ &
N
Pl
Fig. 50.

Let the point M, representative of the polarisation of the stream to be
investigated, be determined by its longitude ON =26 and its latitude
NM=28: then the effect of transmission through the plate is given by a
rotation through an angle A round the axis A4’ in the plane of the equator,
where A is the relative retardation of phase introduced by the plate and
04 is twice the angle that the plane of polarisation of the most retarded
stream in the plate makes with the plane of reference. If the resulting
polarisation be plane, this rotation must bring M into the equator to the
point M, say, and the arc AM’ is twice the angle o that the resulting plane
of polarisation makes with that of the most retarded stream in the plate.

If the arc N A = 2¢, the spherical triangle 4 N M, in which

AM =AM =2¢,
gives SIN'2¢p = bamy 2SOty AL DML E S s T T (6),
OB 2ei=,.008 ' 2/3/e0st 2ebi, 208 318 W Lerd ST ()
€08 A '=than 2¢ cot 2o | I a Nt N SRhs (8).

Whence it follows that there are two possible positions of the axis 44’, BB,
such that NA + NB =, and that the values of & corresponding to these
positions are complementary to one another. If the polarisation be right-

* MacCullagh, Proc. R. 1. Acad. 1. 384 (1843); Collected Works, pp. 238—242. Stokes,
B. A. Report, 1851, Part 1. 14; Math. and Phys. Papers, nr. 197.
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handed, 4 will lie within or without the arc ON, according as A is greater
or less than 7/2; the reverse being the case if the polarisation be left-handed.

If then x, and 90° + x, be the azimuths, measured from a fixed plane of
reference in a direction from right to left, of the plane of polarisation of the
most retarded stream in the crystalline plate, when the emergent light is
plane polarised, and if 6 be the azimuth of the plane of maximum or of
minimum polarisation of the primitive stream, we have

=018 x.=0F¢, and 0=(x,+x.)/2, = 5N PRI (9).
Again if o; and o, be the azimuths of the plane of polarisation of the
stream emerging from the plate in its first and second positions, measured
from right to left from a plane of reference fixed in the plate, (o; + 7,)/2 gives
a direction inclined at 45° to the plane of polarisation of the most retarded
stream in the plate, and o, ~ oy = m/2 + 20, whence

€03 28 =SIn (03 ~ 1) SEC (2 ~ Y1)+ cevvrererneerrvnranens (10).

Further it is easy to see that tan (¢, —¢,) and tan (., — x,) have the same or
opposite signs according as A is less or greater than =/2, and therefore

cos A = tan (g — 6;) AN (s — K1)eeverrrenenrrneninnens (11).

To complete the specification of the state of polarisation of the primitive
stream, we require to know the azimuths of the resulting plane of polarisation
measured from the plane of polarisation of the most retarded stream in the
crystalline plate. If o,” and ;" be these azimuths measured in a left-handed
direction, the stream is right- or left-handed, according as ¢," and o,” are
greater or less than =/2, and the angle 6 gives the plane of maximum or
of minimum polarisation according as sin o, is greater or less than sin o',

209. We have seen in Chapter II that a stream of light may be one of
seven different types: it is possible to have (1) common light, (2) polarised
light, which may be either (a) elliptically, (b) circularly or (c) plane polarised,
and (3) partially polarised light, the partial polarisation being (a) elliptical,
or (b) circular, or (c) plane.

A stream of common light, when examined with a Nicol’s prism, appears
of constant intensity for all positions of the prism and it retains this
characteristic 'after transmission through a quarter-wave plate, whatever
may be its orientation.

Circularly polarised light resembles common light when it is viewed
through an analyser, but after transmission through a quarter-wave plate
it can be extinguished by a rotation of the analyser.

Elliptically polarised light, when observed through a Nicol, has an
intensity dependent upon the orientation of the analyser, but in no case
is the light entirely quenched.
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Plane polarised light, when similarly investigated, can be entirely
extinguished by rotating the analyser. :

Partially plane polarised light resembles elliptically polarised light, when
examined with a Nicol’'s prism, but the two kinds of light are distinguished
by the fact that elliptically polarised light is converted into plane polarised
light by transmission through a quarter-wave plate with its principal plane
in the plane of maximum or of minimum polarisation of the stream.

Partially elliptically polarised light resembles partially plane polarised
light, but may be differentiated from it in either of two ways: (1) by
transmitting the stream through a quarter-wave plate with its principal
plane in the plane of partial polarisation, then the light will be partially
plane or partially elliptically polarised, according as the plane of partial
polarisation remains the'same or is altered : (2) by placing the quarter-wave
plate with its principal plane at 45° to the plane of partial polarisation,
then in the case of partial plane polarisation all traces of polarisation
will disappear.

Partially circularly polarised light appears like common light, but is
distinguished from it by transmission through a quarter-wave plate, which
reduces it to partially plane polarised light*.

* Beer, Hohere Optik, 2nd ed. p. 176.



CHAPTER XVI
ABSORBING MEDIA.

210. THE characteristic property of absorbing media is that they reduce
the intensity of a stream of light in its progress through them by an amount,
that increases with the distance traversed, and it therefore follows that in
these media the polarisation-vector of a train of plane waves of light must

have a varying amplitude, so that, if we represent its components by the real
parts of

u=A e;(lx+my+nz—st)’ V= Be; (lm+my+‘nz—at)’
w= Ce;(lm+my+fnz—st)’
one at least of the quantities /, #, 7 must be complex.

Now in the case of a transparent isotropic medium, [, m, n are connected

by the relation
12+ m? +n* =2,

where Q is the propagational speed of light in the medium, and we can only
retain this relation in the case of absorbing media, if we assume that Q2 then
becomes a complex quantity. We are therefore led to extend the differential
equations and hence also the boundary conditions obtained in Chapter XIII,
so as to include absorbing anisotropic media, by assigning to ® the value

2D = Ty U + Ugn ¥ + Ugg WP + 2oy VW + 2y Wk + o2V ... (1),

where @,,... are complex quantities.

If we write e = Caz + 0@ g,
we have D =P+ .P,
where 2D = @, U + (¥ + AgsW? + 2000w + 205 WU + 205UV ......... (2),
2D = a1y, U2 + gy’ V2 + g5’ WE + 205" vw + 2a3{wu‘+ i D P (3),

and by a proper choice of axes, we can bring either ® into the form

2D = 22 + D 4 CUiiiiiivii e (4),
or @' into the form
2D = @MU 4 DA €U v eeeean, 3);
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in the first case the axes are termed the polarisation-axes, a, b, ¢ being the
principal polarisation-constants, and in the second case the axes are called
the absorption-axes, a’, ', ¢’ being the principal constants of absorption.

In a crystal of the anorthic system the two sets of axes are independent
of one another, and taking the axes in the direction of the polarisation-axes,
the medium is characterised by nine constants: this number is reduced to
seven in the case of a monoclinic crystal, as then one of the polarisation-axes
1s coincident with one of the absorption-axes. In crystals of the prismatic
system, the two sets of axes are identical and there are six constants: these
are reduced to four in the case of crystals of the tetragonal and hexagonal
systems, while crystals of the cubic system and isotropic media possess only
two constants*. '

211. In order to determine the general characteristics of the propagation
of light in absorbing media, let us take the axis of z in the direction of the
wave-normal ; then w = 0 and u, v are functions of z and ¢ alone, so that the
differential equations become

a;a,,%—?—ﬁ%%, 'z}=aﬁgi;+amg;f ............... (6).
Let (u, ¥)=(4, B) De®==50_............. (7),
where A+ B =1, £ =x(1—uw), B = o/(1—w);
then these equations give

(@ =Gy Ad=0,B, (—Tn)B=0yAd............... (8),
whence (@ = T WA= )=yt o e s o o e 9),

and

Equation (9) determines two values of @ and therefore two values of » and
v, while (10) gives the corresponding values of the complex ratio B/4;
denoting these by the suffixes (1), (2), we have

AHABE=B.c.coccnniiniesmiiie oo (11).

Since the ratio B/A is complex, it follows that the two waves thus
determined are elliptically polarised. Now by a proper choice of the origin
of time we can arrange that

AD=c(cosBcosa—csin Bsina), BD=c(cosBsina+ ¢sin B cos a),
where tan 8 is the ratio of the axes of the elliptic path of the end of the

* Drude, Wied. Ann. xxx11. 584 (1887); xL. 665 (1890). Winkelmann, Handb. der Physik,
11, 807—819. Voigt, Wied. Ann. xxmr. 577 (1884); Komp. der theor. Physik, 1. 708—725.
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polarisation-vector and a is the angle that these axes make with the coordinate
axes: whence (11) gives the two equations

cos (B, + By) cos (@, — a;) = 0, sin (8, — B,) sin (a, — o) = 0,
which are satisfied only if .
a,=o,+7/2 and B,=p,,
or o= oy and B,=7/2 -,
both of which conditions express that in the two waves the ellipses are

similar and traversed in the same direction, while their major axes are at
right-angles.

212, TUnless the polarisation-axes and the absorption-axes are coincident,
it is impossible to bring ® and @’ simultaneously into the forms (4) and (5)
and by no real transformation of the coordinate axes can ® be made to
assume the form

2D = @ + b? + cu?,
but this may be effected by the employment of a complex system of
coordinates Z, ¥, Z.

Let the scheme of transformation be

&l
<
Wl

where &, B, ... represent complex direction-cosines, fulfilling the ordinary
conditions of an orthogonal transformation ; then

Ty = 870 + B2D° + 8,76

............................

..................................

whence we obtain three sets of equations of the form
(,au — Tp?) Ap + Cro Eh +Tnyn=0
Trap + (Tos — T2) Br + Ao Y =0 cevnvveninniiniciens (13),
Ty &p + Gos B+ (Gss — Tn”) Yn =0
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h=1,2,3and &, =@, F =0, Z,=¢: and from these equations we obtain

A S ey ) AR e Ry (14),
@y S =T Y 6
Ty Ty Gy— B

the three roots of .which give the values of @, b2, @ and these being known,
equations (18) give the values of &, B, ¥s-

213. The differential equations now become
bty o0 od 2P
(u) v, w)‘—v2('§;: a_,u) %)

0 9 o\/0ooDd odob 0od g
—(EL'" @,&)(a—%a—uﬁ'@ a; +a—zaa) ............ (1{)),
X ou Ov ow
with a;'*‘@'f‘&—o ........................... (].6),
where 2D = G2+ b2 4 TR eeevevreennnnneieeerinnnnnns ).
Writing (u, v, wy= (4, B, C) Dewelctimyio—an, ............ (18),

where A+ B+ C?=1 and [, m, 7 are the complex direction-cosines of the
wave-normal, determined by

l=gl+Bm+ yin, m=al+ Bam + Yo, T=al + Byn + s LY, (19),
these equations give
(@2 —@*) A = (@Al + BB+ 6Ch) l.ceeeeeeen..n.. (20),
and two similar equations, with
A 8 B DR 00kt oo vy s s tpabedes ol (21).
]2 T2 e
Whence 4 — =5 — + n_ =10 R e S (22),
T-o b—@ °—a
P g ALY el L A I g (23).

-0 -0 -

Separating (22) into its real and imaginary parts we obtain two simultaneous
equations involving @ and ». The results are very complicated, but it is
clear that Fresnel’s laws for transparent crystalline media no longer hold.

214. A notable simplification of the problem however occurs when we
can regard the absorption as slight, and in that case the propagation is
determined in accordance with Fresnel's laws.

Let us take the polarisation-axes as the coordinate axes, then
d11=a2 +‘a,]1; an=b2+l«alﬁ, 633=62+ la«133,

ey 7 — A = v
Qo3 = LA 93, U5 = QA 3, Qe = L 12,
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and regarding @’ as a small quantity of the first order, we have from (14)
by neglecting terms of the second order

(an—‘?)(am—ﬁ) (533 —9:"2)=0,
which gives as the values of #*
a2+ 'y, b+, ¢+ 10y
whence, writing
= o+ ey, B =B + B, Yo=Y+ tyy,
we obtain from (13)

o158 + 'y =0
Tt (0 = ) By + (= ) 1 + da = 0| (24)
Gnti+@ufi+ (@ —an)p+(—a)y/ =0 T .
a10t1' ap ;Blﬁl’ e ')’1')’1/ =0
and ool + ey = 0
a0 + (e — a'n) By — (b* — @) B+ &y =0 [
als1a1/ o aI%BII ¥ (alss s a’n) ’Yll _& (02 sk az) oy = f ey (20),
at+ B o — e = B -yt =11
which are satisfied as far as terms of the first order by
a1, =0 =0, o =0, B =2, W

and &, 3, ... v’ are obtained from these by a cyclical change of letters and
subscripts. With these values we obtain

D=l +d =1 +o(mo g tn)

a?—c?
- : a’ r
m=m+¢m=m+t(nb2~_”—c—2+lb2a-’_l?a2) ......... (26),

n / o o’
Aa=n+wm =n +L(l 0—2_—";2+mc?”b?)
and thence, since @*= w? (1 + 2w),
s I =3 & 2 Pooay- 2vw”}

- +2 =
' — o a? — w? - - Q- o

Hence separating the real and imaginary parts, equation (22) gives

(K m? n?
ag_w2+b2_w2+cz_w2=0 .................. (27),
[ m2 n?
2
and 21/(0 {(ag = (02)2 1 (62 T (1.)2)2 + (02 & (1.)2)2}

lz 2 n?

7 m )
(az =T w2)2 + Qo (be > - m?)z +a 33(02 Fl m2)2

/
=ay

nl J im
E=a@=a) 2 @ o) O
21—2

+ 205 + 2a/y,
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Now, if A=A +1A’, B=B+.B,C=C+.",
A:B:C::lj(a*— @) : m/(b* — @?) : n)(c* - @?),
and therefore
2vw? = a’y cos? O, + 'y cos? 6, + a's; cos? 6;
+ 2a’,; cos B, cos 8; + 2a’y, cos 8; cos 0, + 24/, cos 6, cos 6,
=0a"¢0s* 0 + b cos? 8, +¢2co8% Oy eeuiiniinninninniiiniian e, (29),

where 6,, 0,, 6, and 6/, 6,, 6 are the angles that the major axis of the
elliptic vibrations makes with the polarisation- and the absorption-axes
respectively and «/, ¥, ¢’ are the principal constants of absorption.

215. When the polarisation- and the absorption-axes coincide, as is the
case with prismatic crystals, a further simplification occurs, as then
g =0 =105 =10}
and writing a’® b, ¢” for a'y, a's, @’y respectively we have
D s e B ST B L (0 R R S A e (30).

This may be expressed in terms of the angles y, ¥’ that the wave-normal
makes with the optic axes. Through the centre of a sphere of unit radius,
let us draw lines parallel to the optic axes, the wave-normal and the vectors
(4,, B, C)) and (4,, B;, C,) and let these meet the surface of the sphere in
the points 4, A, N, w,, w, respectively: then if +7,, 0, n, be the direction-
cosines of the optic axes and 7 be the angle ANA4’,

sin y sin /2 = cos (@, 4) = 4,1, + Cn,,
—sin x/sin /2 =cos (0, 4") =— 4/, + Cn,,

Xt X XX X 3
whence Al =sin 2 cos 5 sin 5,
Rt x—%- v
Ciny= cos g sin “—o-sin 3
and similarly A,l, =cos X+ X sin X~ X~ =
2 2 )
BIPUE L& AMIE. Ty AN
C,n, =sin g - CoST5 T cos 5.

Also if 2¥ be the angle between the optic axes

cos 2W¥ = cos y cos x’ + sin y sin " cos 7,
whence

sin x sin i’ sin? 32 = cos“x;2x— —cos* ¥ = sin* ¥ — sin? X=X ;X \

sin  sin yx’ cos? %:cos2 W — cos® X—;;l‘— =sin® &jé—x— — sin? W,
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Making these substitutions we obtain

Qe = L(c’ — a?) sin? X ;X cos* X :I; X (a P 0" X EX el c,:_z cos? Xi2'_XI>

at=0? 9 b*—¢

+arsim XEX oo XT X _ oo XEX o X T X
2 i 2 2
= (cos’ % — cos? %X) ..................... (31),

and ot=at— (a® — ¢ sin® )%X :

When the wave-normal is very nearly coincident with one of the optic
axes, so that y, say, is very small, we may proceed to a further simplification*;
for if 4 be the angle A’AN, we have approximately

X +x=x-x=2¥, i=m—v, @,=w,=b
whence
A,= cosWcosy/2, B =siny/2, C,=—sin ¥ cos /2,
4,=—cos ¥ sin {/2, B,=cos /2, C,= sin ¥sin /2,
and (30) gives
21 b% = (a”?cos® ¥ + ¢%sin? W) cos? \—g— + b sin? %)

2v,b% = (@ cos? ¥ + ¢ sin® V) sin? i; + b cos? ‘—g [

' When the wave-normal coincides with the optic axis, these formule
become indeterminate, but we obtain from (30)

2»,'b* = b", when the plane of polarisation is parallel to the plane of
the optic axes, and

2, b* = a” cos® ¥ + ¢”sin® ¥ for the stream polarised in the perpendicular
plane.

There are two types of biaxal absorbing crystals: in those of the first
type, such as Andalusite, Hornblende, Titanite, v,’ > »,, while in those of the
second type, of which Cordierite, Epidote, Axinite are examples, » > ;.
Similarly with uniaxal crystals: in those of the first type (Magnesium
platino-cyanide) », < v,, in those of the second type (Tourmaline) v, > »,.

In traversing unit distance in the direction of the wave-normal, the
amplitude of the vibrations is diminished in the proportion exp {27v/(Tw)} : 1.
If then we draw through a given point vectors equal to the absorption-
coefficients »,/w, and »,/w,, we shall obtain a surface of two sheets that has
a certain analogy with the surface of wave-quickness. The sheets of this

* Voigt, Wied. Ann. xxu1. 595 (1884).
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surface intersect, not in definite points but along portions of curves, that in
the case of anorthic and monoclinic crystals are unsymmetrical with respect
to the planes of optical symmetry and do not in general pass through the
optic axes. Thus in weakly absorbing crystals, while there are at most
two directions of equal wave-velocity, there is a series of axes of equal
absorption *.

216. We are now in a position to consider the interference phenomena
exhibited by plates of weakly absorbing crystalst.

" Let a, 8, n be the angles that the primitive and final planes of polarisation
and the plane of polarisation of the quicker wave within the plate make
respectively with some fixed plane of reference : then neglecting the ellipticity
of the polarisation of the streams within the crystal, as this is very slight in
the case of weak absorption, and making the same assumptions as in
Chapter XIV, the polarisation-vectors of the streams emergent from the
plate may be represented by

@ COoS (a iy ,’7) e—"1n e:.(nt-x&,) and a sin (a e g 7]) e —Vi%: gt (nt—xS,),
where o =27T/(7wcosr), T' being the thickness of the plate and r the angle
of entry ; and that of the stream leaving the analyser will be

a {cos (@ — n) cos (B — 1) e~"71 e~ + sin (a — ) sin (B — n) e~"71 ¢~ %} gt
and the intensity is

I = a?{cos? (a — ) cos? (B —n) e~21% + sin?(a —n) sin? (B — ) e~ 21

+ 2sin (a — n) cos (a — n) sin (B — n) cos (B — n) e~ (117 cos £§}...(33),
where 8 is the relative retardation of the streams as determined in
Chapter XIV.

If the incident light be unpolarised, we may replace it by two independent
streams of equal intensity polarised in any two rectangular planes, and the
final intensity will be the sum of the final intensities of these streams: hence

2
T ‘% {cos* (B — ) €=t 4 5in* (8 — m) e=P}........... (84).
When the light is neither polarised nor analysed, the intensity is

a2
e Ul 2 MM b ) ke (35).

217. Let us first apply these formule to the case of an uniaxal plate
perpendicular to the optic axis placed in convergent light between crossed
Nicol’s prisms. The intensity then is

2
I= “Z sin? 2 (a— 7){e~20 4 e~ Pers — 2 g~ (ua0tvesd) cos k) (36),
* Drude, Wied. Ann. xr. 676 (1890).

+ Voigt, Wied. Ann. xxmx. 587 (1884); N. Jahrb. fiir Min. (1885) 1. 119. Drude, Lehrb. der
Optik, pp. 345—351. Liebisch, Phys. Kryst. pp. 527—533,



215-218] Interference Phenomena 327

2 ‘2 2 2 sin?
a a?cos® x + ¢ %sin
where 2vy=—, 20, = —— X o X,
a a?cos?y + c* sin® y

In the direction of the optic.axis v, =1v,, ¢y =0, § =0, whence I =0, and
the intensity also vanishes when 7 =a or a + /2, so that there is a black
cross with its arms parallel to the principal planes of the Nicol’s prisms. The
second factor in (36) equated to zero gives a series of dark rings round the
optic axis, but these are only completely black if vo, =v,0,. °

The rings become less conspicuous the stronger the absorption, since the
factor exp {— (v,0, + v.0.)} becomes vanishingly small, and

2
“Frind % sin? (@ — 77) (e~ + g~ He7e),

Thus in crystals of the first type, such.as magnesium platino-cyanide, for
which a’ is small and ¢’ is large, the field is bright except for the dark cross;
in crystals of the second type, such as tourmaline, for which a’ is large and ¢’
is small, the whole field is dark.

When the incident light is unpolarised
2
I=% foost (8 — ) e~ +-sint (8 — n) -2

and in the direction of the optic axis

a’2
I, = e~ %,
%

Thus with crystals of the first type, there is a dark brush perpendicular
to the plane of analysation interrupted by a bright spot at the centre; while
with crystals of the second type, the brush is parallel to the plane of
analysation and is continuous.

When the light is neither polarised nor analysed

and in crystals of the first type there is a bright spot surrounded by a dark
field ; with those of the second type there is a dark spot in the centre of
a lighter field.

218. As a second example of the interference phenomena given by
absorbing crystals, we will consider the case of a biaxal plate cut in a
direction perpendicular to one of the optic axes.

Taking the plane of the optic axes as the plane of reference, we have for
small angles of incidence 5 = /2, where ¥ is the azimuth of the plane of
incidence : hence if the planes of polarisation and analysation be crossed

= (—2—2 sin?(2a — Y){e~217 + 2% — 2=+ cos k8] ...... (37),
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where o =2nT/(vb) and v, v, are given by (32), which formul®, though
strictly holding only for the cases of prismatic crystals, will afford with
sufficient accuracy a qualitative explanation of the phenomena observed
with crystals of other systems.

For the direction of the optic axis itself, we obtain by resolving the
incident light into streams polarised in planes parallel and perpendicular to
the plane of the optic axes

2
I,= % $in 20 (6777 = €O crreerreenrreenne (38),
where 210 1b&/ b 2v,) = (a? cos? ¥ + ¢%sin? W)/B2............ (39).

The factor sin® (2a — y) gives a principal line of like polarisation yr = 2a,
which is black, but is interrupted by a brighter spot at the point corre-
sponding to the optic axis, unless a=0 or =/2. Since cos«d changes
periodically as the angle of incidence increases, the last factor in (37) will
give a series of dark rings. These however will be too faint to be observed,
if the plate be of a thickness for the absorption to be marked, as the factor
exp {— ( + »,) o} then is very small and the term in question becomes

J =e-"co It e~ 27,
oJ

Now — = o sin 1!, (yzl — vl,) (6—2"1" — —2v,nr)’

oY

and this is zero, if yr =0 or m, giving a maximum value of J, and if », = », or
4 =/2 corresponding to a minimum value of J. Thus in addition to the
black line of like polarisation 4 = 2a, there is a dark line perpendicular to
the plane of the optic axes.

If the planes of polarisation and analysation be parallel and the plate be
of sufficient thickness :

= _i -2n0 3 4( _i -Zv,u'}
I-a”{cos‘(a 2)e2 + sin 2>e y

and the phenomenon is essentially the same as when the light is unanalysed,
the intensity then being

Fe - f) -2 3 2{ et E) -0
I-a*{cosz(a 5)¢ +sin* {a — 5 |6 "
Taking this last case and supposing a = 0, we have
I=qa? (0052112{ e~ 4 sin? %’ 6‘2"2") ,

IO = qe— o,
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Now

7 !
a— =a’sinyr {o- ) (sin2 % €~ 29 — cos? ‘l' -2vlv) e

e—2v.cr o 6-2"’”}

oy 2

=0,if =0 or =, or'if Y = + 7/2.
But for Y =0 or , I=1 =q% ",
for 4 = + /2, I=1,=q% ®+tn)o

whence for crystals of the first type, for which »,.>u, I, > 1, and the dark
brush is in the plane of the optic axes and continues through the centre of
the field: with crystals of the second type, v’ >»,, I, > I, and there is a dark
brush perpendicular to the plane of the optic axes interrupted by a brighter
central spot. The reverse is the case when a ==/2.

When the light is neither polarised nor analysed

2

Jr =% {9—21'10' + 3—21/20'}’

aZ
= _2_ {6—21',’:7 AL 6_2"’1’}.

This expression has already been discussed and it shows that there will
be a dark brush perpendicular to the plane of the optic axes with a brighter
spot at its centre.

219. Passing-now to the problem of reflection and refraction* at the
interface of absorbing media, we may at once apply the formule obtained
for transparent substances, provided we replace by complex quantities the
parameters that occur therein.

Thus in the first place the geometrical laws of the phenomenon follow
from the fact that the boundary conditions are linear, homogeneous relations
between the vectors characterising the incident, reflected and refracted
streams: for the interface being the plane of yz and the vectors being
proportional to

exp {Llch (z;,:v + mpy +npe — ﬁht)},
where Ky@op = Kpwp, = 2m[T,
it follows that the quantities
Kn@n, Knlin,  Kip,
must have the same value for each of the streams.
* Drude, Wied. Ann. xxxi1. 584 (1887); xxxiv. 489; xxxv. 508 (1888); xxxv1. 532, 865 (1889) ;

xxxrx. 481 (1890). Voigt, ibid. xxir. 104 (1884); xxv. 95 (1885); xxxI. 233 (1887); xxxv. 76
1888) ; Komp. der theor. Physik, 1. 730—1747.
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Let us as before adopt the light-vector = as representative of the streams,
and let us suppose that the normal to the planes of constant amplitude of
the incident stream are in the plane of incidence, which we will take as the
plane of zz, then m = m’ =0 and therefore @ =0 and we may write

(m-l) @, @'a) & (717 ]_CJ = Z)D-
where k=tan¢, D =cos¢ 4 exp {ik (lz +7iz — @t)}

¢ being the complex az1muth of the vector with respect to the plane of
incidence.

Since the vector = is independent of y, the differential equations give

0 L (20 (@5_863 aﬁrg}
T MYz T B\ 0z oz

> 0 S e Y e S A T\ R s

“’2='a—z{‘“na7+“m(a—z ‘a‘a:)”ma—w‘}
GRIEREEY = e S (Bl G e = (i

+Tc{—“3‘a—z+“”(§?"a‘i>+“”a—w}

| _ (0w, D 220

whence, writing /i = &, /i = &, we obtain

(@8 + Ty — 1) (@358 = 205, € + Gy — %) = (Aes& — Ta)? (@2 + 1) ... (42),

T h? — Gy — T? 43),
= o WA :

similar equations with b written for a applying to the second medium.

Now the incident stream being given, the value of % is known and
equation (42) determines the complex directions of the normals of the
reflected and refracted waves and (43) determines the azimuths of the light-
vectors. Care must be taken to select the values of & that correspond to
streams leaving the interface with amplitudes that decrease as the distance
therefrom increases.

Introducing now the surface conditions we obtain as in Chapter XIII,
Slcos¢A =31 cos B
Shcos ¢ A =37, cos ¢, B
Blcos pA = Shiabs i B > o5 n. " L st e e (44),
Sk (= gy 7o + Gy + Tgskl) cos ¢ A
= 37, (— by ki, + bog + bigherly) cos ¢, B
the suffix (,) and the letter B referring to the second medium.
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If the first medium be isotropic, we have, denoting by F, @ and F’, ¢’ the
amplitudes of the components of the light-vectors of the incident and reflected
streams perpendicular and parallel respectively to the plane of incidence

(@ - @)cosi=1, cos §, B, + I, cos $, B,
(@ + @)sini =7, cos ¢, B, + 7, cos $, B,
F4F = sin¢, B, +sin$, B, . (43),
ko2 (F —F')cosi =k, {(Bssly = by, sin ¢, + by cos )
+ %y {(bssly — by 7o) sin ¢, + s cOS s}
where 1 is the complex angle of incidence.

B
B

220. Without proceeding to the further developments of these equations,
we will now take the more interesting case of metallic reflection, in which
both media are isotropic. Then 7 being the complex angle of refraction, we
have '

(G—G)cosi =@, cos 7
AR e el ], .................. (46),
F+F =P,
(F = F')sins cost = F, sin 7 cos 7 }
whence G; =— sm(i____—_i_) G G,= __sin?%;'_ G
sin (2 4+ 7) sin (2 + '71) % bl = 7).
= tan (@ r) ¥ sin 27 =

tan (24 7) L ' sin (14 7) cos (1 —F)
When the incident light is plane polarised and the first medium is trans-
parent F, G and ¢ are real. Taking this case and writing “the complex

refractive index
a=pn(l—v)=0cc

and A2 cost T = PPe~* —sin? ¢ = U2e™,
we have N 003Gy 1921 G060 qobooaoasboo0adaos 50 30t (48),
U2 cos 2u = @? cos 2e —sin?s, U?sin 2u= @%sin 2¢ ......... (49),
which give cot (2u — €)= cot € cos (2 tan™! Slg 7’) .................. (50),

s,
tan (u — 2¢) = tan u cos (2 fan~? =5 ?’) .................. (51).
F  @etcost— Ue ™ v
o F~ @Pecosi+ Ue ™ bam

: U .
where cos 2¢), = cos (u — 2¢) sin (2 tan™? P oos z) .................. (52);

; i 08
tan A, = sin (u — 2¢) tan (2 tan™! G cos i)
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G cost— Ue™

ot St o Agt
e G cosi+ Ue™ b B 50
: LraEs
where oS 2¢p, = cos u sin (2 tan—? c—&sjﬂi) ..................... (53).

tan A, =sin % tan (2 tan™? '3 ) )
()
Also if the incident light be polarised at an azimuth of 45° to the plane of
incidence, we have
sin?¢ — Ucoste™

sin? ¢ 4+ U cosze™™

F/

e
where A is the difference of phase between the components of the light-
vector of the reflected stream perpendicular and parallel to the plane of
incidence and tan ¢ is the ratio of the amplitudes, and

cos 2¢ = cos u sin (2 tan™? ———>
sin ¢ tan 2

tan A =sinu tan (2 tan™! —)
sin 2 tan 2
Now as 7 increases from 0° to 90°, A decreases from 7 to 0: hence at
a certain angle of incidence 7, called the principal angle of incidence, A = 7/2

and if the corresponding value of ¢ be 3, we have that when =17
U =tan I sin I, u=28.

The angles 7 and B having been determined, the values of 6 and ¢ may be
obtained from (51) and (49), we have in fact

tan 2 (8 — €) = tan 23 cos 27
6* =sin? I tan? 7 sin 48 cosec 2¢

and these being known, equations (49), (50) give the values of » and U for
any angle of incidence.

221. The simplest method of investigating the phenomenon of metallic
reflection is to directly measure A and tan¢ by means of Babinet’s com-
pensator and an analysing prism, as described in § 205*. Other methods
have however been employed. Thus Jamint compared the intensity of the
light reflected from a metal with that reflected at the same angle from a glass
surface, when the light was polarised in planes parallel and perpendicular
to the plane of incidence, and determined the relative difference of phase
between these streams introduced by the metallic reflection by observations
of the angles of incidence, for which the reflected light was plane polarised
after 2, 4, 6... reflections at the surfaces of two mirrors of the metal

* Quincke, Pogg. Ann. cxxviii. 541 (1866). Hennig, Gite. Nachr. (1887) 365.
t Ann. de Ch. et de Phys. (3) x1x. 296 (1847).
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placed parallel to one another, the primitive llght being polarised in a plane
inclined to the plane of incidence.

The change of phase that metallic reflection introduces, when the light is
polarised in a plane either parallel or perpendicular to the plane of incidence,
may be compared with that caused by reflection at the surface of a trans-
parent substance by aid of the phenomenon of interference, such as that
produced by Fresnel's mirrors*, or by thin isotropic platest. Of these
methods the most satisfactory is that employed by Wernicke!. A stream
of white light falls upon a thin film of some transparent substance, the
hinder surface of which is in part coated with the metal to be investigated,
and the reflected light is analysed with a spectroscope. A channelled spectrum
is thus obtained, and the relative difference of phase due to the metallic
reflection is determined from the shift of the bands in the part of the
spectrum given by the light reflected from the coated region of the film.
This method has been improved by Drude§, who employed a wedge-shaped
film and monochromatic light.

222. It has been pointed out that the optical constants of a metal 6 and
e or p and v may be obtained from measures of the principal angle of incidence
I and the principal azimuth B3, but Drude| has shown that the most accurate
plan is to deduce these constants from a series of measures of ¢ and A for
angles of incidence near the principal incidence.

From equations (55) we have

tan u = sin A tan 2¢, cos (2 tan™! = cos A sin 2¢,

sin ¢ tan i)
whence u and U are determined from the various observations and e and 8
are then deduced from (51) and (49).

Now in most cases §=p J1 +1* is sufficiently large for powers of 1/8
above the second to be neglected, and if this be so

T 0(1 _cos2esin”i>

262
and since
U2 cos 2u = 2 cos 2¢ — sin? 7,
we have :
|
Ucosu=0cose (1 - %%2—7') ; Usinu=0sine (1 + 12‘:92@) ...(57).

* Senarmont, Ann. de Ch. et de Phys. (2) Lxximr. 361 (1840). Quincke, Pogg. Ann. CXLIL 219
(1871).

+ Quincke, ibid. cxrir. 380 (1871). Wiener, Wied. Ann. xxx1. 629 (1887).

%+ Berl. Monatsber. (1875) 673.

§ Wied. Ann. L. 595 (1893).

|| ibid. xxx1x. 504 (1890).
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To a first approximation then U is a constant =6, and denoting its mean
value deduced from the observations by S, we may use this value for 8 in the
small terms on the right-hand sides of equations (57); whence the optical
constants may be calculated from the formula

SUcosu 1 3sin%s
I"=000$e=——]\r—(1 o ——),

28 N
AP _ggsiriul _I_Esin%>
B )

where IV is the number of obsérvations.

In this manner Drude has determined the optical constants of a number
of metals, some of his results being given in the following table.

Sodium Light Red Light

® v " v
Aluminium 144 363 1:62 3:36
Antimony 304 1-63 317 1:56
Bismuth 190 193 2-07 1-90
Cadmium 1-13 4:43 1-31 4:05
Copper 0641 4:09 0580 524
Gold 0366 Tl 0-306 102
Iron 2:36 1-36
Steel . 241 1-38 262 1-32
Lead 201 1-73 1-97 174
Magnesium 037 118 0-40 115
Mercury 1-73 2:87 187 278
Nickel 179 1-86 1-89 1:88
Platinum 206 2:06 2:16 2:06
Silver 0181 " 203 0203 196
Tin 1-48 3565 1-66 3:30
Zinc 212 260 2:36 2:34

The first thing that we notice from these values is that copper, gold,
magnesium and silver have refractive indices less than unity, so that ‘the
propagational speed of light in these metals is less than it is in free ether.
This remarkable result has been completely confirmed by experiments with
metallic prisms of small refracting angle*, which Kundt first succeeded in
making, in most cases by electrolytic deposition on platinised glass. The

* Kundt, Wied. Ann. xxx1v. 469 (1888); xxxvi, 824 (1889): Phil. Mag. (5) xxvi. 1 (1888).
Du Bois and Rubens, Wied. 4nn. xr1. 507 (1890). Shea, tbid. xuvir. 177 (1892).
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formula required for calculating the refractive index from the observations
is easily deduced from the geometrical laws of refraction at the surface of
absorbing media*.

Another interesting fact is that only in the cases of copper, lead and gold
is the dispersion normal: in all other cases the index for red light is greater
than that for sodium light.

The value of uv, on which the absorption depends, varies in the case of
sodium light from 2:62 for copper to 548 for zinc. Copper is thus the most
transparent of the metals, but even in this case the reduction of intensity in
traversing unit thickness, which is given by exp {— 4muv/A}, A being the wave-
length in free ether, is considerable.

The larger the value of », the greater is the intensity of the light reflected
at the surface of an absorbing medium. Hence when a mixed stream is
incident, the constituent that is most absorbed in the medium will have the
greater importance in the reflected pencil, and this predominance will be
increased at each subsequent reflection. In fact by repeated reflections it
has been found possible to separate out waves of very large wave-length.
Thus by five reflections at the surface of Sylvite, waves of length 0061 mm.
have been isolated . ‘

* Voigt, Wied. Ann. xx1v. 144 (1885). Drude, ibid. xuir. 666 (1891). H. A. Lorentz, ibid.
XLVI. 244 (1892).

+ Rubens and Nichols, Wied. Ann. 1x. 418 (1897). Rubens and Aschkinass, ibid. Lxv. 241
(1898).
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DISPERSION.

223. WE have hitherto merely considered the propagation of trains of
waves of definite period without taking into account the fact that in material
media light travels in a given direction with a speed that depends upon the
frequency of the waves. The equations obtained may of course be made to
include the facts of dispersion by regarding the parameters of the medium as
functions of the period, but this procedure leaves unexplained the unequal
rate at which waves of different periods travel and gives no information
respecting the law that connects the speed with the frequency of the
luminous vibrations. Moreover it affords no explanation of the complex
values of the parameters, that we have been led to adopt, in order to explain
the phenomena presented by absorbing media.

Observations of Jupiter’s satellites show that in free ether the velocity
of light is independent of the frequency, for were this not the case, the
satellites would appear to be coloured at the commencement and at the end
of an eclipse. It thusbecomes natural to attribute dispersion to the influence
of the molecules of the material substance, and the fact that these occasion
the phenomenon may be ascribed to either of two causes: it may be that
the coarse-grainedness of the substance introduces “a geometrical dimension
in the ponderable matter which is comparable with the wave-length,” or it
may be that there is “a definite interval of time somehow ingrained in the
constitution of the ponderable matter which is comparable with period *.”

Now so far as ordinary dispersion is concerned, the first of these
hypotheses may be made to give a fairly satisfactory account of the facts,
but other allied phenomena and especially that of abnormal or anomalous
dispersion cannot be explained in this manner and it is therefore necessary
to regard the second of the above assumptions as giving the actual cause of
the influence of the molectiles on the propagational speed of light.

* Lord Kelvin, Baltimore Lectures, p. 8, Camb. (1904).
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224. The coincidence of many of the Fraunhofer lines in the solar
spectrum with the bright lines of the spectra given with the same apparatus
by the vapours of certain elements, has been shown by Kirchhoff to be an
instance of a general law that may be enunciated as follows: “if a body
emits in a given direction a beam propagating certain vibrations, defined by
their period and their state of polarisation, it is capable of absorbing a beam
propagating the same vibrations in the opposite direction*.”

This important result has been explained by Stokest by the aid of the
well-known dynamical theorem that, if a system, capable of executing
vibrations, be acted on by a periodic force, the amplitudes of the forced
vibrations will be very large when the period and direction of the force are
identical or neatly so with the period and direction of the free vibrations of
the system. It follows then that if a stream, incident on a body, contain
constituents that have periods and polarisations in agreement with those in
the stream that the body emits, these components will excite within the
molecules of the substance vibrations that have a considerable amplitude,
and inasmuch as there can be no creation of energy, they must themselves

be gradually extinguished during the passage of the stream through the
medium.

Closely allied with intense selective absorption we have the phenomenon
of anomalous dispersion. In the case of most transparent bodies the re-
frangibility of a stream of light increases with the frequency of the vibrations,
so that when a stream of white light traverses a prism of the substance, the
red rays are the least deviated and the deviation increases continuously as
we pass from red to violet. With prisms formed of certain media however
the ordinary distribution of colours in the spectrum is largely departed from,
the least deviated being in some cases the green or the blue. This was first
observed by Fox Talbot} about the year 1840, but we owe the first published
account of the phenomenon to Leroux§, who discovered in 1862 that vapour
of iodine, which absorbs all but the red and violet rays, refracts the latter
less powerfully than the former. '

Later experimental investigations by Christiansen|, Kundt¥ and others
have shown that there is an intimate connection between anomalous dis-
persion and the absorptive power of a substance, and have established the
law that the propagational speed in the medium is abnormally decreased for
waves of less frequency and abnormally increased for those of greater frequency
than those that are absorbed by the body.

* Cotton, dstrophys. J. 1x. 237 (1899).
+ See Phil. Mag. (4) xx. 20 (1860). ‘Lord Kelvin, Baltimore Lectures, p. 101, Camb. (1904).
% Proc. R. S. Edin. vi1. 408 (1870).
§ C. R. uv. 126 (1862): Phil. Mag. (4) xx1v. 245 (1862).
Pogg. Ann. cxur. 479; cxuur 250 (1871): Phil. Mag. (4) x11. 244 (1871)
€| Pogg. Ann. cxuiw. 163 ; cxrur 149, 259 (1871); cxurv. 128; cxwv. 67, 164 (1872).
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_This relation between dispersion and absorption leads to the conclusion
that both must be attributed to the same cause,—vibrations within the
molecules of the material medium excited by the vibrations in the stream

of light incident upon it.

225. It follows then that, in order to obtain the law of dispersion we
must introduce into our equations additional vectors dependent upon the
action of the molecules of the body and connected with the polarisation-
vector for the pure ether by relations that express that the vibrations of the
latter occasion forced vibrations of these new vectors*.

There are several ways, all ¢ priore equally possible, in which these
additional vectors may be introduced into the equations, but perhaps the
most simple and natural is to retain the form of the equations that have
been deduced for the case of the free ether, regarding therein the polarisation-
vector for the material medium as the resultant of the vector d for the pure
ether and of the vectors dj,, expressive of the action of the molecules of, the

substance.

We then have D=—curlw, s=curle ..coevevrrnnennnan. (1),
where e e O e e o Eattets o eele ey (2),
and the components of the vector e are given by

I R )
PR 1R L2 2 72
) 63 =% <8u’ =, 810) (ora) A% 3),

u, v, w being the components of d.

As regards the equations connecting the vectors dj with the vector d,
these, if we take the coordinate axes in the direction of the axes of symmetry
of the medium, will have the form,

apup+ ap’ wy +ap” dip=u
Ur 103U bl W0 S ae S R s (4),
chWr + on' Wh + ¢ Wy = w
U5, U, Wy, being the components of dj.
In the case of vibrations of frequency n, we then have
wp (an + 2mnay’ — 4m0%a) Y =u coiiiiiiiiiene (5)
and two similar equations: whence U, V, W being the components of D
U=wu+3Zup=2u{l+Z(ay+ 2mnay — dm*n?ay”)y 7} ..oeoennen. (6),
and two similar equations, and introducing these values of u, », w into

equations (1) we obtain
D=—curle, o=curlE .....0eroovveeeenn.... (M),

* Voigt, Komp. der theor. Physik, 11. 747.
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the components of E being

, 2
(B, By, E)= ’}(aU' 7 )(a-U"+bﬂV"+c-Wz) ...... ®),

h =021 SARLEET R
ORTS o { B an+ 2mnay — 47r%ﬁa,,”}
1 -1
= QEATE S ——
{ P e oy cmmy e 7'2bh”} ............ (9).
1 -1
cE=02{14+2 —
{ L ch + 1,27rnch — d4mnic,” }

These equations are those that we have adopted to represent the case of
absorbing crystals, in which the axes of absorption coincide with those of
polarisation.

226. Taking the case of an isotropic medium, we have ¢ =b=c and the
complex propagational speed is given by ¥

E=Qo(1+§‘ 2 -- 1 b U5 =1
ay + 2mrna;’ — — 47niq, ay”

; 1/a; yr

=02(1 SEREPR - e TNy

(142t n/m) ..................... (10),
where a, is written for 2wa,’/a;, and =, is the frequency of the free un-
damped vibrations of the vector d;. Hence if u be the refractive index and
v the coefficient of absorption

1/ah
l—wy2=1 —
w( ) e 1+ coun— n”/n,,

Let us first suppose that a, is very small: then provided that the
frequencies n; are well outside the limits of the visible spectrum, we may
neglect the term containing aj, in which case there is no absorption through-
out that part of the spectrum and

l/ah

2= 4 S
K il 1- nﬂ}n,f

1/a, e gt lar

=H
¥, 2 11— n¥fny? w1 —n?n?

e a
_1+_,a—1+n? A +n‘2;, Tt

v
1 1
T Sa,"n,* — 5 A g T R T T -SSR (12),

where the subscripts » and 7 refer to the vectors dj that have their
frequencies beyond the violet and the red end of the spectrum respectively,
; 222
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Retaining only the first term of the second series, the formula connecting
the refractive index with the period = of the light is of the formn

which is found to represent with considerable accuracy the law of dispersion
of transparent bodies.

227. Passing now to the case that we have reserved, we see that there
will be absorption when the frequency is near one of the critical frequencies
ny,, even when a,=0; for as n increases through this value u® passes from
» to — o and when u? is negative the wave ceases to be transmitted and
absorption occurs. Also therc is an abnormal increase of the refractive
index for frequencies less than n, and an abnormal decrease for frequencies
greater than n,, so that the dispersion is anomalous.

We will however consider the more general case in which a;, though
small is not actually zero. Writing

op " e B
Ty = t— 5 + Nyt — oyt /4,
anng’ —
nNpy=1 & » nh2 = ah2 ’)'L)[‘/ 4":
2

so that n,, n, are the roots of the equation
N2 — rapnpn —m2 =0,
Cni < nplap™t npiap™?
140 —n2ny? (ny —ng) (g —n) T (- n;)_(vg-—n)'

we have

But when the frequency n is very nearly equal to n,, the absolute value
of n,—n will be very small compared with that of #n,—n and we may write
approximately

ap~t nplap™! npapt
1+ n—n¥/np: (n, — ny) (0 — n) 2 (n—ny —Fapnaie)’
since =Ny 2my, M= Fopniie+ oy,

This expression attains its maximum value for n=mn, and is relatively
small when the frequency differs in a marked degree from this critical value,
and we may, when the periods of the free undamped vibrations of the vectors
dy are not too close together, retain only the one term of the summation in
(10) and write

a3 %o S R
w'=Q {1 2(n-—nh—f}ahnh‘%)} ol s oot o L ARG

In order to determine the form of the curve of dispersion, let us write

an n—np
o, e, 2 T
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then ;L_ﬂ:—__—;-,:l — et
@

where N denotes on a scale of frequencies considerably magnified the distance
from the point n =y,

N Q P _N

Fig. 51.

With centre 1—.:4/2 and radius equal to 4/2 describe a circle in the
plane representing the complex variable £+ ¢y; then the line joining the
points 1 and (1 — V) —¢ will cut this circle in the point P that corresponds to
the complex number 2 If then p=z—y:, the absolute value of OP is
«* + 9 and the abscissa SP of the point P is #* — 4?2 and the values of 2u? and
2u*v* corresponding to the given value of IV are respectively the sum and
difference of the tensors of the vectors OP and SP. If then on the ordinate
through @ we take QR= OP and RT=RU=SP, the lengths Q7 and QU
will represent the values of 2u® and 2u*»* corresponding to the value of 0'Q
of N. In this manner the curves representing the values of these quantities
are constructed, and we see that the dispersion is anomalous, as the value of
u? increases largely on approaching the region of absorption from the side of
frequencies less than the critical value and is abnormally decreased on the
other side of the absorption-band*.

228. Anomalous dispersion is most usually investigated by Newton’s
arrangement of crossed prisms, and this was adopted by Kundt in his ex-
periments. A fine thread is stretched across the slit of a spectroscope and
the light from the collimator before entering the telescope is made to pass
through two prisms with their refracting edges at right angles, that of the

* Kayser, Handb. der Spectroscopie, 11. p. 652.
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first being parallel to the slit. When the dispersion of both prisms is normal,
the oblique spectrum thus obtained will be divided into two parts by a dark
line forming a continuous curve in the direction of the length of the spectrum :
if however the dispersion of the second prism be abnormal, this line will be
interrupted by the absorption-bands and on crossing these there occurs a
displacement of the line, that indicates an abrupt change of the reﬁactwe
index of the substance of the prism.

The disadvantage of this method is the great loss of light in traversing the
absorbing material, which necessitates the employment of prisis of very small
angle, and with liquid prisms capillarity may affect the concentration of the
liquid at different distances from the edge. Moreover it is by no means
certain that with prisms of very absorbing materials the refraction may not
be modified by changes of phase, that vary with the wave-length and are
dependent upon the thickness that is traversed.

A second method* is to employ an interferential apparatus, placing a thin
film of the substance in the path of one of the interfering streams. If white
light be allowed to pass and be subsequently analysed by a spectroscope with
its slit perpendicular to the direction of the fringes, the spectrum in the case
of normal dispersion will be traversed by dark bands spreading out like a fan
from the violet to the red: when however the dispersion is abnormal, these
dark lines will be" broken by the absorption-bands into portions of distinct
curves, and if the absorption be not too vigorous, the separate parts will be
joined by rapidly curved pieces passing through the region of absorption.
Here again we are met by the difficulty that, even though the incidence be
normal, there may be a change of phase dependent upon the wave-length on
entering and traversing the film.

A third plan, free from the foregoing objections is to employ the method
of total reflectiont. A right-angled glass prism is placed on the plate of a
spectroscope and its hypothenuse face is brought into optlcal contact with the
substance to be examined. The slit of the spectroscope is placed at right-
angles to the edge of the prism and the light internally reflected within the
prism passes through a direct-vision combination of prisms with their edges
parallel to the slit and then enters the telescope. When the dispersion of the
substance is normal and the pencil from the centre of the slit is incident
upon it at the critical angle for rays of mean period, the spectrum is divided
into a brighter and a darker region by a line corresponding to the limit of
total reflection, that traverses it obliquely from the red to the violet (fig. 52);
but in the case of anomalous dispersion this line will consist of distinct
branches. Thus in the case of a solution of fuchsine and a flint glass prism,

* Mach and Osnobischin, Anzeiger Wien dkad. x11. 51, 82 (1875); J. de Phys. v. 34 (1876)
Carl. Rep. x1. 178 (1875).

+ Mach and Arbes, Wied. Ann. xxvi1. 436 (1886).
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the appearance is as represented in fig. 53, the dark band at E corresponding
to rays for which the refractive indices of the fuchsine and the prism have
nearly the same value. In many cases the high reflecting power of the

|

S P Fig. 53.

substance exhibiting anomalous dispersion masks the division between the
partial and the total reflection, but in these cases the dividing line may be
rendered sharper by having recourse to multiple reflections.



CHAPTER XVIII.

STRUCTURALLY ACTIVE MEDIA.

229. A PLATE of an uniaxal erystal cut perpendicularly to the optic axis
does not as a general rule modify in any way the polarisation of a stream of
plane polarised light that passes through it along the normal to its faces,
and the emergent light, when analysed by a double image prism, is divided
into two colourless beams, one of which can be made to vanish by placing the
principal plane of the prism either parallel or perpendicular to the plane of
polarisation of the original stream. With a plate of quartz this is no longer
the case, and for each position of the prism there are two emergent pencils,
exhibiting complementary colours that change in a marked manner as the
analysing prism is turned.

This phenomenon was discovered in 1811 by Arago*, who pointed out
that it could be explained by the supposition that each monochromatic
constituent of the stream remains plane polarised after its passage through
the quartz, but that its plane of polarisation has turned through an angle
dependent upon the wave-length.

The subject, of rotary polarisation was next investigated with remarkable
skill and diligence by Biot+, who gave as the results of his experiments the
following general laws of the phenomenon :

(1) The rotation of the plane of polarisation produced by a plate of
quartz cut perpendicularly to the optic axis is proportional to the thickness
of the plate: it is the same for plates cut from different crystals and does
not change when the plate is reversed.

(2) Among crystals of quartz there are some that rotate the plane of
polarisation from the left to the right of an observer receiving the light,
while in the case of others the rotation is in the opposite direction: the
former are called right-handed, the latter left-handed crystals. Plates of
the two kinds of crystals that have the same thickness produce equal
rotations in opposite directions.

(3) The rotation of the plane of polarisation increases with the frequency
of the light and varies very nearly as the inverse square of the wave-length.

* Mém. de la prem. classe de VInst. xtu. (1) 93 (1811) ; (Guvres completes, x. 36.
+ Mém. de la prem. classe de UInst. x1m. (1) 218 (1813); Mém. de VAcad. des Se. 11. 41 (1818),
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230. Certain uniaxal crystals, such as cinnabar and the hyposulphates of
potassium, calcium, strontium and lead, possess the same property as quartz
in the direction of their axes, and a few cubic crystals, such as the chlorate
and the bromate of sodium, as well as some liquids and even vapours,
impress a rotation on the plane of polarisation of the light that traverses
them, whatever may be the direction of the stream, .

Such substances are termed active media, and in all cases the rotation of
the plane of polarisation is proportional to the distance travelled in the
medium. The rotation produced by unit length of the medium is called the
rotary power of the substance.

From the fact that active liquids do not lose the rotary property, except
in degree, by dilution with inactive substances and retain it even in a state
of vapour, it was inferred by Biot that the property is inherent in the
ultimate molecules, whence the quotient of the rotary power by the density
of the active medium is sometimes called the molecular rotary power. If
then R be the rotation produced by a column of length [ of a solution of the
active substance, the molecular rotary power is

[p] = R (p + P)/(Ipd),

" where p, P are the masses of the active substance and of the inactive solvent
and 8 is the density of the solution. When there is no chemical action
between the substance and the solvent, the molecular rotary power is in
most cases constant.

For a mixture of active substances that have no chemical action on one
another, the total rotation is the algebraic sum of the separate rotations, so
that with a solution of density & containing a mass P of inactive solvent and
masses p, P, --. of active substances with molecular rotary powers [p,], [p.] ...
the rotation produced by a column of length 7 is

13
R_P+g+m+m

When however there is chemical action between the substances dissolved,
the molecular rotary powers are in general altered.

{~p1 [Pl] + P, {p]+... }

231. Shortly after Arago’s discovery, Fresnel* showed that rotary
polarisation could be explained kinematically on the principles of the wave-
theory by the supposition that a stream of plane polarised light on entering
an active medium is divided into two oppositely circularly polarised streams
of half the intensity that traverse the medium with unequal speeds.

* Mém. de PAcad. des Se. xx. 163 (1849), presented in 1818; Ann. de Ch. et de Phys. (2) xviI.
172 (1821) ; Euvres complates, 1. 655.
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The incident stream of plane polarised light characterised by the vector
E=uacos —2—;5 ot,

is equivalent to the two circularly polarised streams represented by the
vectors

o 2 a2
El = Z’, COS 'x‘ wt, m= § sin —X' wl,
. a 2% a8 2
and = 5 €08 == ot, == SN = ot,

of which the first is left- and the second is right-handed.

If these travel with the different speeds w, and w,, their retardations
(measured in length in air) will be on emergence

8= wTlw, , = ol w,,

where 7' is the distance traversed, and the polarisation-vectors of the
emergent streams will be

a 27 (0 b s
= 5008 (ot — &), M= 5sin - (0t — &),
a 27 a . 2
and o= g Cos (wt — &), M= =g S == (wt — &,).

These are equivalent to a single stream of plane polarised light, for which
the components of the polarisation-vector are

§=¢ccos§(82—31)cosi1(wt_&-‘l)-se),

7 =asin;—i(82— 8,) cos 2%- <wt - 8‘;82)

Thus the effect of the passage through the plate is to introduce a
retardation of phase 7 (8,+ 8,)/JA and to rotate the plane of polarisation
through an angle R =7 (8, — §,)/A, which is to the right or left according as
8, is greater or less than §,, that is according as the right- or the left-handed
circularly polarised stream travels at the greater rate in the medium.

232. Fresnel* argued that, if this explanation be correct, it must be
possible to separate the two coincident circularly polarised streams by
limiting the medium, in which they travel, by a face oblique to their
direction of propagation; for since the streams have different velocities, they
must be differently refracted on emergence.

The amount of their divergence will indeed be exceedingly small, for
the difference of the refractive indices is u, — pu, = RA/(71'), where R is the

* Anu. de Ch. et de Phys. (2) xxvir. 147 (1825); (Euvres complétes, 1. 731.



231, 232] Fresnel's Experiments 347

rotation produced by a length T' of the medium, and in the case of quartz,
a millimetre length of which gives a rotation of 213° with sodium light, the |
difference of the indices is only about ‘00007. Fresnel however succeeded
in effecting the separation of the streams by a combination of left- and right-
handed prisms of quartz arranged so as to double the deviation.

This experiment has been regarded as a confirmation of Fresnel’s views
on the cause of rotary polarisation, and in fact v. Fleischl* in 1885 employed
a similar arrangement for showing the existence of circular polarisation in
active liquids. A little consideration will however show that the result is
merely a consequence of the equivalence of a plane polarised stream and two
oppositely circularly polarised streams, and is independent of the state of
affairs within the active medium, provided this be such as to produce
a rotation of the plane of polarisation and a retardation of phase of the
transmitted stream, both of which are proportional to the distance traversed+.

To make this clear, let us suppose that a prism of quartz has one of its
faces perpendicular to the optic axis, and that a train of plane waves polarised
in the normal section of the prism is incident normally on this face. Now
the experimental fact of rotary polarisation with which we have to deal is,
that on the face of emergence along any line parallel to the edge of the
prism the plane of polarisation of the emergent light has been turned
through an angle proportional to the distance of the line from the edge of
the prism and the retardation of phase of the stream is proportional to the
same quantity. ,

If then the polarisation-vector of the incident light be &= a cos 2mwwt/\
the vector of the emergent stream along a line on the face of exit distant &
from the edge of the prism will have for its components

E=acos (2% kx sin A) cos 2%— (wt — lzsin 4)

O 9 /
%cosx—{ t—(—k)zsin A} + cos:;-r{wt—(l+k)msmA},

‘) .
7= sin (._.%r ka sin A) cos 2%‘ (wt—lz sin A)
2

a

osm T{mt-—(l—l..)wsmA}—g—sm?— {ot — (I + k) xsin 4],

A

where A is the angle of the prism and /, k are constants. That is, the
emergent light is equlvalent to two trains of opposxtely circularly polarised
plane waves that are inclined at angles sin™ {({ ¥ )sin 4} to the face of
emergence, and these are precisely the directions of the emergent streams
on Fresnel’s theory.

* Wied. Ann. xx1v. 127 (1885).
+ Gouy, C. R. xc. 992 (1880).
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233. Fresnel suggested *, as a second method of verifying his conclusions,
. an experiment depending upon the interference of the circularly polarised
streams emergent from an active substance.

A stream of white light from a slit passes through a polarising prism and
a plate of quartz cut perpendicularly to the optic axis and then falls upon
Fresnel’s mirrors or other interferential apparatus giving two images, real or
virtual, of the slit. These images act as proximate sources of light, from
each of which according to Fresnel’s view emanate two correlated streams of
light, that are circularly polarised in opposite directions, the right-hand
streams being relatively accelerated or retarded in phase according as the
plate of quartz is right- or left-handed.

Now the two pair of similarly polarised streams will give two coincident
systems of interference fringes situated at the centre of the field, but the
oppositely polarised streams are incapable of interfering unless the light is
passed through an analyser. When however an analyser is used, there will
appear on either side of the central fringes a system of lateral bands, which
are produced by the interference of the left-handed stream from the one
image and the right-handed stream from the other image, these streams
starting from the sources with an initial difference of phase.

The achromatic bands of these lateral systems will occur at the points,
where the retardation of phase is stationary for light of mean wave-length A,,
that is at the points given by

Dl @ rAd AT
where ¢ is the distance between the sources, d their distance from the screen
of observation and R is the rotation produced by the quartz.

Let z, be the distance from the centre of the field of the point at which

the difference of phase of the interfering streams is zero for light of mean
wave-length A,; then

2R} =0, 0,

o N RS AR e R
& e e Ty i

Assuming that the rotary power is given by the law R =kTA~" we have

A dR _

R dx—

According to Biot n =2 aud the achromatic fringes of the lateral systems
are at distances from the centre of the field that are double that of the
points at which the interfering streams have the same phase; but the value

n= 213 gives results that are more in accord with the observed positions of
the bandst.

—n and z = nx,.

* Buvres, 1. 657.
+ Cornu, C. R. xcm1. 809 (1881).
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It is however possible to explain this experiment of interference without
having recourse to the hypothesis of circularly polarised streams within the
quartz. When monochromatic light is employed, an extended system of
bands is obtained as in all cases of interference and these reach beyond the
regions occupied by the lateral systems of bands in Fresnel's experiment;
when the light is white and no analyser is used, the visible interference
shrinks into a small central system, as the actual interference is quickly
masked by the superposition at each point of maxima and minima due to
streams of slightly different frequency. In the case of the. polarised streams
that emerge from the quartz plate, the azimuth of the plane of polarisation
is a function of the wave-length, and when the light is passed through an
analyser, those constituents are suppressed that have their plane of polari-
sation nearly parallel to a given direction, so that the interference will again
become visible at two determined points where the maxima coincide for the
streams that still subsist.

On this explanation the function of the quartz plate and analyser is
simply to weed out the constituents of the composite stream that cause the
obliteration of the interference phenomenon and as Righi* has shown, the
appearance of the lateral systems may be brought about by employing other
methods of snppressing these constituents.

234. Fresnel’s theory only applies, in the case of quartz and other
uniaxal active crystals, to streams propagated in the direction of the axis, but
Airyt in 1831 generalised it to include the passage of waves in any direction
within the active media.

Starting from the hypothesis that streams travelling along the axis are
oppositely circularly polarised and observing that in a direction perpendicular
to the axis they are practically plane polarised in and perpendicular to the
principal section, he was led by principles of continuity to assume that in
intermediate cases the two streams that are propagated in the same direction
are oppositely elliptically polarised, their planes of maximum and minimum
polarisation being respectively parallel and perpendicular to the principal
plane of the waves.

Let us suppose that a stream of light, plane polarised in an azimuth ¢
with respect to the principal section, falls normally on a plate of quartz cut

obliquely to the optic axis.
The incident stream may be replaced by the elliptically polarised stream
represented by the polarisation-vector
£ = c, cos Bet (tte), m=—c,sin Bet(rtFa) . ... (1),

* Mem. dell’ Accad. R. di Bologna (3) vur. 87 (1877); N. Cim. (3) 11. 181 (1877); J. de Phys.

vir. 25 (1878).
+ Camb. Phil. Trans. 1v. Part 1, 79, 199 (1831).
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with its plane of maximum polarisation (8 being less than =/4) in the
principal section, together with the oppositely polarised stream represented
by the polarisation-vector
£, = — ¢, sin Bet (itt+ea) 7y = — 1€, 08 Berlntte) (2),
where c,et =1 (cos ¢ cos B + ¢sin ¢ sin B) 1
¢t =1 (—cosisin B+ ¢sinicos B) J
the polarisation-vector of the incident stream being » exp (¢nt).

According to Airy’s generalisation of Fresnel’s theory, these oppositely
polarised streams will traverse the plate with different speeds, and, emerging
with a relative retardation of phase 8, will compound into an elliptically
polarised stream. Let

E=ccosyer (), g = —o8in yet (it

v being less than /4, be the polarisation-vector of the resultant stream and
let & be the angle that its plane of maximum polarisation makes with
the principal section of the plate: then we must have

i 5 5
Y SRug +5 +3 2 =
¢ (cos «y cos @ + ¢ sin « sin 6) e‘(e 2) = ¢, cos Be’ (+3) _ c.sin Be’ (+-3) s
s s 5
: : +3 . olats >
¢ (cos e sin @ — ¢sin vy cos &) el(e 2) =— (0, s1n ﬁ'e‘(e' 3)— wc;cosBe’ (e2) -
when substituting for ¢,e** and c,e* from (3) and writing

4 tan 7 cobiBistn ReTas. . L5 4),

tan R =sin 2,8tan§, 5

we obtain

ce' (e+3) (cos ry cos @ + ¢ sin y sin ) =7 {cos (7 + R) cos 3 +tcosisin g} )

ce' (e+§z) (cosysin @ — csinycos 8) =r {sin (¢ + R) cos % — ¢ sin 7 sin %)z ;

or j J

ce' ('*‘;) {cos v €OS (9 - Z;) + ¢ sin ¢ sin (6 - 1—;)} )
= 7" COS <i+ g)(cos% + ¢sin %}

cé*(”‘;) {Cos vy sin (5 Q g) e K A(e = g)}

A A ' &
=7 sin (@ + —2—)(0035 — ¢sin §>J
The sum of the squares of these equations gives
c%e* (3¢+%) cos 2 =% {cos A + ¢ cos (27 + R) sin A},
whence tan (2e+ 8) =cos (2t + R)tanA  ..eovvveenvrninninnennn, (6),
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and their ratio gives

COS ry COS (0_%(’,) + ¢ sin o sin (9— g’)

T i =cot('i+},_—f) (cos A + ¢ sin A),
cos «y sin (9—~2—)—Lsinrycos(0—§> i

cos 2ysin (20— R) SN
whence VE o8 3y o8 (ST cot (z + 72—) cos A,
sin 2y e N .
1 — cos 2ycos (20 — R) g (z+ 5) Ak g

and from these equations we find
tan (20 — R) = tan (21 + R) cos A ‘
sin2y=sin(2/+ R)sinA& L. (7).
tan®y = tan (7 + 6) tan (v + R — 6)

An investigation of the emergent elliptically polarised stream gives the
angles @ and +; hence if we know the angle 7, we can determine the angles
R and A and then by equations (4) find the angles 8 and & that give
the ratio of the axes of the elliptic vibrations of the streams within the
crystal and their relative retardation produced by the passage through the
plate.

235. Airy assumed that in any direction within an active crystal two
streams can be propagated without alteration of their state of polarisation
and that these streams are oppositely polarised with their planes of maximum
polarisation in and perpendicular to the principal plane of the streams.
Gouy* on the other hand has proposed to deduce the existence of these
streams of permanent type from the hypothesis that the action of the
medium may be represented by a superposition of the effects of ordinary
double refraction and of an independent rotary power of the crystal.

Adopting the geometrical representation of the state of polarisation of
a stream of light given in § 202, the result of normal passage through unit
thickness of a plate of an active crystal is given on Gouy’s hypothesis by
a rotation through an angle « (4, — p,) round the axis CA corresponding to
the principal section of the plate, C being the centre of the sphere, together
with a rotation 2p round the polar axis CP, where = 2m/X, y, and p, are
the refractive indices of streams polarised in and perpendicularly to the
principal section of the plate, supposed devoid of rotary power.

Regarding these rotations as small and neglecting small quantities of the
second order, the resultant rotation is represented by the sum of the vectors

* J. de Phys. (2) 1v. 149 (1885). Lefebre, ibid. (3) 1. 121 (1892). Beaulard, ibid. (3) 1. 393
(1893).
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obtained by taking along CA, C'P lengths proportional to the rotations round
these axes, and is therefore a rotation

Vi (= p=) +—4Tf;2
round the axis CJM, where
tan AM = 2p/{r (t, — po)}.

P

Fig. 54.

Since the point M and the diametrically opposite point M’ remain fixed,
they represent the polarisations of streams of permanent type, and we see
that these streams are oppositely polarised with their planes of maximum
polarisation respectively in and perpendicular to the principal section, and
that the ratio tan 8 of the axes of the elliptic vibrations of the ends of their
polarisation-vectors is given by

tan 28 = 2p/{c:(py — Bedf s tuisl te i Ang (8).

In the case of quartz and other positive crystals, u, > u, and the stream with
its plane of maximum polarisation in the principal section of the plate, is
left- or right-handed according as p is positive or negative, that is according
as the crystal is left- or right-handed.

In traversing unit thickness the phase of the vibrations in the right-
handed stream is retarded relatively to that of the left-handed vibrations by
an amount

k(= p) =2Vt (g = o) 4% eoeeeienieeecniiaee 9),
the upper or lower sign being taken, according as p is positive or negative.

If we wish to obtain the actual retardations of phase xu’and ru” of the
streams, we require to know the value of «(u + #”). In order to determine
this*, let a stream of permanent type be replaced by its components polarised
in planes parallel and perpendicular to the principal section with the polarisa-

tion-vectors
f - Aemt’ 7= Bemt’

* Poincaré, Théorie Math. de a Lumiere, 11. p. 299.



235, 236 | Mallard’'s Theory 353

and suppose that after traversing unit thickness these become
‘ E=Alen, o = Bent,
then we have
A’'=ad + BB, B'=+~A + 3B,

where a, 3, v, & are constants depending upon the nature of the plate.

But the stream being of permanent type, we have

A’[A =B|B=¢~=,
where x2 1s the retardation of phase; hence
(a—e )4 + BB =0, vA + (8 —e~**) B=0,
and ! gig—<at %2 = 0,
e e g~ e
The roots of this equation give the values of e~ ¢~««" and their

product is
ad — By=e* (W+n"),

But according to Gouy’s hypothesis

afeosp=—Bfsinp=e%,  yjsinp = 8joos p = e,

whence ad — By =g~ wlatr)

and [ e L e cs oA A A5edd da A baditSaRch o e (10).

236. The theories hitherto considered are merely kinematical equivalents

of the phenomenon of rotary polarisation and give no account of the physical

character of the active substance: the case is otherwise with a theory
elaborated by Mallard *.

This theory is based on some experiments made by Reusch in 1869+ on
the optical properties of combinations of thin mica plates, in which it was
found that a series of p identical parallel plates, arranged so that each was
turned through an angle =/p with respect to the former plate, possessed
a rotary power just as a plate of quartz cut perpendicularly to the
optic axis.

Such a combination of crystalline plates is called by Mallard a packet,
and the packet is said to be symmetrical when all the plates are identical
and the angles of combination are the same: a symmetrical packet of p plates
is closed, if the common angle of combination be 7/p. The superposition of
a number of packets constitutes a pile.

* Ann. des Mines (7) x. 60 (1876); xrx. 256 (1881): C. R. xcrr. 1155 (1881): J. de Phys. x.
479 (1881): T'raité de Crist. 1L 262. Sohncke, Pogg. Ann. Ergb. vin. 16 (1878) : Math. 4dnn. 1x.
504 (1876): Zeitschr. f. Kryst. xur. 229 (1888). Poincaré, Théorie Math. de la Lumizre, 11, ch. 12.

+ Pogg. Ann. cxxxvir 628 (1869): Berl, Monatsber. (1869) 530.

W. 23
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237. We will first take the case of a closed symmetrical packet.
Adopting the geometrical representation of the state of polarisation by
points on a sphere, the effect of the passage of a stream of polarised light
through the packet is given by the resultant of successive rotations about
axes CA,, CA,, ... in the plane of the equator through an angle &, where C' is
the centre of the sphere, & the relative retardation of phase introduced by
each plate, and 4,4, =4,4;= ... =2m[p, p being the number of plates in
the packet.

If then A, denote a rotation 8 round the axis C4, and S, a rotation 27/p
round the polar axis CP, the combined rotation is

By A By By WAL B B S At S ey D ety
but ‘S(p—l)p SBp=8pp=8r=1 or Sip_yp=5S_4,
whence A LA, A LA = (A1)
or the effect of the p successive rotations is the same as p times the resultant
of the rotations A, and S_,.
To determine this resultant, we must draw through A4, a great circle
making an angle 8/2 with 4,P in a direction
RN__M  opposite to the rotation round CA4,, and through
“f yw P a great circle making with PA, an angle
7[p in the same direction as the rotation round
CP; then if these circles intersect in the point
M, the resultant of the two successive rotations

is a rotation round CM through an angle equal
to 24,MP.

Now since 4,P = /2, we have

A, J 3 arr ) ™
. Fig. 55. tan PM = tan 3 cosecﬁ or PM = 3 cosec 5
if & be small : also
cos A, MP = cos § cos = ’
_ 2.p
whence if 4,MP =m[p+ o, we have neglecting «?,

2
w=§8cot 7—7,

and the resultant rotation (A,S_,)? is a rotation round CM through an angle

O & 7 o p&: w
(?+Z cotﬁ) X p=2mr4 ] cot}-).
Hence if 8 be very small, the effect of the packet is very nearly to move the
representative point along a parallel of latitude to a meridian differing from
the original meridian by an angle %

p

™
2R = ZCOt;,
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the rotation being in a direction opposite to that in which the angle of
combination of the plates is measured.

Thus in traversing a packet the plane of maximum polarisation of a
stream of polarised light is turned through an angle R, the form of the
vibrations of the extremity of the polarisation-vector remaining unchanged.
The rotation produced by a pile of n packets is nR, and the factor npd® is
proportional to the thickness of the pile and very nearly to the inverse square

of the wave-length, which represents very approximately the rotary power of
quartz.

238. In the general case of an open unsymmetrical packet, if &,, 3, ... be
the relative retardations of phase introduced
by the constituent plates,and 8,, 6,, ... be the
successive angles of combination, we want to
find the effect of successive rotations §,, §,, ...
round the equatorial radii C4,, CA,, ... where

4,4, =20, AR

These rotations may be replaced by a rotation
8 round some axis CA4 in the plane of the
equator, together with a rotation 2p round
the polar axis CP, and we have to determine
these rotations, or what comes to the same
thing, the two rotations that will bring the
representative point to its primitive position
after the successive rotations have been performed.

Let us take a polyhedral angle* CBB, ... B,, such that the dihedral
angle CB, = —3J, and the angle B,CB,, = 4,04,,,=26, and let us roll
this angle on the equator, starting with the face BCB, in this plane and CB,
coincident with CA,: then the edges CB,, .

OB;, ... will in turn occupy the positions
CA,,CA4,,... until finally the edges CB,, CB
coincide respectively with C4,, C4, and in Bp
order to bring the pyramid and with it the
representative point (supposed rigidly at-
tached to the pyramid) back to its primitive
position, we must rotate it round CA
through an angle 8, where the dihedral
angle CB is 7 — 9, thus bringing CB, to o
CA, and then turn it about an axis per-
pendicular to the plane of the equator
through an angle 4,'CA4,=2p which is the
excess of 27 over the sum of the faces of the polyhedral angle.

By

C B
Fig. 57.

* Poincaré, loc. cit. p- 296.
23—2
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The axis C4 represents the principal section of the packet, & isits doubly
refracting power and p is its rotary power.

If a sphere be described with unit radius round the vertex of the
polyhedral angle as centre, the faces of the angle will intersect the sphere in
a spherical polygon, and the polar polygon bb, ... b,b is such that

bb, =8, bb,=28,, ...0,b=8, 2bbb,=7w—20,, <Lbbb=m—-26, ...,
and the sum of the angles of the polar polygon is
pr—2(6,+ 6+ ...)=pm — (27 — 2p),
so that 2p is the area of the polygon. '

When the rotations §,, &, ... are very small, the polar polygon becomes

by

by
by

by

b
Fig. 58.

practically plane and the properties of the packet are found by drawing the
line bbb, ... by, of which the successive parts bb,, bb,, ... are parallel to the axes
C4,,C4,, ... and represent the rotations round these axes: then bb, is parallel
to the equatorial radius that corresponds to the principal section of the
packet and its length gives the relative retardation of phase due to the
double refraction and the area of the polygon is on the same scale twice the
rotary power of the packet. These quantities being known, the streams of
permanent type and the relative retardation of phase produced by their
passage through the packet may be determined as in § 235.

To find the actual retardations of phase xu’, xpu” of the streams of
permanent type, we may notice that (§ 235) exp{— «(p +p”)} is equal
to the determinant of the linear substitutions that give the coefficients of
vibration of the polarisation-vector on emergence in terms of the original
coefficients. Now in the case of a packet this determinant is the product of
the determinants of the linear substitutions relative to each plate of the
packet, and these are respectively

exp{— k(@i pD)  exp {—k (Wat g,
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where «u'n, "y are the retardations of phase due to the nth constituent
plate. Hence

P
k(' +u')= >14 K (p'n+ p1'n)

239. In obtaining the differential equations that relate to ponderable
media, the assumption was made (Chapter XVII.) that the forced vibrations
of the auxiliary vectors dj, at a given point are determined by the value
thereat of the polarisation-vector d relating to the pure ether: this is
equivalent to neglecting the linear dimensions of the molecules in comparison
with the wave-length of light. If however the molecules are of finite extent,
the intra-molecular vibrations will depend not only on the value of d at
a given point but also on its values in the vicinity and we must introduce on
the right-hand side of equations (4) in § 225 the differential coefficients of
u, v, w with respect to the coordinates. We shall then have three equations
of the form*

Sl Sl du, @ d
apUp + @ Uy + @ Ibuh=1‘+P11£+Plaai;+P135;
ov
+p2la—£6+ soe
ow
+pala—x+ ........................... (11).

If the active substance be isotropic, the equations must remain unaltered
when the coordinate axes are turned as a whole, but must change their form
when one axis alone is reversed : the equation connecting d and d then
becomes

andn + @dy + @ xdp=d + Py SRl A0, Ak s o ()
In the case of vibrations of frequency n, writing

ay, + 2mna’y, — 4’y = 4,

this gives :
dyp=A;7'd + prd;tcurld,
whence D=(1+34,")d+3Zppdp~ curld
=ad +peurld (Say).eeevrereenerieniiiiniinninian (13),
and since p is in all cases very small
d=atD—=c'curl D..cooveriiiiiiiiiniiiiineeee. (14).
Hence the fundamental equations .
) = — curl @, S PR [T SN LR (15),
take the form .
D =—curl =, s =curl E+aV2D ... (16),

* Drude, Physik des Athers, p. 535.
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the components of £ being given by

0, 0se
B\, B, E3=(ﬁf, = a"w) P OBV AR P an,
where 2©=%2(U2+ AT i PR P Mt Bt o ont (18).

The equations for the case of crystalline active media may be deduced
from (11); but in view of the smallness of the rotary power and the weak
double refraction of all known erystals, we shall obtain a sufficiently accurate
result by assuming that the rotary terms in the differential equations have
the same form as in the case of isotropic bodies, and the equations for active
crystals will then be (16) and (17) with

2D =, U+ ap V2 4+ ay W2+ 200 VW + 22 WU + 20, UV ......... (19).

Taking the plane #=0 as the interface between two media that have
different optical properties, the boundary conditions given by (15) are the
continuity of =,, @y, €, ¢; to which may be added the continuity of U and =,.
In terms of the vector D these become the continuity of '

A (@_?W\ gk ?i’_a_U)

I B e sy A0E ax)’ ow "(ax oy/°

240. Eliminating = between equations (16) we have
D=V:E -V div E- ¢V curl D,

of which the Cartesian equivalents are

i TR ; od od od
CI b <QA?FI?+£,3_‘,I’+2§£‘1>
'(a_x"ay’az) oxoU " oyoV oz oW
oW oV 9U oW oV oU s
—O'V2<5y—-—*a—z, *az‘—‘a—é:—, a—;—ay) .......... (.aO).

Let (U, V, W)=(a, B, ¥) 4 exp {tk (Iz + my + nz — ot)} ...... (21);
then these represent the components of the polarisation-vector of a stream of
elliptically polarised light, so long as the ratio @ : 8 : 4 is not real, and if we
so choose the origin of time that

GA=al —wll, BA=BL—B'L, yA=qL -l ...... (22),

then a, B, v and o, B, ' are the direction-cosines of the axes of the ellipse
traced by the extremity of the polarisation-vector and L, L’ are the lengths of
the axes in these directions.

Taking the axes of symmetry as the coordinate axes
2D =@U 4+ 02V 42 W2,
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and substituting the values (21) in equations (20) we obtain
(@*— o®) &+ woknf — woxmy—Fl =0
—oknd + (b — 0?) B + wokly— Pm=0"} . ............. (23),
toxma — okl + (¢*— 0?)§y— Fn =0

where F = a?la + b*mB + c*ny,
and since div D=0 i
l@4+mB+ny=0..cciuieivnvirenannannnnn. (24).
Eliminating &, B, ¥, F between (28) and (24), we obtain
| a*—w? 1okn, —iokm, —1 - 0,

—woxn, b*— w? wrl, —m

wem, —uwokl, E—w: —n
0 m, n, 0

or
(0*— ) (c* — 0*) I* + (¢ — 0*) (a® — ) m* + (a* — w?) (B — w?) N2 = o%"...(25),
wh.ich is the polar equation of the surface of wave-quickness.
Let w,, w; be the roots of this equation, then
(-0 (z—wd)=(b—2)(c*—2) P+ (c*—2) (a*— 2) m?
+(a*—2) (b*— 2) n* — o2,
is identically true for all values of z.  Writing z = 8% we have
(w? =% (b* — 0?) = (a* — b°) (B* — ¢®) m? + o*%,

which is always positive and greater than o%?2: hence the roots of (25) are one
greater and one less than b* and can never become equal, so that the surface
of wave-quickness consists of two distinct sheets one within and one without
the sphere of radius b.

Solving (25) we find
20 = [2(b2 + ¢*) + m*(¢* + a®) + n* (a® 4 b%)
+ VA + B+ (*—2(AB + BC + CA) + 40** ...(26),

where A=kl —c), B=m*(c*—a?), C=n(a*—b);
writing the radical in the form

. (A+B—-Cy—44B + 40,
we see that the difference betwéeen o, and w, becomes least, when

A+B—-C=0 and AB=0,

and these equations combined with I* 4 m* +n* =1 give

@ —b b —c
l=i\/&ﬂf?’ =0 PN e
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which are the direction-cosines of the optic axes of the medium supposed to
be deprived of its activity *.

If x, %' be the angles that the wave-normal makes with these directions,
equation (26) gives :

20 = a*+ ¢* + (a* — ¢%) cos x cos '+ ¥(a? — ¢*)*sin? y sin® y' + 4o ...(27).

241. Now a, B,y and o, 8, v and [, m, n being the direction-cosines of
three vectors at right-angles to one another we have

o =oym— Bn, B =an —¢l, v =Bl —am,
=—(ym—Bn), B=—(an—v1), y=—(Bl-dm),
whence t(my—=nB) A =(Ly+Ly)ym—(GLB+LB)n
=—La+ LA

Hence separating real and imaginary parts, equations (23) give the six
equations

7

2 28 2+ £
(=o'

r2

)a:Fl, (be—w2+ax%)B=Fm, (c"-—w2+ax%)'y=Fn .

(a2 — '+ ok %,) a=F'l, (b"’ -+ a'/c—Ll—;,) B =F'm, (c'-’— w*+ ok 1%,) Y =F'n

where F=ala+bmB+cny, F'=a*ld +mp’ +cny.

Multiplying these equations by a, 8, v and &', 8, ¢’ respectively, and adding,
we obtain -

L' L o 2 2 ’9 2 2 /o 2 &
o (Z+Z,>=2a)~—a“(a“+a )— B (B + B — ¢ (v + )

=20 — a? (m? +n2) — b2 (2 + 12) — 2 (I* 4 m?)

where o, and w, are the wave-velocities in the direction (I, m, n).

Hence using the subscripts (,), (;) to refer to the quicker and the slower
wave respectively, we have

TAET, L%
: BB LN
B (+ 20 (Z+ D)o

Now the solution L, /L,=— L,'/L, expresses that the streams are of
opposite rotations with their planes of maximum polarisation coincident and
must therefore be rejected on account of the continuity between active and

* Cf. Clebsch, Crelle’s J. Lvn. 319 (1860). Weder, N. Jahrb. f. Min. Beil.-Bd. x1. 1 (1898).
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inactive media. We therefore have L,/L, =— L//L,, or the polarisations of
the streams propagated in a given direction are opposite. From the specifi-
cation of U, V, W it follows that a positive value of L'/L denotes a left-handed
stream, and hence the quicker wave is left- or right-handed according as ¢ is
positive or negative.

Introducing the angles i, ¥’ that the wave-normal makes with the optic
axes, we have '

L L% . £
20k 5 =—20k 1= — (a*— ¢® sin y sin i/’

I, L,

+ V(a? = ¢?) sin?y sin? ' + 4o%* ...(30).

242. The interference patterns obtained with plates of quartz cut at
right-angles to the optic axis present certain notable characteristics that
serve to distinguish them from similar plates of an inactive crystal. These
peculiarities were first observed by Airy and were explained by him with
the aid of the hypotheses considered in § 234 *.

In order to obtain a result that will be useful to us later, we will first
obtain an expression for the intensity, when a pencil of elliptically polarised
light falls upon a plate of quartz and after traversing the same is transmitted
through a plane analyser.

Let the primitive stream be replaced by its components polarised in
planes parallel and perpendicular to its plane of maximum polarisation with
the polarisation-vectors

E=cos B¢, n=—sin Be™,
where 8" is numerically less than /4 and positive or negative according as
the stream is left- or right-handed.

On entering the plate the primitive stream is replaced by two oppositely
polarised streams with their planes of maximum polarisation respectively
parallel and perpendicular to the principal section and the polarisation-vectors
of these streams may be represented by the components

£, =rc,cos Be™, m = —c sin Be™,
and & =c,sin Be™, n,= i, cos Be™,
where B is numerically less than 7/4 and positive or negative according as

the plate is left- or right-handed. Whence if a be the angle that the plane
of maximum polarisation of the primitive stream makes with the principal

section
¢,¢08 B+ ¢,sin B =cosacos B + ¢sin asin B

¢,sin B —c,cos B =cos asin B + ¢ sin acos g,
or ¢ =cos acos (B—B')+ ¢sinasin (B + &),
¢;=cos asin (8 — B') —¢sina cos (B + £).

* loc. cit.
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In passing through the plate, the phase of the vibrations in the second
stream is retarded relatively to the phase of the vibrations in the first by
an amount §, where 8 is a positive quantity, and if the plane of analysation
make an angle ¢ with the principal section, the polarisation-vector of the
stream emergent from the analyser may be represented by v

E = {(¢, cos B+ ¢, sin Be~®) cosy — ¢ (¢; sin B — ¢, cos Be ) sin oy} e+ M9,
and the intensity, obtained by multiplying this by the conjugate expression, is

I={c¢ cos® B+ ¢c,cy sin? B+ (652 + ¢ c.e™?) sin B cos B} cos®y
+ {e1¢) sin? B + ¢,¢, cos® B — (c;¢,'e' + ¢, c.e™%) sin B cos B] sin®y
— (e e — ¢/ e ) siny cos vy,
where ¢,/ ¢, are conjugate to ¢,, ¢, respectively.

But
66 = cos’a cos® (B — B') +sin®a sin? (B + ),
¢:0, = cos? asin?(8 — B') +sin’ a cos®* (B + B),

.6y =cos’asin (B — ) cos (B—B')—sin?asin (B+ B') cos (B+ )
> + tsinacos o cos 23,
¢'c,=cos?asin (B—B") cos (B— ') —sin*asin (B + B')cos (B+ )

— ¢ sin a cos a cos 23,

whence .
2 2 / 2l o o) / 4 .2 . 8 8
I =|cos?acos? B -+ sin? asin? B’ — sin 2a cos 23’ sin 28 sin 5 C0s5
~ {cos*asin 2 (B— B') —sin* a sin 2 (B + B')} sin 23 sin® g] cos®ry
+ [cos’Z a sin? B' + sin? a cos® B’ + sin 2a cos 23" sin 28 sing cos %

+ {cos* a sin 2 (B — B’) — sin® a sin 2 (8 + B')} sin 28 sin? %:l sin® y

+ [sin 2acos 28" + 2 {cos*asin 2 (B — B') — sin*asin 2 (B + B')} sin g cos g

— 2 sin 2a cos 23’ sin? gJ sin v cos ry
= cos® B’ cos*(y — a) + sin® B’ sin? (y — a)

+ cos 23 {sin 28 sin 2 (y — @) sin % cos %

— (cos 2a cos 2vy sin® 28 + sin 2asin 2v) sin? %}

+sin 23’ cos 28 { cos 2y sin 23 sin*% — sin 2y sing cos g}

2
= sin? @' + cos 28’ [{cos (y—a) cos% + sin (y — «) sin 28 sin —}

+ cos® (7y + &) cos® 28 sin? %]

+ sin 28’ cos 28 (cos 2+ sin 23 sin? % — sin 2 sin % cos %) ............ (31).
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This expression with the same limitations as in Chapter XIV. may be
applied to the case in which the pencil of light incident on the plate is
conical. -

243. Let us first suppose that the incident light is plane polarised, then
B =0 and

Ol : . 8)2
I= {cos (y — a) cos 3 + sin (y — a) sin 2B sin §} +cos? (y + a) cos? 23 sin'-’g

3 =t : A -
= (cos ¥ cosg +siny sin 283 sin —2-> + ¢0s? (2y —r) cos* 23 sinﬂg ....... (32),

where 4 1s the angle between the final and the primitive plane of polarisation
of the stream.

When the planes of polarisation and analysation are crossed y» = /2, and
I = (sin* 2B + cos® 23 sin? 2y) sin‘-’% .................. (33).

The intensity is thus a minimum when ¢ =0° or 90° or 180° or 270° and
there are therefore dark brushes parallel and perpendicular to the primitive
plane of polarisation, but these will be insensible near the centre of the field,
since in the vicinity of the axis B is approximately /4.

In addition to these we have the dark curves of constant retardation
given by 8 = 2nw. Now if the crystal were inactive, we should have

2r T\ s e, T(a*—¢) .
§="" = (Vo= ¢*sin’t — Vo? — a?sin® } =7 4L —v0)s1nﬂi,
A a . A aw

where 7' is the thickness of ‘the plate and ¢ the angle of incidence, whence if
the angle of incidence be small, we may take in the case of an active plate
_alfat=c . ..  2p

o= X { 0 S ’L+:n_>\‘},

where pT'A~2 is the rotation of the planc of polarisation when the light passes
" through in the direction of the axis. The dark curves are therefore circles
and the difference of the squares of the sines of their angular radii is con-
stant for small angles of incidence.

When the planes of polarisation and analysation are parallel
I =1 —(sin® 28 + cos? 23 sin? 2v) sin® ‘—; ............... (34),

and the interference pattern is complementary to the above.
If the planes of polarisation and analysation be neither parallel nor
crossed,

1 = (cos?{r + sin®r sin® 23) cos® (g - x) + cos? (2 — ) cos? 28 sin2g— ...(35)

where tan X = sin 23 tan .
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Now if we suppose that the different points of a given curve of retardation
are not at very different distances from the centre, we may regard B as
sensibly constant for all points of this curve, and we obtain the approximate
equation of the curves of maximum and of minimum intensity by equating
to zero the derivative of I with respect to 8, regarding B as constant. This
gives :
. cos? 4 + sin? 4 sin? 23 + cos? 283 cos? (2y — )
t —v)= 2 == 3 5
o ARl ek cos®yr + sin? 4r sin? 23 — cos? 28 cos? (2y — )
RN Ry T A R v e o oy R W S i o 0 (36),

and therefore & exceeds x or xy +m... by the angle » dependent upon the
angle . If the angle of incidence be small, so that tan 8 does not differ
greatly from unity and if + be less than 7/2, tan & is always positive and
attains its maximum value when y=+/2+nw/2 and its minimum value
when ¢y =1/2 + (2n+1)7/4. Hence to obtain the form of the dark curves,
it is necessary to describe a circle of radius OC and to increase the radii of
this circle by amounts variable with their direction, that attain their maximum
value along the internal and external bisectors of the angle between the
primitive and final planes of polarisation and their minimum value along
directions inclined at 45° to the former. The result is a kind of square with
rounded corners, known as a “ quadratic curve.” On the other hand, if - be
greater than 7/2, » is then negative and the greatest contractions from the
circular form occur when 2y = nm ++ and the least contractions when

2y =(2n+1)7/2 + -

It follows then if the primitive plane of polarisation be vertical, the highest
corner of the quadratic curve is to the left of this plane (fig. 59).

A ‘_ P
AN &
) A

Fig. 59. Fig. 60.

With a right-handed plate, B is negative and consequently w is positive
or negative according as 4 is greater or less than 7/2. Consequently in this
case the highest corner of the curve is to the right of the vertical plane
(fig. 60).
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The intensity on one of the dark quadratic curves is
I'=1} [cos® ¥ + sin® 4 sin® 28 + cos? (27 — yr) cos? 23

— J{eos* Y —sin® ¢ sin? 28 — cos® (2y — ¥r) cos® 28}* + sin* 28 sin’ 2y]
which is a maximum or a minimum according as

2y=nmw+yY or =(2n+1)7w/2+ Y ;

hence the greatest intensity on the curve occurs at the corners or at the
centres of the sides according as vy is less or greater than /2.

At the centre of the field 8= /4 and the intensity is cos?(§/2 — y): this
is zero, if Y =7/2 + p, where p is the rotation of the plane of polarisation
produced by passage through the plate in the direction of the optic axis, and
in this case the first term in (35) is very small for points near the centre and
the intensity is approximately given by

1 = cos? (29 — ) cos® 28 sin? g ,

which is a maximum or a minimum according as
2y = +am or =4+ (2n+ 1) 7w/2

The central spot will then be dark and extended in the direction of the
diagonals of the quadratic curves, as a kind of rectangular cross.

244. When the primitive light is circularly polarised, 8 = * /4, the
upper or lower sign being taken according as the stream is left- or right-
handed. Hence in this case

I=1 {1 +'2 cos 28 (cos 2 sin 23 sin”% —sin 2y sing cos —2—)}

=4 {1 + cos 2y sin 28 cos 28
T cos 28 /sin® 2y + cos? 2y sin* 28 cos (8 — x)} ... (87),
where _ tany=tan 2y/sin 28.

Taking the upper sign, the dark curves are determined by
8 =2n7 +x,
and writing as a first approximation sin 28 =1, we have for the dark curves
8 = 2nm + 2, nearly.

Consequently 8, and hence also ¢, increases continually as v increases and
this shows that the dark curves are two mutually inwrapping spirals, that are
right-handed, since y is measured from the principal section to the plane of
analysation in a counter-clockwise direction. At the centre these spirals
touch the line OQ that makes an angle R with the plane of analysation on



366 The Analytical Theory of Light [cH. xvIII

the right-hand side of it, R being the rotation of the plane of polarisation
produced by passage through the plate in the direction of the axis.

Q

Fig. 61.

The actual curves are however not so simple, for i is only equal to 2y,
when ¢ =mm/[4, and is in excess or defect of this quantity according as v is
between mar/2 and (2m+1) w/4 or between (2m + 1)w/4 and (m +1) 7/2:
hence & and therefore also ¢ is, in the odd octants, counted to the right from
the plane of analysation, too great and in the even octants too small for an
uniform spiral, and the dark curves consequently have the form of quadratic
spirals. g

If the primitive stream be right-handed, we must take the lower sign in
(37) and the dark curves are given by 6= (2n + 1) 7 + x; that is we have the
same curves as before, but they are turned through a right-angle.

On the other hand if the plate be right-handed, 8 is negative and the
spirals are left-handed.

245. An interesting case treated by Airy is that in which a conical
pencil of plane polarised light passes in succession through two plates of
quartz perpendicular to the axis, of opposite sign and equal thickness, and is
subsequently analysed.

Taking the first plate as left-handed, the light emergent from it consists
of the two oppositely polarised streams with the polarisation-vectors

£, =c, cos Be+ -9, 7, = — 1, Sin Be+ M=
& = ¢, sin BetM—3, 1y = 1€, €08 Se =3,
where ¢, =cosacos B+ csinasin B,

¢, = cos asin B — ¢ sin a cos 3,
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a being the angle that the primitive plane of polarisation makes with the
principal section and the first stream having its plane of maximum
polarisation parallel to the principal section.

In the second plate on the other hand it is the right-handed stream that
has its plane of maximum polarisation in the principal section, and therefore
on entry into the plate, the pencil is divided into two streams with the
polarisation-vectors

g’ =k, cos Be ), 7, = ik, sin Be+ ™9,
&' = k,sin Ber ™), 7y = — ik, cos Be M=,
where ky cos B+ k, sin B= ¢, cos B+ ¢ sin Be~8,

kysin 8 — k,cos B =— ¢, sin B + ¢, cos Be,
or ey = ¢, c08 28 + ¢, sin 2Be¢,

k= ¢;81n 28 — ¢, cos 2Be4.

In traversing the plate the phase of the vibrations in the second stream
is relatively retarded by an amount 8, and if 4 be the azimuth of the plane
of analysation with respect to the principal section, the polarisation-vector of
the final plane polarised stream is

5 = {(k,cos B + k,sin Be~?) cos iy + ¢ (k; sin B — k, cos Be%) sin o} e+,
giving as the intensity
I = (I, cos® B+ koky sin? B+ (kyk'e? + ky'k.e™%) sin B cos B} cos® oy
+ {kuke sin® B + ok, cos® B — (ke @ 4 ky'ke=%) sin B cos B} sin®y
+ ¢ (kiks'e® — by'ke®) siney cos ,
where &/, k; are the expressions conjugate to &,, k; respectively.
Now
kk, = cic’ cos? 2B + cue)’ sin? 28 + (cic,'e? + ¢,'c.e™*%) sin 23 cos 23

] . ; : a0 )
=cos? a cos? B + sin? a sin? B — sin 2as1n 43 sin 5c085

: ! P2 G)
—cos 2asin 28 sin 48 sin® 5,
Fek = cic) sin® 28 + ¢y’ cos? 28 — (cic.'e + ¢,/c,e™*?) sin 28 cos 28

: 5 ; : RO M)
= cos® asin? B + sin? a cos? B + sin 2« sin 43 sin 50085

+ cos 2a sin 28 sin 43 sin® g !
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kke? 4 k/ke®
=2 (c,6,' — €,,") sin 28 cos 28 cos & — (c,¢'e* + ¢;'ce™%) cos? 28

+(¢i6s + ¢/'c,) sin? 28

= ¢0s 2a sin 28 + 4 sin 2a cos? 23 (sin g cos g -2 sin“% cos g)

. P10 :
+ 2 cos 2a cos 28 sin 483 (sz 5~ 2 sint g) .

kkle® = I/'k.e
=2 (e,¢ — ¢x¢2’) sin 28 cos 28 sin & — (¢,¢/'6® — ¢/ce™%) cos® 28

—(ci6s — ¢,'c) sin®y28

vo| O2

=— <sin 20 — 8 sin 2a cos? 23 sin? g cos?

— 4 cos 2a cos 23 sin 4/3 sin? g cos g)‘;

hence

= {cos2 o — 2 sin 2a cos 23 sin 43 sin’g cos %

— cos 2a sin® 48 sin* %} cos® oy

: . ; )
2 2 ) 32 cos =
- {sm a + 2 sin 2a cos 23 sin 43 sin® 5 cos 5

+ cos 2a sin? 43 sin* g} sin?

+2 {sin o cos a — 4 sin 2a cos? 23 sin? —82- cosgg

— 2 cos 2a cos 23 sin 4/3 sin® g cos g} sin y cos ry

= cos?(y — o) — 4 cos? 23 sin? % {sin 2a sin 2vy cos® g

+ sin 2 (y + «) sin 28 sin g cos g + cos 2a cos 2¢ sin® 283 sin? §}

2
......... (38).
If the planes of polarisation and analysation be crossed, so that
y=a+m/2,
N ) e o ONP
I =4cos?28 sin? 3 {sm 2a cos 3 +cos 2a sin 24 sin Q}'

= 4 (sin? 2a + cos? 2a sin® 28) cos? 28 sin? g sin® (g + X) ...... (39),

where tan x = tan 2a/sin 2.
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In this case the expression for the intensity vanishes, when &= 2nr,
which gives a series of dark circles as in the case of a single plate: it also
vanishes when & = 2nm — 2y, and writing as a first approximation sin 28 =1,
this corresponds to a second system of dark curves given by

8 = 2nm — 4a, nearly.

Now a is measured from the primitive plane of polarisation to the
principal section in a clockwise direction, and since from the above & and
consequently ¢ increases as a diminishes, it follows that this second system of
dark curves consists of four similar left-handed spirals, each of which is
turned through 90° from the position of that adjacent to it. At the centre
these spirals touch the lines COC, C’0OC" inclined at an angle R/2 to the
planes of polarisation and analysation on the left-hand side, where R is the

rotation of the plane of polarisation produced by normal passage through
either of the plates.

Since sin? §/2 and sin?(3/2 + x) have the same value when a= + n7/2, the
points in which the spirals intersect the circles lie in directions parallel and
perpendicular to the primitive plane of polarisation, but as y is in excess or
defect of 2a, according as a lies between nm/2 and (2n+ 1)m/4 or between
(2n+1)7/4 and (n+1)7/2, the spirals intersect the circles at angles
somewhat greater than those at which an uniform spiral would cut them.

When B is very small, the intensity is a minimum when o =mm/2; hence
at a distance from the centre there will be faint brushes parallel and per-
pendicular to the primitive plane of polarisation.

OI A A CI

(o]
Fig. 62. Fig. 63.

When the plate that receives the incident light is right-handed, B is
negative : this changes the sign of x and the spirals will be right-handed.

W 24



CHAPTER XIX.

MAGNETICALLY ACTIVE MEDIA.

246. 1IN the course of a series of experiments instituted with the view of
establishing a relation between electric and magnetic phenomena and those
of light Faraday* in 1845 discovered, that a transparent body in itself
inactive acquires the property of rotating the plane of polarisation of a stream
of light, when it is placed in a magnetic field, the effect being a maximum
when the stream traverses the medium in the direction of the lines of force of
the field and nil when the magnetic force is at right-angles to the pencil of
rays. The list of magnetically active media is now known to include a large
number of solids and liquidst, in fact most diamagnetic substances and even
gases and vapours}.

The distinguishing features of the magnetic rotation of the plane of
polarisation are:

(1) that the activity is temporary, appearing and disappearing simul-
taneously with the magnetic force that produces the field§; 1

(2) that the direction of rotation is changed with respect to the observer,
when the direction of propagation is reversed: in other words, the direction
of rotation in space is the same whether the light travels along or in a
direction opposite to the lines of force, whereas in structurally active media
reversal of the stream involves a change in the direction of rotation in space.
It follows then that if a pencil of polarised light, after passing through the
substance, be reflected by a mirror so as to be sent through it again in the
opposite direction, the rotation is doubled when it results from magnetic
action and is annulled if the medium be structurally active.

The direction of rotation is thus determined by that of the magnetic force
and in the case of most diamagnetic substances is the same as that in which

* Phil. Trans. cxxxvi. 1 (1846): Exp. Res. xix*h geries, § 26, Arts. 2146—2242.

+ Matthiessen, C. R. xx1v. 969; xxv. 20, 173 (1847). Bertin, 4nn. de Ch. et de Phys. (3)
xxur 5 (1848). Ed. Becquerel, ibid. (3) xxviir. 334 (1850).

+ H. Becquerel, J. de Phys. viri. 198 (1879); 1x. 265 (1880). Bichat, ¢bid. vir. 204 (1879);
1x. 275 (1880).

§ Bichat and Blondlot, J. de Phys. (2) 1. 364 (1882).
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a positive current must circulate round the stream, in order to produce the
magnetic field that actually exists. There are however notable exceptions to
this rule that the rotation is positive for diamagnetic and negative for ferro-
magnetic media ; for oxide of manganese and the salts of nickel and cobalt,
though magnetic, give a positive rotation, while the diamagnetic chromate of
potash and bichloride of titanium produce a negative rotation *.

The angle through which the plane of polarisation is turned in passing
through a magnetically active medium is found to be proportional to:

(1) the distance within the medium over which the light travels;

(2) the intensity of the resolved part of the magnetic force in the direction
of propagation of the streamt.

These laws may clearly be replaced by the single general statement that
the angular rotation between two points is proportional to the difference of
their magnetic potentials.

The coefficient of proportionality is a physical constant as characteristic of
the substance as its refractive index and is known as “ Verdet’s constant ”: in
C.G.S. units it is the rotation of the plane of polarisation between two points,
one centimetre apart, the magnetic potentials of which differ by a ¢.6.s. unit.

In the case of thin transparent plates of iron, nickel and cobalt the above
statement has to be modified, for as the intensity of the magnetic force is
increased, the rotation produced by these metals rises to a maximum and
then remains sensibly constant. The law of magnetic rotation, as given by
Du Bois, is in the case of these metals that the angular rotation between two
points is proportional to the difference of their potentials of magnetisation,
In all three metals the rotation is positive and extraordinarily great: the
theoretical value of the maximum rotation of red light produced by a plate of
the thickness of 1cm. is in the case of nickel 89,000°, of cobalt 198,000° and -
of iron 200,000°%.

In a transparent medium the rotations of the plane of polarisation of
streams of different frequencies vary approximately as the inverse square of
the period: but this law is not exact, as the product of the rotation by the
square of the period increases with the frequency of the light, the substances
for which this increase is most marked being those that have the greater
dispersive power§. Absorbing media however form exceptions to these rules,

* Verdet, C. R. xr1v. 1209 (1857): (Huvres, 1.168: Ann. de Ch. et de Phys. (3) 111 129 (1858):
Euvres, 1. 176,

+ Wiedemann, Pogg. Ann. Lxxxi. 215 (1851). Verdet, C. R. xxxviir. 613 ; xxxIx. 548 (1854) :
Ann. de Ch. et de Phys. (3) xt1. 370 (1854); xuur. 37 (1855): (Euwres, 1. 107, 112, 152, 155.
Cornu and Potier, C. R. ci1. 385 (1886).

+ Kundt, Wied. Ann. xx1m1. 228 (1884) ; xxvin. 191 (1886). Du Bois, ibid. xxx1. 941 (1887).

§ Ed. Becquerel, A4nn. de Ch. et de Phys. (3) xvir. 437 (1846). Wiedemann, Pogg. Ann.
Lxxxin. 215 (1851). Verdet, C. B. nvi. 630; Lvir. 670 (1863): Ann. de Ch. et de Phys. (3) Lxx.
415 (1863) : (Buvres, 1. 205, 209, 214,

242
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as indeed might be expected from the fact that near and within the region of
absorption the refractive index experiences abnormal variations.

H. Becquerel* has from theoretical considerations stated as the law of
magnetic rotary dispersion that the magnetic rotary power varies as A (du/d\)
and has shown that this formula holds in the case of creosote and carbon
bisulphide, while it gives in general a good approximation to the observed
order of magnitude; but there is at present no experimental proof that this
relation is true in the case of absorbing media}.

Attempts have been made without much success to find a relation between
the magnetic rotary power of a substance and its refractive index. De la Rivef
advanced the statement, to a great extent confirmed by Bertin's experiments§,
that the magnetic rotation ought to increase with the refractive index of the
medium, but Verdet’s experiments|| have conclusively shown that, though
substances with a high refractive index have in general a large rotary power
when placed in a magnetic field, there is no constant relation between these
quantities.

247. Another action of magnetism on light has been discovered by Kerr?,
who found that when plane polarised light is reflected from the polished pole
of an electromagnet, the plane of polarisation of the reflected light is in
certain cases altered when the magnet is excited. The following results have
been obtained by Kerr and have been confirmed by later investigations**,

When the mirror is magnetised normally, light polarised in one of the
principal azimuths gives at normal or at oblique incidence a reflected stream
that is slightly elliptically polarised with the plane of maximum polarisation
rotated from the primitive plane of polarisation in a direction opposite to that
of the current exciting the pole. For light polarised in a plane perpendicular
to the plane of incidence the rotation is a maximum for an angle of incidence
between 44° and 68°: in the case of light polarised in the plane of incidence
the rotation decreases continuously as the angle of incidence increases.

In the case of tangential magnetisation of the mirror, no change is pro-
duced either at normal incidence or when the plane of incidence is perpen-
dicular to the lines of magnetic force: but when the lines of force are in the
plane of incidence and the incidence is oblique, the reflected light is elliptically

* C. R. cxxv. 679 (1897).

+ Cf. Cotton, Le Phénomene de Zeeman, Scientia, No. 5, p. 81.

t Traité de UElectricité, 1. 505 (1854).

§ loc. cit.

Il C. R.xumr 529 (1856): Ann. de Ch. et de Phys. (3) urr. 129 (1858) : (Buvres, 1. 163, 176.

9 Phil. Mag. (5) 1. 321 (1877); v. 161 (1878).

** Righi, Ann. de Ch. et de Phys. (6) 1v. 433 (1885); 1x. 65 (1886); x. 200 (1887) : Mém. R.
Accad. Lincet (4%) 1. 367 ; 111. 14, 562 (1885-6). Kundt, Wied. Ann. xxmmr, 228 (1884) ; xxvr. 191
(1886). Du Bois, ibid. xxx1x. 25 (1890). Sissingh, ibid. xxm. 115 (1891); drch. Néerl. xxviI.
173 (1894). Zeeman, ibid. xxvir. 252 (1894); (2) 1. 354, 376 (1897).
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polarised, and if the primitive plane of polarisation coincide with the plane of
incidence, the plane of maximum polarisation of the reflected light is rotated
from the primitive plane in all cases in a direction opposite to that of the
current that would produce a field of the same sign as the magnet; if the light
be polarised at right-angles to the plane of incidence, the rotation is in the
same direction as the current for angles of incidence between 0° and from 75°
to 80°, and in the opposite direction for larger angles of incidence.

248. In 1896 Zeeman* discovered the remarkable effect produced on the
character of the radiations by placing the source of light in an uniform
magnetic field.

Earlier investigators+ had indeed observed that the insertion of a Geissler’s
tube between the poles of an electromagnet influenced the colour and the
spectrum of the light issuing from it and Fievez} found that the aspect of the
sodium lines was modified, when the source emitting these radiations was
placed in a magnetic field. These earlier discoveries however have character-
istics that distinguish them from the phenomenon known as “the Zeeman
effect” and are most probably to be attributed in the one case to chemical
action within the tube and in the second case to a change in the form of the
flame produced by a lack of uniformity in the magnetic field.

It has already been stated that a rotation of the molecules of a source as
wholes will affect the character of the radiations emitted therefrom, and in
this manner it is possible to give an account of the main features of the
Zeeman effect. Whatever be the nature of the vibrations within a radiating
molecule, they may in the case of strictly monochromatic light be represented
by a vector, the extremity of which executes in general elliptic vibrations:
this vector may be replaced by a component vibrating in the direction along
which the radiation is considered, together with a component with elliptic
vibrations in the perpendicular plane, this latter component giving rise to an
elliptically polarised stream of definite frequency. If now we impress upon
the vector an uniform rotation round the direction of propagation as axis, this
elliptically polarised stream will be replaced by two oppositely circularly
polarised streams with frequencies in excess and defect respectively of the
primitive frequency by an amount equal to the number of revolutions per

* Zittingsversl. Kon. Akad. v. Wet. Amsterdam, v. 181, 242 (1896) ; vi. 13, 99, 260, 408 (1897);
vir. 122 (1898); vui. 328 (1899): Arch. Néerl. (2) 1. 44, 217, 383 (1897); v. 237 (1900): Phil.
Mag. (5) xuut. 226 ; xurv. 55, 255 (1897); xLv. 197 (1898): dstrophys. J. v. 332 (1897); 1x. 47
(1899). 4
+ Pliicker, Pogg. Ann. c1v. 113 (1858). Tréve, C. R. Lxx. 36 (1870). Angstrdm, Pogg. 4nn.
cxrxv. 300 (1872): C. R. xxum. 369 (1871): Phil. Mag. (4) xL1i. 398 (1871). Daniel, C. R. 1xx,
183 (1870). Secchi, ibid. Lxx. 431 (1870). Chautard, ibid. Lxxrx. 1123 (1874); rxxx. 1161;
Lxxx1. 75 (1875) ; rxxx11. 272 (1876). Van Aubel, J. de Phys. (3) vir. 408 (1898). Thénard, C. R.
Lxxxrx. 298 (1879); xc1. 387 (1880).

+ Bull. Acad. Bruzelles (3) 1x. 327, 381 (1885) ; xII. 30
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second of the impressed rotation. When a single molecule is considered, the
intensities of the two streams will be unequal, but since the elliptic vibrations
of the vectors corresponding to the different molecules of the source must be
supposed to have all possible orientations, the two-circularly polarised streams
will in the aggregate be of the same intensity, provided we suppose the
rotation to be the same for all molecules. Again in a direction perpendicular
to the axis of rotation, we shall have two streams polarised in the same plane
with the same frequencies as the two circularly polarised streams, and a
stream polarised in the perpendicular plane of the primitive frequency.

These are the characteristics of the simplest form of the Zeeman effect.
Wheu a luminous source is placed in a strong uniform magnetic field and the
radiation in the direction of the lines of force is examined with a spectroscope
of considerable resolving power, it is found that a spectral line is replaced by
a doublet, the constituents of which have equal intensities and on a scale of
frequencies are symmetrically placed on either side of the primitive line with
a distance between them proportional to the strength of the field : these two
components are circularly polarised in opposite directions, that with the
higher frequency having. the direction of the current that produces the field.
The constituents of the doublet are in general complex, which may be "
accounted for by the fact that the original radiation is itself complex and
that the magnetic field may not exercise the same influence on all the
molecules of the source.

In a direction perpendicular to the lines of force, the radiations may be
divided into two groups, that are polarised respectively in planes parallel and
perpendicular to the magnetic force. The constituents of the group with
polarisation parallel to the lines of force agree in all cases with the doublet
observed in the direction of the field: but in the case of the second group
several variations are observed. The simplest phenomenon is that of a single
line coinciding in position with the primitive line, but sometimes there is
a doublet with constituents symmetrically placed with respect to the original
line, and a triplet and even a more complicated system has been obtained*.

* For the above and other results, and for modifications of the normal type of the Zeeman
effect, see: Cotton, Le Phénomene de Zeeman, Scientia, No. 5 (1899). Zeeman, loc. cit. Cornu,
C. R. cxxv. 555 (1897); cxxvr. 181, 300 (1898): J. de Phys. (3) vi. 673 (1897). Preston, Dublin
Trans. (2) vi. 385 (1897); vir. 7 (1898): Proc. R. S. rxim. 26 (1898): Phil. Mag. (5) xuv. 325
(1899) ; xuvm. 165 (1899): Nature, Lvir. 173 (1897); rix. 224, 248, 485, 605 (1899); rx. 175
(1899) ; uxr. 11 (1899). Konig, Wied. Ann. vx1t. 240; nxmr. 268 (1897). Becquerel, C. R. cxxv.
679 (1897): J. de Phys. (3) vi. 681 (1897). Becquerel and Deslandres, C. R. cxxvi. 997; cxxvirL
18 (1898). Lodge and Davies, Proc. R. S. 1x. 513 (1897); rx1. 413 (1897). Ames, Echart and
Reese, Astrophys. J. vii. 48 (1898). Reese, ibid. xim. 120 (1900): Phil. Mag. (5) xnvir. 317
(1899). Michelson, Phil. Mag. (5) xurv. 109 (1897) ; xLv. 348 (1898): Astrophys. J. vi. 48 (1897);
vi. 131 (1898): Nature, Lix. 440 (1899). Righi, Rend. Lincei (5) vir. [1] 295 (1898): N. Cim. (4)
x. 20 (1899) ; x1. 177 (1900): Phys. Zeitschr. 1. 329 (1900) : Mem. R. Accad. Bologna (5) viir. 263
(1900). Blythswood and Marchant, Phil. Mag. (5) xuix. 384 (1900). Blythswood and Allen,
Nature, Lxv. 79 (1901). XKent, dstrophys. J. xm1. 289 (1901). Runge, Phys. Zeitschr. 11, 441
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These more complicated phenomena may possibly indicate a longitudinal
effect on the vibrating molecules produced by the action of the magnetic
field.

Egoroff and Géorgiewsky*, observing without a spectroscope, found that
in a direction perpendicular to the lines of force the light from a sodium
flame placed in a magnetic field is partially polarised in a plane parallel to
the lines of force. This appears to imply that the sum of the intensities of
the two components polarised in this direction exceeds that of the stream
polarised in the perpendicular plane, a fact that is unaccounted for by the
elementary explanation given above. This result may however be attributed
either to an orientation of the molecules of the source by the field+ or to an
inequality in the absorption of light polarised in the two azimuths in

traversing the outer mantle of the flame}.

The phenomenon of absorption can, by Kirchhoff’s principle, be employed
for exhibiting and studying the influence of the magnetic field on the
radiations from a luminous source§; but Macaluso and Corbino| have shown
that, when a sodium flame is placed in a magnetic field and a stream of
polarised light passes through it along the lines of force, it is necessary to
take account not only of the fact that absorption of light of a given period
has been replaced by absorption of two streams of circularly polarised light of
opposite signs and of periods in excess and defect respectively of the natural
period, but also of the fact that the plane of polarisation of the light is rotated
during the passage through the flame. This rotation, though generally very
small in the case of a gas or a vapour, becomes of primary importance when
the period of the light is near that corresponding to an absorption-band .

(1902). Runge and Paschen, ibid. 1. 480 (1900): dstrophys.J. xv. 235, 333 (1902). Shedd, Phys.
Zeitschr. 1. 270 (1900); 11. 278 (1901). Gray and Stewart, Nature, Lxv. 54 (1901). For Lorentz’
theory of the Zeeman effect see Lorentz, Wied. Ann. Lxur. 278 (1897): Arch. Néerl. (2) 1. 1. 412
(1899) ; vir. 299 (1902) : Phys. Zeitschr. 1. 39, 498, 514 (1900): Rapp. prés. au Congr. Intern. de
Phys. 1. 1 (1900). ‘Cotton, Ecl. Elect. x1v. 311 (1898). Voigt, Phys. Zeitschr. 1. 116, 128, 138
(1899).

* C. R. cxx1v. 748, 949 ; cxxv. 16 (1897).

1 Cf. Voigt, Gott. Nachr. (1901) 169.

+ Lorentz, Zittingsversl. Kon. Akad. v. Wet. Amsterdam, vt. 193 (1897) : Arch. Néerl. (2) 1. 1.
412 (1899): Rapp. prés. au Congr. Intern. de Phys. mm. 28 (1900). Voigt, Wied. Ann. rxrx. 290
1899). k
( §)Cotton, C. R. cxxv. 865 (1897). Konig, Wied. Ann. txi. 240 (1897); rxmr. 268 (1897).
Righi, Rend. Lincei (5) vir. [2] 41 (1898): N. Cim. (4) vur. 102 (1898): C. R. cxxvir. 216 (1898);
cxxvir. 45 (1899). )

|| C. R. cxzvii. 548, 951 (1898): Rend. Lincei (5) vir. [2] 293 (1898); v [1] 38, 116, 250
(1899).

< H. Becquerel, C. R. cxxvir. 647, 899, 953 (1898) ; cxxvur. 145 (1899). For the anomalous
dispersion of sodium vapour see Kundt, Wied. Ann. x. 321 (1880) ; Winkelmann, ibid. xxx11. 439
(1887). Rotation of the plane of polarisation within the absorption-band has been observed by
Schmauss, Drude’s Ann. . 280 (1900); vir. 842 (1902) and Corbino, Rend. Lincei (5) x. [2] 137
(1901) ; N. Cim. (5) 1. 121 (1902). Zeeman, Astrophys. J. xv1. 106 (1902) : Arch. Néerl. (2 v
465 (1902) ; Rend. Lincei (5) x1. [1] 470 (1902).
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Again when the light traverses the flame in a direction perpendicular to
the magnetic field, the phenomenon of rotation does not intervene but the
sodium-vapour becomes doubly-refracting and this fact has to be considered
as well as the change in the absorption produced by the field*.

249. We have seen that the facts of dispersion and absorption can be
represented by taking as the differential equations applicable to ponderable
media ! '

D = — Curl w, = GUTE . o 5 s (1),

where d is the polarisation-vector of the pure ether, d; a vector repre-
sentative of the intra-molecular vibrations and the components of e are
given by
(el &, es)=,]; a 9_ _a...) (dez)
- 2\0u’ v’ ow :
d and dj being connected by the relations
anuy + ap’up, + ah”iih =U
bh’l)h SIS bh”l)h + bh”"i'h = OB REEY: ot vefote e oTsleTs e Tore 2o oistes o¥e (3).
Crwy + C'Wh + oWy, = w

It is now necessary to extend these equations, so as to render an account
of the phenomena that have just been described .

If we limit ourselves to linear functions of 4, B, C the components of the
intensity of the magnetic field H, the symmetry of equations (3) leads us to
represent the action of the magnetic force by the addition of a vector at
right-angles to the vectors H and dj and proportional to their vector product.
We then have in place of (3)

apup + ah’dh + a/h”ﬁh + Gh/ (C‘Uh — Bwh) =Uu
b}ﬂ)h + bh,éh + bh”’i).h + eh’ (A Wy, — Oﬁh) b Tl GO T < Sl B Y (3’),
Crwy, + ¢/ Wy, + cxiy, + ey’ (Bl'l,h — Ay =w
where ¢;’ is the constant of the magneto-optic effect}; or in the case of an
isotropic medium, taking the z-axis in the direction of the lines of force
apun + ap'ty, + ap”"ilip + e’ Hop = u
apvy + a;,’a)h + ah”ijh Len Hav =i R S B A AT (3”).
apwy, + ay'wy, + ayiy L o=w

* Cotton, C. R. cxxvir. 953, 1256 (1898); cxxvirr. 294 (1899). Voigt, Gott. Nachr. (1898) 329,
355 : Wied. Ann. Lxvit. 345 (1899): Drude’s Ann. vir, 872 (1902): Rend. Lincei (5) x1. [1] 459
(1902). H. Becquerel, C. R. cxxvir. 145 (1899).

+ Voigt, Gott. Nachr. (1898), 329, 349, 355: Wied. Ann. Lxviy 345; LxvirL 352; nxix. 290
(1899) : Drude’s Ann. vi. 784 (1901).

1 These equations assume that the medium, though crystalline, is magnetically isotropic ; ef.
Larmor, Matter and Zther, p. 198.
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250. Let us first consider the propagation of plane homogeneous waves
along the lines of force of the field: then all the vectors are dependent upon
tand z alone and may be taken proportional to Exp {27 (t — z/@) 1}, where
@ =w/(1 —w), w being the real propagational speed of the waves and » the
index of absorption.

The equations then give

U=s—wmfo, V=afo, W=0
v, =06, @,=-— Quleo, @,=0 ] @)
(an + . 2mnay’ — dmnar”) up + o . ey H2mrnwy = u[ ........ ’
(an + ¢. 2mnay’ — dm*n*ay”) vy — o . e H2mrnuy = v

and we have
U=(Q/oyu, V=(Qo)rv
(ull. i_ L’Uh) {all o 271’77, (Lah’ i_ eh/H) = 471'27'&2(1},”} =u i L?J} ......... (5),
whence, writing

27?%], = '\/a;./ah", oy = 27rnh’ah'/ah, ep = 2'n-nhﬂeh'/ah, €p = nh/a;.,

we obtain
Qoy(u+w)y=U+.V
=[1 — Sexnp {n* —np® —n (ean £ e H) ] (u £ w) ......... (6).
Hence, either '
u—w=0 and (Qfw)=1— Zexny (n? — mp? — n (v + e H)} ... (7),
or u+w=0 and (Q/w)=1—Zen, {n* —n2 — n (o —e )} ... (3).

In the first case we have a circularly polarised stream, of the same sign as
the current that would produce the field, having a complex velocity w, given
by (7); and in the second case the circularly polarised stream has the opposite
sign and its complex velocity w_ is determined from (8). The rotation of
the plane of polarisation of a stream of plane polarised light produced by
traversing a length ! of the medium in the direction of the lines of force is

B rhl (ph L6 P DD (_1. =¥, ) ............... ),
+

where @, is a mean velocity given by 2w, = w_7 + w
If the medium be transparent, a, =0 and

(Qfws)=1—Zepny {n —n? F enH .0},

mnflw, npenend
whence R=-—(—3 8 iy — e Hms
e ATt s . Tt oy BT 8 (10),

0z (,nn — np?)t
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if epH be small compared with n —mn,, that is, when the frequency of the
light is not near one of the critical frequencies.

To the same approximation, w, is the propagational speed before the field
is established and is given by

(Q/w,)? = p =1 — Znpep (n® — mp?) 7,
whence to (dpofdn) = nZnpe (0? — np?) 2
Hence if the intra-molecular vibrations have a single period
R = klHn (dp,/dn),

in accordance with Becquerel’s law, where % is a constant for the given
medium.

When the frequency of the light is nearly the same as one of the critical
frequencies n;, we may simplify the expressions for the complex wave-
velocities as in Chapter XVII, and we obtain

(\Q/Bt)z =1 €p {2 (’I’L - nh) F GhH— Lah}_l ................ (11).

This equation only differs from that obtained when the medium is removed
from the magnetic field by having n ¥ e, /2 written in place of »: it therefore
follows that the curves of dispersion and absorption for each of the circularly
polarised streams have the same form as those of the medium when un-
influenced by the magnetic force: the curves for the positive stream being
obtained by a displacement parallel to the axis of abscisse by an amount
erH[2, and those for the negative stream by an equal displacement in the
opposite direction. Thus the effect of the field is to resolve a single
absorption-band into two symmetrically placed with' respect to the original
band *.

Writing

2 (n —mp)/a, =4, enH|ap = P, efap=4,
and separating real and imaginary parts we have
0\ AAFP
(“’_=> (1 . V:tz):‘ 1 _(A _*-S_ P)2 +)1

9 2)2 ST
(w* == (AT Pr+l
whence if v be very small
wnlw, A P A2—-Pr—1 13

Q7 (AT P T aas e (13),
and at a moderate distance from the region of absorption
R mnlw, AP mnlew, eenH

TN T A0 (n—m)

* If there be two veetors dj, for which the frequencies are the same, while the magneto-optic

parameters are different, the application of the magnetic force will resolve a single band into
four; and so on.

R=




250 Rotation within an Absorption-band 379

Comparing this expression with (10) which to the same degree of approximation
may be taken as the rotation for frequencies differing widely from a critical
frequency, we see that the rotation, though imperceptible in other parts of
the spectrum, may attain measurable dimensions as an absorption-band is
approached.

Within the region of absorption, we may write

A2—-P2—1
(A*— 12— 1) + 4A%’
where p,, K may be regarded as constant, u, being a mean refractive index

and K =7nld/Q. The rotation vanishes when A=++P+1, and is a
maximum or a minimum when A =0 and when

A= Pl OV PRl st L ! (14),
its value then being given by

pR=—EP(P'¥1),

and mR =1 K {(VP*+1 F1}/(4P),
respectively.

i R=KP

If P be less than /3, only the upper sign in (14) gives a real value of A
and then

(uR),=— K P/(P*+1) is a minimum value,
(#oR). = K{J/P* +1 —1}/(4P) is a maximum value;

on the other hand when P exceeds 4/3, both signs correspond to real values
of A and

(poR), = — KP/(P?+1) is a maximum value,
(oR). = — K (WP +1 + 1}/(4P) is a minimum value,
(mR)s= K WP+ 1 —1}/(4P) is a maximum value.

N

i~ g

Fig. 64.

The curves in figure (64) represent the values of pR when .P=1 and
P =3, the unit for A being § cm., that for R 1} cm. : the vertical dotted
lines give the approximate places of the maximum of absorption.
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251. When the light travels in a direction perpendicular to that of the
field, or parallel, say, to the axis of #, the vectors are proportional to

Exp (270 (t — z/w) ¢},

and we then have

U=0, V=-w/o, W=u/o *
ST T e e
with
(2 + wapn — n2) uy, + e Hnvy = nhe;.u‘[
(na2+ capn — n2) vy — ep Hnup, = npepv [ ovenenennnenn. (16);
(np® + capn — n®) wy, = nheh'wJ
whence U=0, V=(Q/w) v, W=(Q/w) w,

(un + wvp) (mp? + copn — 0 £ e Hn) = mpep, (w £ 0w),
and + (Q/a) ve= {1 — Znpep (n* —m® F e Hn — voym)™} (u + w)} i

(Qfw) w={1 - Zne, (n? —y? — vopn) 7w r-<(17):

Hence, if w #0, we have
(\QJ/E)2 =1- Enhe;, (n2 — gt — Lahn)‘l .................. (18),

and with this value of w, the first of equations (17) is only satisfied by
u=v=0. This then is the case of plane polarised light with its polarisation-
vector parallel to the lines of force, and we see that the absorption and the
propagational-speed are unaffected by the magnetic force*,

If on the other hand w=0, then

en oo oo B

where pr=1—Snue, (0* —np? £ €, Hn — iayn)™,
7 2
whence (l + —1-> Lg) =9,
P+ P-/ \o

or

(n? — np? — wapn)? — > Hom?

(0]

(ﬂ)” o, (e npen (12— mp2 — apn)

Np€p €p Hn J
{ (nz -, ’ﬂ]f ar wzhn)2 X1 e;sz'n”}
1—-3 np€p (12— np% — Loy n)
(n®— np? — opn)? — e H2n?

L i

In this case the polarisation-vector is perpendicular to the direction of the

* In order to explain the resolution of this absorption-band by the action of the magnetic
. force, Voigt introduces on the left-hand side of the third of equations (3") a term fjw,’, where

dw,’ 02w,’
Swwon+apwy +ay a—th i ﬂh"—at—: =0,

and f; is a function of H, that vanishes when H=0.
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field, and the application of the magnetic force has the effect of altering the
speed of the waves and also of resolving each absorption-band into two
components ¥,

Hence in a direction perpendicular to the lines of force there are two
streams of permanent type propagated with different velocities. The medium
thus becomes doubly refracting under the influence of the magnetic force, but
in general the difference in the speeds of the two waves will only become
marked when their frequency is near one of the critical values.

As the formule in their general form are too complicated to be of any
special interest, we will consider only the case in which there is a single
vector d; dependent upon the intra-molecular vibrations and consequently
only a single absorption-band, when the medium is removed from the
magnetic field.

Using the subscripts () and (;) to distinguish between the streams that
have their polarisation-vectors perpendicular and parallel respectively to the
lines of force, we have

(Q\)?_ ] ; np€n (NP — np? — Ny €4 — AR M)

m—y = {(m*—np2 ) — npen (n2—mp2)—ep? H? n*— ap*n*} —sapm {2 (W —mp?)—npepn}’

whence

(wg)z (1-2)

npep[(n2—npi—npen) {(n?—np2)*—npen(n®—np?)— er? H2n?) + a3 n2 (n*— np?)]

e e (0 —np?)2~npep(n*—np?)— —ep? Hon? — ap?n2 |+ ap?n? {2 (WP— %) — i €}
9 (2)2v 3 npepann (WP —np2 —npen ) +e? H2n+ a3 n?) J
wy) 7 {(n*—n;f)?—nheh(nz—'n;ﬁ)—e;ﬁH”n’—ahzfn?}’+ah2n2{2('n“—nh2)—nheh}’
......... (20);
2 S 2o
also (9>a-wm=1—,@ﬂﬁLJ£L
W, (n’ - ’ﬂ}f)z + ap?n? (21)
4 _Q)’ i i }
(wz 27 (0 — np2) + ap?n?

The difference of phase between these two streams produced by a passage

through a length ¢ of the medium is
8 = 2mnl (0,7 — wy™Y) = wnlw, (0,7 — 0y 7%),
where @, is a mean velocity given by 2w, =, '+ w, . Hence if the
indices of absorption be very small, we obtain from the above formule
wnlwonheheh“IPn’
Q2

(0 —np?) {(n2— 2 —mp en (P —mi?) —ex> H*n* — ap’ n?} —ap?n? {2(n*—np?) — npex}
4 {(n*—np?)*+ ap? w2} [ [(n®—np?)P—npen(n*—mnp’)— er? H2n'—ap?n?}?+ oy2n? {2 (2—n57) — npenf?}
......... (22);

S

* See note on page 378.
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when the frequency of the light is near the critical value ny, this reduces to

Wlwonh €p, €h2 H2
=~ " =1
« 2(n—mp) {4(n—np)*— 2ep (n—np) — ey H*— ;%) — o3* {4 (n—np) — €5}
{4 (n—np )+ a2} [{4(n—np)—2ep(n—np) — ep H* — 05?2+ 03 {4 (n— 13 ) — €5} ]

A further simplification is introduced, when a3 is very small, as (22) and
(23) then become ‘

5= mnlw, npepert Hon? (24)
ST (=) (0 — ) — npen(n? — npt) — et HPm?] T \

_mlw, nyepep® H* a
&t O 2(n—np) {4 (n—np)2— 26, (n— mp) — €2 H?} (25).

Now (24) may be written

) wnlwo ny eheh“H%F

Y 0z l:(nz p ’IL;,Z) {(nz = nh2)2 i gh‘zﬂznz}
nplextest H2n? { T (n*— nh’)_ -1 (26);
(n o 3

{(,nz ot nhz)z > ethz,nz}z 2P nhz)z 7% ethznz

but in the case of a glowing vapour that has, when there is no magnetic field,
a refractive index nearly equal to unity for frequencies not too close to that
of the light absorbed, the first of equations (21) shows that ne, is very
small compared with n*—n,% whence if ¢, H be not nearly equal to % — n,
we have :

8‘— '7T’lll(1)0 nhehe,fH”n”
0 (0 — n?) {(n* — np?) — e 0}’

holding for parts of the spectrum at a considerable distance from the
absorption-band : on the other hand at a moderate distance from the region
of absorption

'rrlwo Np€p e,,"‘ H?

8°=‘Q—2 2(n—mp) {4 (n— ) — e? H?}"

Thus we see that a vapour, such as that of a soda-flame, when placed in a
magnetic field, may become strongly doubly refracting for light of periods
near that which it emits,

252. Returning to the fundamental equations (1), (2), (3") we have in
the case of periodic vibrations

Buh

o = —4niyy,

2
u
=27y, - m—;’
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and so on.. Hence equations (8’) take the form
Ahu;. + eh' (C’Uh = Bwh) =Uu
Bhv,, + e;,' (A?bh = Gl'lrh) v £a S AeF O PIRRA fha gt (27)

C’;.w;. i e;,' (B'Llh .. AU};) =W,
whence

Apup=u— e (Cip— Biing) 5 u— ey (E,C - 05 w) ......... (28),
h h

and two similar equations, if we neglect the squares and products of the

small quantities e;’A4, ey’ B, ¢,'C.

1 e e,
H U=( B e (Oppe i b TR |
ence 1+3 lh)u Cs lhBhv+B“ Cudy W oo (29),

and to the same degree of approximation, we obtain for %, v, w expressions of

the form . )
Q*u=a U+ b,V - b, W

Oty =BV S B HT0 | eoataranm S (30).
\Qz’w=')'-1W+sz_b1V

Hence if b, b,, b; be the components of a vector B, the differential
equations take the form

D=-Curllw, #=CurllE+BVD ............... (31),

where the components of £ are given by

28 B
(E,, E,, E))= (W’ = aW) ST . ) (32),
with 2= (@ + BV 4 4 W) v, (33);

more generally when the coordinate axes are not coincident with the axes of
optical symmetry, we have

20 =y U+ ay, Vit ag W2+ 205, VW + 20, WU + 2a, UV ...(34).

In this form the equations admit of the following simple geometrical
interpretation *.

In any direction within a magnetically active crystal two oppositely
polarised streams can be propagated that have their planes of maximum
polarisation parallel respectively to the axes of the central section of the
ellipsoid of polarisation parallel to the plane of the waves: the propagational
speeds of these waves are respectively in excess or defect of the speed
represented by the reciprocal of the length of either axis of the section by an
amount that is inversely proportional to the period of the vibrations and
directly proportional to the length of the axis, to the ratio of the axes of the
elliptic vibration perpendicular and parallel to the axis, and to the component

* Proc. R. S. 1xx. 40 (1902).
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_perpendicular to the section of a vector dependent upon the intensity of the
magnetic field.

From equations (31)—(33), the characteristics of wave-propagation in
magnetically active media may be determined as in §§ 240, 241, but only one
point of special interest need be mentioned.

When the medium is isotropic, the wave-velocity @ in a direction making
an angle @ with that of the vector B is given by

=02+ 9nnB cos 0,

where 7 is the frequency of the waves and () is the propagational speed when
the field is suppressed. On account of the smallness of the last term, this
may be written

L 2arnB cos 0
T Q

and we see that on the application of the magnetic force the original spherical
surface of wave-quickness becomes a surface of two sheets, that are ap-
proximately spheres of the same radius, the centres of which are displaced in
opposite directions parallel to the magnetic field *.

w? = 2

»,

The boundary conditions obtained at once from (1) are, the interface
being the plane z =0, the continuity of @,, =y, €, €;; the two latter giving
in terms of U, V, W the continuity of

o0 +b WU, and 20 40,05V
To these may be added the continuity of &, and U, since div & =0, div D=0,
but these are clearly involved in the four preceding conditions.

These equations suffice for the solution of the problem of reflection at the
surface of a magnetised mediumt.

* Cornu, C. R. xcrx. 1045 (1884).

+ Cf. Goldhammer, Wied. Ann. xLvi. 71 (1892); xvvirr. 740 (1893); nxv. 111 (1898). Drude,
ibid. xLv1. 353 (1892); ni1. 496 (1894); rxm. 687 (1897). Basset, Phil. Trans. cLXxxIL 4, 371
(1891) ; Amer. J. of Math. x1x. 60 (1897). Larmor, B. 4. Report (1893), p. 335; Proc. Lond. Math.
Soc. xxrv. 280 (1893). Leathem, Phil. Trans. cxc. A, 89 (1897). Micheli, Drude’s Ann. 1.

542 (1900).



APPENDIX I

PROPERTIES OF BESSEL'S AND STRUVE'S FUNCTIONS.

1. BesseL’s Function of the order » may be defined by the equations

1 ol =
Jn(z)= 7= mﬁ) sin®™ w cos (z cos w) dw

1 an Foss
= \/_"T Q’T(Tv:f)] S1n?" @ @208« dlgy
1 o 'l
A n—i Huru
= Jr Tt D) L] (L= ™. e . e et ),

where n is real and positive and the argument # may be any real or complex
quantity. {

Taking the first form and writing

x% cos® o

|:§—— ’

cos (z cos ) = “ (= 1)"

we obtain

1 " ® a® [~
=P MENIFS SR, - A . 2N 28
I (2) JrIT i) o 2(-1) @f sin® @ cos® wdw

1 z" ( T T'(n+$H T (s+3)
= VAT mr D Y Tars+D)
© xn+zs
O P e e ).

When 7 is not a positive integer, J_, (z) is defined by

x—n+m

(@)= 2(—1) ST (e T () (3),
and if n be a positive integer,
J_n (a:) = Lt,=0 J—(‘I‘H-!) = ('— l)n Jn (x) .................. (4‘).
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2. We have from (2)

J' 2 1 2mn+2s—1
ZP@O=2C Y et T s+ D
S (-1y RIS 3 (-1p e
= e - (s+ 1) [ (n+s) 1 -t et T ()T (n+ s+ 1)
@® xn+2a+1 "
- ""1+%(_1) st (s+ 1) T (n+s+2)
= n—1+Jn+1 ............................................................ (5)

Writing n+ 1 for n, this relation gives
20 (@) =2(n+1) Ju41 (8) — 2 nss (4)
=2(n+1) Jup (2) ~ 2 (1 + 3) Juys (@) + @1y (%)

= 2% (=) (n=- 2 T (D) & e o e s (6).
From this 1t follows that

T Ia (@)= (1) (1 2) Fasa (@)= (0 + ) S () + ..}
—(+3) {(n+4) Tnia (2) = (+ 6) T (@) + ...}
+(n +5) {(n+6) Jnts (2) — ...}
=(n+1)(n+2)Jpa(2)—2 0+ 2) (n+4)J,,+4(m).
+3(n+3) (1+6) Jasa (8) = 4 (14 4) (1 +8) Sy (@)
FPI0603505 540830 b doo? >
Similarly

(9’ Ja(@)=(n+1)(n+2) {(n+3) Jass - (n+8) Jnps + (n +T) Jpyy — ..}

-2(n+2)(n+4) {(n+5)Jn+5—(n+7)Jn+7+...}
+3@®+3)(n+6) {(n+7)Jnyr— ...}

=(n+l)(n+2)(n+3)J,,+3—3(n+9)(n+3)(n+5)Jnﬂ
+%(n+3)(n+4s)(n+7)tfn+7 13 o 3(n+AL)(n_|.5)(,,,4_9)JM9

These special results suggest the general theorem
z\" T'(n+r) I‘(n+r+1)
() 7@ = T 1)@+ e =" gy 7+ e
- (;: 4:21) : %’:”(’; :—;)2) (n+7+4) Jniris
_r(r+D(+2)T(n+r+3)
1.2.3 T (n+4)

(n+7+6) Jnirss
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Suppose that this is true for a particular value of r, then for the next
greater value

(g)rHJ”(x):EE:I;;(n-‘-T) {(n+’r+1)""+r+1_‘<n+7‘+3)Jn+r+3+__.}

_'rI—‘%n(;l;—_%%)l—)(n+r+2){(n-i—r+3)J,,+,_,Ls
—(4r+8) st} +
_TI'(n+r+1)
T T(n+1)

I'(n+r+2)
—(r+l)w (n+ 7+ 3)nyris

(" W 1) Jn+r+1

T'(n+r+2) r(r+1)
I'(n+2) 1952

F'(n+r+2
x__%_(./'.z___’-_s)_)(n+’r+4<)}(n+"r‘f;5)‘fn+r+s

+ {(r+ 1)

Fn+r+2) r(r+1)T'(n+r+2)
e o Taroy Ct7t4)

r(r+1)(r+2)T'(n+r+3) } _
t =23 Tard OO aar+N) I,

_Prnyr+1)
—'—]j_(ﬁl_)—(n+r+l)‘]n+r+l
T(n+r+2 J
_(ar'+1)——%—(%:—2))(n+r+3)J,,+,4,_3
r+1D)@r+2)T(n+r+ 3)
L, 19 P(n+3) (n+r+5)‘fn+r+b
(r+1)(7‘+2)I‘(fn+r+3)+r(r+1)(r+2)
‘{ i 427 T'(n+3) i
%(n+r+6)}(n+r+7)<f"“+,
R, ’
T(n+r+1),
=W(n+r+l)‘fn+rﬂ
P(n+r+2)
—(7‘+1)——m§)—(n+r+3)tfw+3
r+DE@r+2)T(n+r+3) 5J
D Pn 25 - £ holrlair
(r+Dr+2)(+3)T(n+r+4)
" 1.2.3 Pl e L L
ELde ;

25—2
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the form of which shows that the theorem remains true for the next greater
value of r, therefore for the value of » next succeeding and so on. But it is
true when =2, and therefore for all positive integral values of r,

(5) 7@ =Gy @+ 7)o@

+3 (Dl o D O D ot 28) s (@)D,

3. From the general expression for .J, (), we find that
a 3 L. o (2n + 23) gnt2e—1
%(w In) = 2 G 22N (s+ 1) L(n+s+1)

wm+?3—]

AR Ty v I Y e i

and
2s . x>71

0 —n
5e @I = 2( Y TG+ DT s+ D)
142 g1
2( VY om=m T s+ 1)
44 e+l
21 G T (s + T (n 15+ 2)
By performing the differentiations on the left-hand sides of these equa~-
tions, we find

— ey .. (9).

aa%b = Jpy = nae My,
and %{; =—=dpp +nad,,
” oJn
whence by addition 5 0 X T A i ogoo bty (10).
4. From the expressions in the last section, we obtain
f P T ) e A A A (105
0
fx & iy (&) d = [— &= T (2)]]
0
1
=—gJ, (.’L‘)-I-m ......... (12).

Again
f Tt an f nHJ (@) do
=dpn (w)+(n+1)f:JL;(:-v—)dw, from (il)

OEANEN £ fo To (2) do+3 f: v (@) dla; from (5),
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f (@) da = 2 (8) + (0 fax Ep

= O + 2o () + f L A
0

- 2% I .. 115, . e Mt L TR .(13).

Hence

fo fo Elae= 20sz Wl e

=2 {Jn+n+J'n+4+Jn+c+
S AREY. 10K T Yy
+ It .o

- 22% (6L LY paltls () e S obinsrs g o8 (14).
By ;;artial integration we obtain

fo,,dm ) f FHPE f ]'J,,dwz
—2 [x T T e

AL (fv Taiat 2t s Pl )] :

2
but 5 Snpoe= A, 2 A ———— (Jntas—1 + Jnest1)s
n+2s+1 &
f o (@) do = 2naS S Ty T @ e (10).

Multiplying (5) by J, we have
—J 2= Jp (Jnor + 1),
and this may be written
71 J '=Jn(In— Jan) + 22 Jnts (ntea = Intsr)

0J

=2J,— B 22 ZIr aJ"“

_aJn2+2 aJ )Y “nts .

- Ox i b

whence fx St (@) dax= 3 {J,,“ (z) + 25, St (w)} ............ (16).
0 x n 1
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Using the differential properties in § 3, we obtain
0

S (@S n s} = o (@ a2 )

ox
=x (JmJn""Jm+1Jn+1)+ (m —n) JmJn+1;
and interchanging m and n,

2 ) P
'a—‘% {‘ﬂJm.HJn} =x(JmJn = JMIJn+1)—(m = n) Jm+lJn;

Lience by subtraction
0
> {2 (T — mu1dn)} = (m = n) (Jpdni + S )
Again
O (Tudwy= 2 (amtn gm T o J,)
By O ) o o

== (ndunr+ Tnadn) + T2 T,
and therefore
8%: (& (Jnd na = Imiadn) + (m—n) TS} = (m2 —n?) J'f;j
which on integration gives that, if m #n,
1

P A S <
fo 2 o= (= miaa) i T e 0),

Consider now the special integral

x
f aJidz;
0

integrating by parts, taking « as the integrand, we have

]:zJ;dw 1 %2 I+ (20,0, da

o ?
=G I+ [ah 5 @) da

Writing n=1 in (16), we have
f I o=y T+ 20+ 203 5],

and since, as will be shown later § 6,
1 =J02+ 2J12+ 2(]22'*'

this becomes f 4 Jz‘z /= A (1S Ao ) L dBnnn ayBoanbaecod . (19).
0
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This result may be obtained directly as follows: differentiating the
product on the left-hand side of (8), we have

n 0
EJn=Jn—l"‘a_m‘Jn;

ooongm J =g J e — gt ] Bi f
2
— o w—'n+1J 2 (w—n+1J ) el w—m+2J i J
n—1 aw n—1 n am n
— i + 1+ 0 ‘2| .
gt |:8w (a1t 4o L J,,] ;
whence writing n= 1, and integrating
3 le .
[ o=y ~Jo-Js,
Jo &

since J,(0)=1, J,(0)=0.

5. Since

n-+-28
Ja(@) =2 (-1 g e

we see that the coefficient of y” in the above expression is J.(z) and
similarly the coefficient of y=™ is (—1)*J,(z) or J_n(x). Hence

T =t L =y ) A Py Gy e
Let y=cos  + ¢sin o, then
ezsine = J 4+ 9 sinw.J, +2cos 20.J; + 2esin 3w 5+ ...

and cos (2 sin @) = J, + 208 20. J, + 2 cos do. S+ ... enen (20),
sin (zsin w) =2sin o.J; +28in 3w . Jy+ ... covveereeiennn (21),
and writing 7/2 — e for o,

. cos(zcos @) =J,—2cos20.J,+ 2c08 4. S — .o oo (22),
sin (zcosw)=2cos @.J;— 205 30.J5+ .00 corniieninien (23).

Writing © =0 and & = /2 the last two equations give
cosz=oJp =23+ 2J,— et ceniiiniiiiiienieens (24),
SNz =2J7—2J54 ... e (25),

TR ] ] T e o £ ogabl ey (26).
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6. Again since

Z (y—y=1
e2? y-)=J.,+Jl.(y—y“)+J2.(y2+y‘2)+...,

we have e—g(y_”-l)=J0 - S (y—y )+ Py D +...,
and l={/i+i.(y =y D+ (P +yD+...}
x {Jo—hi. Y=y D+ (PP —y2)— }
Since this must hold for all values of y, we have
1=Jd@ 4202+ 2J2+ et vvnvrnenriiinniinnnns 2.

Also the coefficient of >+ in the product is
22 J, J2m+,,+2+( 1ym+1J2, o+ 2’y (— )T h Tan e
and since thls must be zero,
2% BTl A ey s e "% RO [P0 e R

7. Struve’s function of the order n is defined by

4 !
cos™ @ . sin (z sin w) dw. ........ (29).

2 @

Expanding sin (z sin o) in a series of powers of sin w, we have

H (z) = \/ m})( 1)3 j’sm lw.cos™ wdw

2 " ( 1y F's+HT'(n+3) o
VT 2T (n+3) % - F(2s+2)I‘(s+n+1+%)
2+l
=§(—1) A TG Il ) TrestIed) = (80).

8. From this expression for H, (z) we obtain

2n ® (n+s+%)ant
”EH"(“)=%(‘ 73 2% (s+1+3) M (n+s+1+13)

3 § (s+3)amt>
SV g TGl T s 41+ D)
© xn+2s
=%( i 22 +1+3H)M'(n+s+3)
2 4 s pad
-3 (-1) BT (s+ L (nts+1+3) 2°Wm.I'(n+1+3%)
gnteste
o ”‘“’2( Ly gl s+ 14+ D (n+s+2+3)
x’lb
Toyr.T(n+1+3%)
R A el ORI 5 O oy 1 g S (31).

Py Tn+1+3)
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9. Multiplying (30) by 2 and differentiating with respect to z, we
obtain

D oy R 1y . (k24 Do
a{p(mﬂ}.) 3 (-1) 2n+2s+1]:‘(s+1+%)11(n+8+‘1+%5
BEARRE T e ety JrEwy

and in the same way

(2s + 1) 2*
PG+1+HT(n+s+1+9)

0 2 .
a—a:,(“’—"Hﬂ) > % (=1) Qn+2s+1

© ; z*
=%(_ 1) 2n+zsI‘(s+g)‘P(n+S'i:1:%)

1 2%
= 9. I'(n+14+1%) s+ HTM(n+s+1+3%)
3 1 2 g+t
T ym.T(n+1+4) A 2m+uR (s +1+4)'(n+s+24+ %)
1 =
ToyrTm+1+3)

Differentiating the product on the left-hand side of (32), we obtain

0 n
a—an=Hn—1—;Hn

+2( 1)

wn

_H,,,_.l—%{ a1+ Hpsr — . T(n+1+3%)

} from (31)

‘,”‘73
L1 {H,,_I—Hn+1+ 2"¢7r.r(n+1+,})} .....................
As special cases of these equations we have

0 2

a%; @H) =l o H=>—H,

10. By integration of the expressions (32) and (33) we find

fzx”'“H,,. A e £ e T A FacabaoAoo s (35),
0

‘ ZR H,_, z 36
foa_:—”:‘_—x”‘1+2”"«/7r.F(N+%) ............... (36).

& 2
Thus foo.dx=xH,, f:Hldm=—Ho+;_w.
0
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11. We may write
wn

@) = G Tt

1
: f cos v (1 — v?)"* d,
Do

and sin zv (1 — o)t dy,

" :
Hn(w)=2n—1 V. L(n+3%) fo

whence

T () — —am (1 — o2y dy,

" v
I:Hn(w)': 21&—1,\/7;-_]_1(71-{-‘%)]‘0 R

Consider the integral f 2% (1 4+ w*)"* dw, where w is a complex variable

of the form u + w*. Representing u+ (v by a point in a plane, the rectangular
" coordinates of which are u and v, we see that the integral in question has
the value zero, if the path of integration be the sides of the rectangle, of
which the angular points are 0, &, h + ¢, ¢, where % is any real positive quantity.
Thus °

h f
[[emsurtdus [ e=tmn 146t appd o)
0 0
0 0
+ [l (L @t dut [ e (1 —vpoid () =0.
AR TAR : AP ¢

If now we suppose k=, the second integral vanishes, and

l [}
f e~ Y (1 o vz)n—} s =ty f oY (1 - 1(,2)1»—} du
0 0

+¢ f e 2w+ {1+ (u+ o)} du.
0

The integral on the left-hand side is 2" y/7r . I' (n + §) 2™ (J — ¢ H,), and
replacing uz by 8 on the right-hand side, we obtain

91 yJor. T'(n + §) &= (Jo, — . Hy)
% 2] © _ / 132 n—}
=0 foe ﬂk“’?) 8
4 ond gt gt (==757n) f LR m—&( = ﬁ)"_* dg.

0 2z

Expanding by the binomial theorem under the integral signs and then
integrating by the formule

f : et B#dR =T (2s+1),

f:e"’,@’"*“*dﬁ:I‘(n+s+ )
=(n+s—Hn+s—3 ... +HI(n+}),

* Lipschitz, Crelle’s J. Lvi. 189 (1859). Lord Rayleigh, Sound, 11. 153.
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we have on equating real and imaginary parts

e 2 (M- —9) (== (n*—2p)(n?— 42)
J“(“’)‘\/ﬁil_ T.o@ay * 123 20y = ‘}

X €cos (.’E =

_\/g {@2;_% e Gl ii).(gi;(%)‘i;a_ ) +} sin (a: — 2”;- £ w) ...(87),

and

2n4’+ 1 71_‘)

x’n—l

Ho (@) =570 I‘(n+§){1+(n Do
+«/%{1—(_{i2)(—(2%27)—:—%—2 }sin<—2n4+17r>

WElE -SSR e )

2 M5 %)(n %)La }

The following are special cases of interest :

J3 () = \/: sin @, J (@)= «/—cosw,

: 2 cos &
T—cosw), J_g(z)= ;;( smm——{;—),

Hy(z)= J 1+w2 \/— smw——)



APPENDIX 1I

LOMMEL’S FUNCTIONS.

1. THE infinite series
U, (y, 2)= '(5)' G 08 €1 3 g T TN - ¢ 1)

1s convergent under all circumstances, whatever y, z and » may be, for the
quotient of the (s+ 1)th term by the sth is — (y/2)*J,19s/Jy 25—, Which
vanishes for s=o. If y/z<1, it converges from the term for which » + 2s
is positive more rapidly than the geometric series Z (y/z)'+*.

The infinite series
| ) — %‘, (G )it Ty ()R S o R (2)

on the other hand is convergent if » be a positive or a negative integer (n) or
zero, because in‘that case

J—v—zs = (_ l)nJv+23;

and the ratio of two consecutive terms is the same as in the former case; but
for fractional values of v, it is divergent.

From equations (12) and (13) of Chapter VIIL, we have for values of v
less than unity and not less than 1/2,

Uv (y: z) % V_,+2 (y: Z) Tl {Uv+1 (y: Z) A V—V-H (.% Z)}
_ (5D

which gives U,(y, 2)— V_,1.(y, 2) =cos (‘% + %— v 7—;) 3

2
Usri(y, 2) = Voua (y, 2) =sin <% £ _2% Lo 7_2T> I

or since the second equation is obtained from the first by writing »+ 1 for »,
and the first from the second by writing » — 1 for », the equation

2
U,(y, 2) — V_,1.(y, 2) = cos (% + Qz:—y —v 72—r) ............... (3),

which holds between the limits —1/2 and 3/2 for v, serves to express V in
terms of U.
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Since the series U, (y, 2) is convergent whatever » may be, we may go
further and define V, (y, 2) for any value of » by the equation

V_ria(@s )= U, (g, 2) = cos (g S v%)

or E Vo (Y, 2)= U_s1a(y, 2) + cos (g TR W) ------------ (4).

Writing 22y for y we obtain

0.8, F ) o83
=T, .— Veawralp, £): bidas i (3).

If » be an integer (n) or zero, we can express V,, by the convergent series
Val 9=3 17 (%) Jou(@
P f z n+-28 St W Ef .
—(=1)2(=1) (g) T (2) =(—= 1)* U, (y, z) ...... (6);

also U,(y, 2)=(=1)"V, (§ , z) ........................ (7).

From the series for U, we have

U0y, 2) % Uia (g 2) = (%) J, (2),

2
but U,(y,2)— V_,pa(y, 2)=cos (% + 2iy —v 7—2r>

a1 Y v+2(y: Z)+ V., (y’ Z)'
. Uv (3/, Z)+ UV+2 (i’/; Z)= V—" (y’ Z)+ V—'V+2(yl Z)

- (-) M) o e e o (8)
2 0 (Jyyas(2) - Jyyas11(2)
2. Since 57 { P } = tw
we obtain from (1)
v+28
aU,,a(;/, 2)__x (- 1) (%) I ypan (2) = _§ o, P i 1 9),
and from (4)
oV, (y, z 0] 1P s el
oo
TR LI R ke S B 7 (10).

y—1
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Hence also
U, (y,2) __ 20" Upn(y,2) m=10"2U,(y, 2) 1)
oz™ Y ozm! Y el R - ’
V2 20™' V. (y,2) m—10"2V,,(y,2) 12)
Bt g 5 o v P g 2).

Now by Taylor’s theorem

Uv ) 2Uv )
00, 400G,

|2 022

calculating the successive differential coefficients by (11) and arranging the
terms we find

Uy, z+€e)=U,(y,2)+e

1/hy '
UGy 2+ =31 (@) B h it R (13),
if h=2ez+ ¢€*; in the same way
1/hy
Ty 2+ =2 (-1 (2@) L O AR (14).

By these formule we can interpolate between the tabulated values of the
functions U, and V,. The functions U,y, U,y ..., Visy, Vi, ..., may be
found by calculating U,.,, V,-, by the aid of (9) and (10) and then deducing
the others by the successive application of (8). Since the series (13), (14)
converge very rapidly, only a few terms are required.

If it be required to find the roots of U,(y,2)=0, V,(y, 2)=0, the tabular
values of these functions nearest to zero are taken, and the equations

U,(y, 2+€)=0, V,(y,z+¢€)=0

are solved for 2/(2y), and from the value of & thus determined, ¢ is calculated
by means of
e+ 2z¢ —h=0.

3. Differentiating the series (1) with respect to y, we have

BU.,(y,z)_l } IR
LD = B (1) (4 29) &) Tn @)
v+28+1

=130 () D@+ ) 230 () an@

=30, 2) 2 % @ SO RN SRS &2 [ (15),
whence we deduce
oV, (y, 2) - 2\?
Rt LANUELE (g) e S (16).
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If y be a function of 2, then

aUv(y) Z)_ aUv(y! Z) +aUv(y) Z) a_y
ges -~ - igs dy Oz

z 2
=20 )+ 4 {009+ (5) U 0} 2
let y = 2*/c, then dy/dz = 22/c, and

0 2? z 22
a_ZUv(E,Z>=EUv_I<Z’z)’

or writing y for ¢,

0 2 z /22
'a—zU-v(—y,Z)—'y'Uy.q(y—,Z) ..................... (17).
In the same way a%,V, (Zyz, z) < Vs C—;, z) ..................... (18)

4. An important case of Lommel’s functions is that in which 2=0: then
by the definition of U, we have

U, (y 0)=2 (= 1y y* [ (2) oo

2 v+28 4
=E_(’1)“Fﬂ—;ﬁ"f”>—l .................. (19).

Differentiating this equation m times with respect to y, we obtain from (15)
S To i L (G
Tpm(y, 0)=2 (- 1) 'v+2s—m+1)’
and since v — m, where v >—1 and m is zero or any positive integer, can have
any real value, we may regard (19) as defining U, (y, 0) for any index. We
may then define V,(y, 0) by the equation

Vo 0) = Unsia (9, 0) + 05 (4 /2_’) ............... (20),

and we also have

Uv (f/; O) + Uv+2 (y: 0) =_V—V (."/: 0) + V"V'l'? (.7/» 0)

In the special case of integral indices, we have
Us(y, 0)=cos}y, U,(y,0)=sin}y, U,(y, 0)=1—-cos}y,

Unn(y, 0)=(=1)" {cos ty - n}()‘_,l (- 1y %)_”} )

U3, 0= -0 in by = -2 G

U_ (.’% 0) = (=1)"cos 3y, Ui (y, 0) =(=1)*" sin 4y,
or U_n(y, 0) = cos (%y+m—72{).
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Also Vo, =1, Vuu(,0)=0 (m=0,1,2,..),
L e S
Von(y, 0)=(=1) 02(—1) e
1 - n ' (y/2)28+1
Voona(y,0)=(=1) %(—1) TR Y,

By Taylor’s theorem, we obtain

U, (y+h 0)=5 "‘_ gtef a;y’ AR ("‘/_2) U, (55 0 rnrtint (22),
V. (y+h, 0)= ]l;a Vaff/’ s (hl/_2) Vi O) v e (23),

wherein U,_,, V,,, are 'determined from (21) when two of these functlons
with indices differing by unity are known.

5. Writing =ru, we have from equation (10), Chapter VIIL, for » not
less than %,

U, (3, 9)+ Uy, 2) = 2 f : (2T, (2u) VO ... (24),
and since [(zu)y P d, ., (2u) )0 = 2_":'—1%(_11) ,
we have :
U, (y, 0)+ U, (y, 0)= 271‘?’?5 [ 01 urlevo—tiedy .. (25).

Also for v < 1, equation (ii), Chapter VIII, gives

Vi@, 2)+ iV yn(y, 2) = T f (2uyJ - (2u) V0= dy.. (26),
or writing — v+ 1 for », i

"+1 (y’ Z) + LV (3/, Z) - # 1:: { (Zu)l;"J_v (zu) ety a—ule gy,

et f (zuyJ -, (zu) W= ey du, ,..:.(27),
1

where v is now greater than zero. But

[(zuy J_, (2u)];me=2"/T'(1 - v),
Via(y, 0)+ ¢V, (9, 0) = — 2 (y/ 2)1—., = gy i—ule gy

T(-v)
1 BT
“Ta=wnl, GET AD- S (28),

if v be written for y (u*— 1)/2.
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o 3 I'(»)
N f ye+vu 5 v—1 - 7
ow — wdu @2+ oy
hence
1 ¥ ®
| /% (y, 0)+ v, (3/; O)_—mfo e YWy 1duJ’0 e~ wtiv gy

1 SCMETI L
_ITV)—F(_l——_I;).{o 1+u‘le ¥R =tdu... .. (29),

and equating real and imaginary parts

1 2 we v
P et R A N
re)rq - 2
L 6L =) 16 1+“,, ......... (30).
(L
V@ 0= g )P(1-u)f e du
In particular when » =14,
—} p—yu
1(2y, 0)= lf ulfy du
oy ST (31),
Ve 0=—1 [ Tl |

which are Gilbert’s integrals*.

Hence V} (2y, 0) is always positive, and since its first differential coefficient
V3 (2y, 0) is always negative, it decreases continuously as y increases from
the value 1/4/2 when y=0 to the value 0 for y=w. V;(2y, 0) is always
negative, and since its first differential coefficient, which is the second
differential coefficient of Vy (2y, 0), is always positive, it increases continuously
with y from the value —1/4/2 for 7 =0 to the value 0 for y=.

6- Since (Zu)%J_i (Zu) — ._1_ (ezun 4= e—zm),
N2
we have from (24) by writing =14,
Uy(y, 2)+Us(y, 2) = \/ e{iy(l u=zu}e oy 4 f gty A—1)+au}e du}
Iy LR
=e—¢z\/ f {‘7—— - u)} dl‘_*_ezz/\/——f {8— } du
where o=(y+20/(2y), 8=(y—2r/(2y).

Writing in the first integral J <3/ + u) = ¢{?, it becomes

. «/E 1 6‘7(1"42)‘d§= 6_‘2/\/ \(f ee(l—gs): d; f 2y q(1*§i)td§}
™ J 22y 2422
itk eﬂ yz ~/2y —t g
=-§—{U§(20', 0)+ ¢ U3 (20, 0)} — T fo 4 &

* Mém. couron. de PAcad. de Brux, xxx1. 1 (1862).

9
w. 26
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In the case of the second integral, when y < z, we have as in the integral
Just considered

X ;. STy ety 3 v e’ B '
: \/2#)6{ (G- du=—5 (U,(28,0) + Ty (25, 0)}
y2+2? 2z

e " (N
+ f e ¢ dt;
fE ke

on the other hand if y > 2,

€% \/?27;[1 e{s_%(s_u)z}Ldu
= «/g{f:me{“‘g G- g +£/ e (“‘3)2}‘@}

5 £ : oy L
=¢z«/; {‘sz—, =g >»dg+f0 eﬂl-cndg}

2yd
2 2 2
Y2tz 4 J;

e oy 2y g e E
= ey N e d§+—2— {U& (23, 0)+LU§ (28, O)}

Hence
Up(y, 2)+ Uy (9, 2) = F § (U3 (28, 0) + o U3 (23, 0)} e
+ 3 {U;(20,0)+ U3 (20, 0)} e ...... (32),
the upper or lower sign being taken according as y < or >z; and since

y2+22 1r)
=)t

Uy, )+ Uy D= Vs (@ )+ Vi, ) — el o 3
we obtain :
Uy, &)+ Uy (5, )=} (V3 (28, 0) + o (25, 0)] e
+3{V3(20,0)+V;(20,0)} 7%, for y<z...... (33),
and '
Vi(y, 2) +eVi(y, 2) =— 3 {V3(28, 0) + V3 (28, 0)} e
+3{V3(20,0)+:V;(20,0)} e, for y>2...... (34).

o il
Also U; (20, 0)+ U3 (20, 0)=2 '\/;r [ er(1-¢0e dt
, Jo

T
= g7, ,\/2 f/ % g*lmvﬁn d’U,
0






APPENDIX IIL

RADII OF CURVATURE OF FRESNEL'S WAVE-SURFACE.

1. LET o, and o, be the radii-vectores from the centre to the wave-
surface in the direction, of which the direction-cosines are A, u, v referred to
the principal axes of the surface, then from the equation of the surface we

have
(B2 —a2) (@ — o) N+ 02 (F — 0 (a2 — 07®) 2 + 2 (a® — 0,%) (0 — 09 12 =0,
a2 (b — o) (2 — o) M+ b2 (¢* — o) (a2 — o) p? + ¢ (a? — 0?) (B2 — 0?) ¥ =0,

whence since Nt pit =1,

we find Qoo = — b%c? (b — @) (a® — a?) (a® — o),
Qoo u? = — c2a?(¢* — a?) (> — 0y2) (B — a?),
Qoo = — ab?(a? - 1) (¢ — ov%) (¢* — o?),

where Q= (0*—¢c) (c*~a?) (a>—b?).

Hence if @, y, z be the coordinates of the extremity of the radius-vector

gy, 50 that 2 =2Ae,, y = poy, z=va,, we have

ol ;-1_2 B b262 (bé— 62) (az L 0_12) (a2 N 0_22) \
y= ;1-2 ) £ ca? ((g— a?) (bz —ay?) <b2 A 0.22) ............ (l)u
1= n) - E= D e @ - o)

o, Q

2. If now we write
o = ado, + ado, dy=bde, +bdo, dz =cdo, +cde,,
d = ado? + d'doydo, + a’da?, dy= Bdo?+ B'dode, + B7day’,
d*z = ydo? + o'doydo, + v dos’,
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and bic,—beo=A4, c¢a,—ca,=B, alba —ab, =0,
a+bitc’=E, at+bb+ae=F a?+bl+c’=0,
Aa+BB+Cy=F, Ad+BR' +Cy=F, Ad’"+BR"+Cy" =G,

V:=EG - F",
then the radii of curvature of the surface at the point (z, y, z) are given by
O p = VA =10 o L L Lt s (2).

Fp—FV, G'p-QV

3. Calculating the values of these functions for the case of the wave-
surface and writing

D = a?b%c? (af‘ /0.22 L
P =(a*—a?) (b — ay?) (¢* — avd),
Py=(a*—0s") (b*—0v’) ("~ o),
we find on reduction
E=(D+P)[P,=¢[P,, (say), F=0, G=-D/P,=g/(- Py, (s2y),
1 1
" o, PN=P,P,

7

{D*+ D (P, + o - 0,'2a* + 20+°) + a?b*c*Py}

7

ey el
B op i
F’:—--——a: :——l—-:—' , (8ay),
i oy P Ay S
G 4, {a®b*c*P, — I#} a e ekl ol (say).

" o PV=P.P, - — P—P, P,
Then the radii of curvature are given by

€9 —f™p*— N/eTq (ef +€g)p+eF=0 cconvernninn. (3),

and

07 = F2= 2 (D 40 (4= o) (¢~ o)} (D + 1 (=) (@ =)
x {D+c*(a*— a?) (B* — o)},
eg +€g= %:)I{D2 + a2 (0= a?) (¢ — o)} (D + b (¢ — o) (@ = 0?)}

x (D + ¢*(a* = o7?) (b* — o1')}

1 1
‘ {D + a2 (b*— ay?) (¢~ ov®) *D + b (c*— oa’} (@2 —0y?) _o»"

1 1
F Dre(@—ad) (b= o) = ﬁ} ’
eg=D D+ P,).
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Hence

pe_o'l'\/D(D-l-.Pl){ . 4

Dra(F-od) (@ —of) D+ B (@ —od)(@=or)

¥ 1 i
DT (@) (B—od) ‘D‘}P
D(D + P oy
{D 4 a2 (b2 ', 0'12)(02 ~] 0.12)} {D + b2 (02 — oy )(az Y 0.12)} {D + ¢? (az . 0.12)(62__ o 2)}

4, Since D and P, always have the same sign, it is clear that D and
D + P, can only vanish when ¢,®= o, = b? that is at the conical points of
the wave-surface.

To determine the values of p at these points, let o2 = b? then

1 Db?
il {D B (a*— b%) (b*— %) D} Rl )y 7 i o Rl
oD i a%c? (b* — o.?)
Db (@-t) b —c)  axc (b — o) — (e = 0 (b — ¢*) o’
the second value being zero, if o,*= b2
Again let 0,2 =b? then D = a%?(a,? — ?), and
3 _ (@4 =)t | ac(o?—b)Va 4+ 2 —oy® (@' =) (@t~ a?) _
£ ac act — a?b? — b¢? + b%oy? a’c? — a?b? — ¢ + boy?
_@+-a) _ aoloi-WVEre oy
ac a’ct — a?h? — b + ba? ’

the second value vanishing when o2 =82

. p=bor.

5. The radius of curvature can only become infinite, if
D+ad(P—a?) (=) =0, or D+b (¢~ (a*—02) =0,
or D+ ¢t (a®— o?) (B> — ) =0.
Now '
D+ a2 (b= ) (¢* — 0t) =—; {b"’c2 (a2 = o) + (b = 0?) (¢ — 0y®) 0}

_aal {

2 (b — o2) — a2 (b — &y},

and since b*—o,* and b*—y? have opposite signs, this can only be zero if
oy® = oy? = B?, the case just considered.

Similarly D+¢*(a*—a?) (B* — 6,?) =0, only if o2= o, =5
But if D+ b (c* — 0y?) (¢* — 0,2) =0, we have

i ;2@ = of) ~ ot (@ — )} =

which is possible, provided o® is greater than b
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Hence since D and D + P, are zero, only if ¢>=g2="5* we see that one
radius of curvature is infinite at points on the outer sheet of the wave-
surface, for which
e A

a?+ct— oy

Now from the equation of the wave-surface we have
a?b’c?

I S SR

whence substituting for ¢,? and remembering that

ooy’

z=Aay, Y=po, =0
are the coordinates of the extremity of the radius vector o, we find that the
points at which one radius of curvature becomes infinite are the intersections
of the outer sheet of the wave-surface and the ellipsoid
(az A bs) x + 2b2y2 5 (b2.+ 62) 22 =02 (az + 62),

and these are the circles along which the singular tangent planes touch the
surface.

The other radius of curvature at these points is

D (D + P,y o}
a4 oV D D+ P) (D +a2 (b~ o) (¢~ o)} {D +¢*(a* — o7) (b — ay’)}

o) (az =i 0.12) (02 il 0'12) b
@=¥)@=0)

6. To find the umbilics we have
(€9 — P (p—p'y=eg (g —€g) + 4eaf "},
which gives

D{D+a*(*-a) (- ) {D +b*(¢* - o%) (a* — a’)}?
x {D+c*(a?—ay?) (B~ o) (p = )’
= o3(D+ P) [{a“b”c* (D + P,y — D* (01¢3a? — 20,9

[
—4D(D+P) a‘b‘c‘% PXP,] ............ (5).

Now P, P, is never positive, and D, D + P, only vanish when ¢, =0,'= b,
a case already discussed: hence the conditions for an umbilic are
P,P,=0 and ad¢*(D+ P)y=D{(a®+b+c) o'~ 205}
But if P, =0, the second condition becomes
D2 {a?be? — (a2 + b2+ ¢*) o' + 20,8} =0,
and abict — (a? + b* + ¢°) oy + 207°
= P, + (b + ¢a? + a®b?) oy* — 2 (& + b* + ¢) oy + 3o°
4P

R
! doy?

=P,
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The second condition therefore gives that dP,/doy*=0 or that P,=0 has
equal roots, which is impossible,

If P,=0, we have

D+P, =D+ P, — Pg———a_:z{ P, + (@ + b + ¢®) 0y%05* — 0y'0 — o0y}

2
= o, (0.12 I 0.22) (aa + 04— ol — 0.22)’
and the second condition gives that
0.24 (aa i b2 + ¢ — 0.12 - 0.22)2 = azbzcz (a2 L b2 + ¢ — 20.12)’
whence

a2+b2+62—a’f"—o-.,‘-':a%zc?{l+\/1_ M X e 20’2
2 T e |

Now if P,=0, o,* can have either of the three values a2, b2, ¢*:
(a) if o= a? then
a? e b2 L 02 -y 0.12 "y 0.22 — bz L 02 [N 0.12 > a2b?c2/a“;

hence the upper sign must be taken and

0.!2_b2+cz___ {1_*_«/1 b2+c2_a2}

=(—11—2{a2b2+cva2_ba(c,\/az_bg_b,\/ag_cg)};

(b) if o2=10? then
a?b’c® — ot (@® + U* + ¢ — 20,°) = b? (a* — b?) (¢ — b?) < O,
and ¢,? is imaginary ;
(¢) if o2=¢? then
G+ +— o — o =a*+ 0 — o’ < @ ct;

hence the lower sign must be taken and

252 2 2 . 2
RPN Y P2

=%2 bt —avb—c(a Vb= — bVa* = cY).

Neither of the values thus determined makes the coefficient of (p — p’)?
vanish, and thus there are real umbilics when and only when

=%{a2b2+cv“2_bg(c“/lf—b”—b'\/a?—cz)}: ol = a?

and {bﬁm_a'\/bﬁ—Gz(aﬂ/b’—-cﬁ—b\/aﬁ—cz)} En=

that is, the real umbilics are in the elliptic sections of the wave-surface made
by the planes of yz and zy respectively.
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Since at an umbilic e —eg=0, f'=0,
we have,

g_¢_x_D+abe)(D+P)—o(@+b+c— 2012)1)
e o (D+ P)

and the radius of curvature at an umbilic is

<Q

. =%~@(e'y+eg’>_ﬁé_§
P elgl e X
e 01(D+P1)'\/D(D+P1)
D+ o) (D + Py)) — o (@ + b*+ 2 =202 D

But since P,=0 we have

D+ P =0 (o~ 0y) (@ + b0+ ¢ — o — o),
(D + ab%®) (D + Py) — oyt (a* + b* + ¢* — 20,°) D

2

= a*bc? Z_lﬂ 0.12 (0‘12 — 0.22) (aa == b + ¢t — 0.12 = 0.22)
2
B gl — g
— atathic? SeTE (@ + b+ ¢ — 20,
2

4
= a2 %:_2 (0 — a2)2
Hence = {blc (B + =0 =) i, (7).

7. Let w, and o, be the radii-vectores from the centre to the surface of
wave-quickness in the direction given by the cosines [, m, n; then from the
equation to the surface

(b2 - o) (02 —o)l+(C—w ) (a— “’12) m* + (a2 - o) (b*— w’)n= 0,
(0*— 0?) (¢ — ) P+ (¢* — @y’) (a® — o, 2)m + (a2 — 02) (B* — 0f) v’ =

whence since & + m? + n* =1, we find

I=-— lf"Q_ (a’2 — o) (a'2 3 a’zz) mE=— c:"%g“ (b2 = wlg) (b2 - ("22)}
nt=— (ié b (c¢— %) (02 — ) b
Writing now
1 {7 m? n? — g
—_——= —= 2 b2
e (az iy mf)“’ 3 (bz = w12)2 (c 2)2 ( a =) w12
- ; L i Ut ] UL ),
1

where Pr=(0F — 02) (1 = @) (= @%)ueeervernnneenneens (10),
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we have for the coordinates (z, y, z) of the point at which the plane

lz +my+nz=o,
touches the wave-surface

P v 1 = F: m o JiEd =

-_— ) = —— ———— -_— Wy = — — W = — —— ——
1T enat=w Y g w, b* — w,*’ E ®, C*— w®

whence 3 e o Bl DB A AR N R 0 s stidodonon (11).

Now from the equation of the wave-surface

ab?c?

o202 =
YO AN 4 bl + o
a2b2c2 2 2 2 2 2 2 ’ 2 2 2 2
= {(* = o) N+ (1* — 02) pu* + (¢ — o) V¥ + 0} o?;
a? — o,? LN, ;|
but Aoy =2z =lw, -, ——, and two similar equations,
a’®— w,®

whence

b2 —¢? aﬁ—-w2

Ao 2= — w? (a2 — o2)? 0 voap and two similar equations,

22
a,b62=w12 o o 1 S (b= ¢?) (a? — w2)(a2_0.12)}
)} Q

=2 (@ + b+ ¢ - o — 0?),
and we obtain after some transformations

atbrer T - (fb?c2 e Y Vi Pl,

2

or D= % P s seveir deaer S (12).
Again we have

ey bzc2 (bz b= 02) (az ey 0.12) (az o 0.22) - Qd'f 7\'20.12

a? iy 2
= — o2 (B — %) a—“"—jgl’ (a*— a2,
1

: at— a2 at— w2
. b? v a'} = 0w’ s w; .

and two similar equations; whence

P, P

afhitt 35 = SRS Ty . vy ben s inotactgenden] 13),

Pl fw, I (13)

where Pa= (a7 = @) (b= 0%) (P — @2)eevreninnernninnnnen. (14).
8. Writing then k=2 =M@= 0d)

F? ;)
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we have D=kP,, o= (1 + %) w2,
a P

D+a* (= o) (¢ — o) =D + - _(1+k)P,““"*
gy

=(1+’€)Pn—z_la,:rflw—z/;;’

b —w?
]b2 —w’/k’

D+ b2 (¢t — o) (2 — o) = (1+Ic)P1 “’* =(1+k)P

D+c(a*— o) (B*—0?)=

C—'(A) ¢ — w?
2—a—i7=(1+k)le——_—-la)lz/k’

and substituting these expressions in (4), we obtain
pa_{azfalz bz—a,’+c2—alﬂ_1+k} B

wp+ —ow?=0
a2 — b2_w12 c®— @, k 1P oy 1 ’

or
( 2 2 2 P
N 2___1’1_(1 g w_.> 21 e
{ 0)14((012 T (022) Ry piapar — Wy g ¥ bz—ﬂ)12+ ct— w12 SE A Yo = .

We thus find
@ (0" — 0?) (p+ p') = 0 (@ + B* + ¢ — 2007?) — a?b*c*...... (16),
and from (5) we obtain
@ (@02 — 02 (p — p')P = [(@02 — 0?) {ab* — ! (a2 + b* + ¢ — 202)] + 2pi’]
=40 PPy e ).
9. The conditions for an umbilic are
{a?%? — 0! (a* + U + & — 20,)} (0° — @) + 2Py =0,
and Pp.=0
whence proceeding as in § 6, we find that the real umbilics are given by
o {be + (@ =) (@ = )} =a%he, w!=a?
o {ab—V (@t — &) (F* — )} =abe}, wi=¢ }
Since p, = 0 the first condition for an umbilic gives
(a6 — w* (a2 + b* + ¢ — 200} (@ — ) + 2pre0y’
= (o — @) {wi‘ (a2 + b* + ¢ — 20,%) — a'b*¢® — 207b*C %2;—7&2?} = (1]}
whence the radius of curvature at an umbilic is

25,202
Y AL o0 rd Ko s (19).

o w;?
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tals 189, the connection between optical
properties and forms of crystals 189, the
rings and brushes of crystalline plates 262

Bruns, E. H., on diffraction with a sector of a
cirele 127

Chaulnes, Due de, on the refractive index of a
plate 225

Christiansen, Chr., investigates anomalous dis-
persion 337

Chromatic polarisation 262; not seen with
very thin or with thick plates 272

Compensator, Babinet’s 312; Biot’s 315
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Cornu, M. A., his analyser 306 ; on the achro-
matic band in Fresnel’s experiment 348 ;
on the surface of wave-quickness in mag-
netically active media 384

Cotton, A., his statcment of Kirchhofi’s prin-
ciple 337

Crystals, connection between form and optical
properties 189 ; umniaxal 190-194; biaxal
195-224 ; positive and negative 192, 201,
291 ; differential equations and boundary
conditions for 251; absorbing 319-329;
active 344-369

Differential equations of the polarisation-
vector, for absorbing media 319; for
crystals 251 ; for ponderable bodies 338;
for free ether 77, finite solution of, on a
simple plane 156, on a Riemann’s surface
157; for active media (structurally) 357,
(magnetically) 383

Diffraction, general expression for 96; import-
ance in theory of instruments 99; distinc-
tion between Fraunhofer’s and Fresnel’s
96 ; Sommerfeld’s investigation of 153-
163 ; with a half-plane, perfectly black 159,
perfectly reflecting 162

, Fraunhofer’s, its general properties

99 ; with a number of apertures 100; with

a rectangular aperture 103 ; with two rect-

angular apertures 106,109 ; with a cireular

aperture 123, when the source is, linear

124, two luminous lines 126, an area with

straight edge 127 ; with a sector of a circle

127; with an heliometer-objective 128

See also Grating.

, Fresnel’'s, with a rectangular aper-
ture 133 ; with a rectangular obstacle 136;
with an infinite half-plane 139; with a
biprism 142 ; with a circular, aperture 147,
dise 151

Dispersion, absent in free ether 336; how
explained 336 ; its law in transparent iso-
tropic bodies 339 ; anomalous, its discovery
337, its geometrical representation 341,
Kundt’s law 337, how investigated 341-343

Doppler, Chr., on the effect of convection on
radiant periods 19

Double Refraction, in uniaxal crystals, dis-
covered by Bartholinus 188, investigated
by Huygens 188, by Malus 189, by Wol-
laston 189; in biaxal crystals, discovered
by Brewster 189, investigated by Fresnel
195, 196 ; of vapours in a magnetic field
376, 382

Drude, P., his methad, of investigating metallic
reflection 333, of measuring the optical
constants of metals 333, 334

Du Bois, H., on magneto-optic rotation in
magnetic metals 371

Egoroff, N. G., and N. Géorgiewsky, their ex-
periments on the Zeeman effect 375
Ellipsoid, of polarisation 196, 208 ; reciprocal
196, 217 x

Elliptic polarisation 27; produced by reflection
183; test for 807 ; represented geometric-
ally 308-311; its study 312-317

Emission-theory 1

Energy, methods of its transport 1; of lumin-
ous disturbance, expression for 178, 251;
its flow along a ray 251

Fmg?g, M., discovers magneto-optic rotation

Fermat, P., his law of least time 3

Fizeau, H. L., determines the velocity of light 1;
group-velocity given by his method 81; on
the complex radiation from soda-flames 71

- and J. B. L. Foucault, on interference
with large difference of phase 41

Focl of lines, with an anisotropic plate 225 ;
;;gh uniaxal plates 227 ; with biaxal plates

Foucault, J. B. L., determines the velocity of
light 1; consideration of his method 81

Fraunhofer, J., his diffraction phenomena 96,
99-129; his lines, and Kirchhoff’s law 337,
explained by Stokes 337

Fresnel, A., recognition of the wave-theory due
to 2; his simplification of the study of
wave-propagation 3; his diffraction phe-
nomena 97, 130-152; his investigation of
double refraction 195; his warve-surface
206 ; his laws do not hold for absorbing
media 322, unless the absorption is slight
323; on theé interference of polarised light
25, his laws of the phenomenon 263, their
experimental proof 264; his explanation of
rotary polarisation 346, experiments in
support of it 346-348 ; his mirrors 39-41;
his biprism 42-44

Gouy, L. G., his theory of active media 351
Grating, simple 102; plane raled 112, 115;
ghosts produced by periodic spacing 116 ;
curved ruled 119; the echelon 113
Group-velocity 81

Haldinger, W., his fringes 65; their localisa-
tion 65

Hamilton, Sir W., his constrnction for reflected
and refracted waves 5; discovers the
conical refractions 223

Herschel, Sir W., his bands 65 ; their achro-
matism 66

Huygens, Chr., expounds the wave-theory 2;
his principle 2, its analytical expression
84, defect in its application 153 ; his con-
struction for reflected and refracted waves
4; his discovery of polarisation 20, 189;
his investigation of double refraction 188 ;
his wave-surface 188

Iceland spar, form of crystals 20

Intensity of light, its measure 24

Interference, its analytical expression 20;
condition, for no 26, for perfect 28; of
polarised light 25, 263-267, itslaws 263

Interference fringes, from two correlated
sources 34 ; shift produced by a plate 35,
51; their visibility 37; limit imposed by
molecular motion 37; spectroscopic analy-
sis of 88, 39 ; necessity for an initial single
source 39; with Fresnel’s mirrors 40, 41,



414

Index

The numbers refer to pages.

effect of moving one mirror 41 ; with high
relative retardation 41; with the biprism
42-44 ; with the divided lens 44; with
Lloyd’s mirror 48 ; effect, of extending the
source 45-47, 49, of the orientation of
the slit 47, 49; abnormal shift, by a
prism 50, by a plate 51; achromatism 50 ;
achromatic system 51-53 ; lateral systems
in experiment on rotary polarisation 348

Interference by absorbing crystalline plates
326-329

by ecrystalline plates, caleulation of
the intensity 268 ;' of the retardation 269,
276 ; its localisation 270 ; with white light
268, 271, 286; in parallel light 271;
curves of constant intensity 274, 275, 282;
curves of constant retardation 274, 275,
with uniaxzal plates 281, with biaxal plates
283-286; lines of like polarisation 274,
275, 279, with uniaxal plates 280, 281,
with biaxal plates 283-286; achromatic
lines 275, isochromatic curves 275 ; with
light eircularly polarised or analysed 290 ;
with light circularly polarised and analysed
292 ; with light elliptically polarised and
analysed 292 ; with two plates superposed,
in parallel light 272, in convergent light
293 ; Savart’s plate 294; twin uniaxal
plate 295-299 ¥

——— by isotropic plates, its localisation 54,
57, 64; effect of introducing a slit 57;
condition of distinctness with extended
source 56; Haidinger’s fringes 65; Her-
schel’s bands 66; wedge-shaped film 67 ;
Newton’s rings 68

with plates of quartz 361-369

Jamin, J. C., his investigations on elliptic
polarisation by reflection 183 ; on positive,
negative and neutral reflection 183 ; on
metallic reflection 332

Jellett, J. H., his analyser 306

Kelvin, Lord, on the explanations of dispersion
336

Kerr, J., on reflection from the pole of a mag-
net 372

Kirchhoff, G. R., on Fraunhofer’s lines 337 ; his
principle employed for the study of the
Zeeman effect 375

EKundt, A., his metallic prisms 334; his experi-
ments on anomalous dispersion 337, 341;
his law 337

Leroux, F.P,,discovers anomalous dispersion 337

Light, definition of monochromatic 17; com-
plex character of, from natural sources 18,
19; nature of, transmitted through a
rotating plate of crystal 32; distinetion
between different types 317

, common, its fundamental property 21 ;
not absolutely monochromatic 28; ana-
lytical conditions for 29 ; equivalence to
two oppositely polarised streams 30

Light-vector, 162, 164, 165

Lloyd, H., his mirror experiment 48; on conical
refractions 223

Localisation of interferemce, with isotropic
plates 54, 57 ; in the case, of Haidinger’s
fringes 65, of a wedge-shaped film 68, of
Newton’s rings 69 ; with crystalline plates
270; with Babinet’s compensator 312

Lommel, E. C. J., on Fresnel’s diffraction phe-
nomena 130-152; properties of his fune-
tions 396-403

Macaluso, D., and O. M. Corbino, on the
Zeeman effect 375

MacCullagh, J., his uniradial directions 255

Mach, E., on the interference of polarised light
265 ; on investigating anomalous disper-
sion, by interference 342, by total retlec-
tion 342

Magnetéo-opt.ic effect, represented by a vector
37

Magneto-optic rotation, its discovery 370; its
characteristics 370 ; its laws 371; in mag-
netic metals 371; important at critical
frequencies 375, 378 ; within the region of
absorption 379

Maliard, E., his theory of active media 353-356

Malus, E. L., discavers polarisation by reflection
169 ; his definition of the plane of polari-
sation 169, 189; investigates double re-
fraction 189 ; on the effect of a plate of
crystal on polarised light 262

Metals, their optical constants 334; their
anomalous dispersion 335

Michelson, A. A., his interferometer 16, 74 ;
his measure of visibility of fringes 37, 46;
on the analysis of radiations 74; on the
resolution of double sources 107 ; his
echelon grating 112

Newton, Sir I., on the emission-theory 1; re-
cognises the periodicity of light 16 ; his
rings 68, their achromatism 69, formation
of their central spot beyond the eritical
angle 180

Nicol, W., his polarising prism 301; its econ-
struction to give a maximum symmetrieal
field 303

Oppositely polarised streams, defined 27

Optic axes 189, 195; their directions 198 ; their
dispersion 286, 287

Optic axis, of Iceland spar 20, 188 ; of uniaxal
plate parallel to the axis, how determined
228, 283

Phase, its variation along a ray 93; change of,
produced, by ordinary reflection 60, 182,
by total reflection 176

Pile, of plates, as a polariser 171, 300 ; inten-
sity of reflected and transmitted light 171 ;
perfectly transparent 173 ; degree of po-
larisation of transmitted light 173

Plate, refraction through 6 ; determination of
the waves' within 7; intensity of reflected
and transmitted light, with thin 58-61,
with thick 61 ; reflection and refraction of
unhomogeneous waves with 178-180 ; foci
of lines seen through 225-230

See also under Interference.
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Polarisation, fundamental experiment of 21 ;
its analytical expression 22 ; right- and
left-handed 22; plane 26 ; elliptic 27;
circular 27; partial, its analytical condi-
tions 31; plane of 21, 169, 189 ; by reflec-
tion 169; by a pile of plates 171, 300, its
degree 174

Polarisation-vector 22; symbolical expression
for 23; transverse to the direction of
propagation 26 ; its differential equations,
in absorbing media 319, in active media
(structurally) 357, (magnetically) 383, in
crystals 251, in free ether 77, in ponder-
able bodies 338

Polarised light, direction of vibrations in
169, n.

Polarisers, defined 262, n.; types of 301-305 ;
elliptic, their character 292

Polarising angle, of isotropic media 169 ; of
crystalline media 256 ; of uniaxal erystals
for reflection in a principal plane 257

Polarising prisms, Rochon’s 301; Senarmont’s
301; Wollaston's 301; Nicol's 301-304 ;
Sang’s 304

Positive and negative crystals, uniaxal 192;
biaxal 201; how distinguished 291

Positive, negative and neutral reflection 183

Potter, R., on abnormal shift of fringes 51

Principal plane 20

Prisms, refraction through, direct 8, oblique
11; equation of the wave within 13 ; Uni-
axal 230, minimum deviation with 232;
Biaxal 234, minimum deviation with 238 ;
metallic, made by Kundt 334

See also under Polarising prisms.

Quarter-wave plate 288 ; its employment, when
perfect 315, when imperfect 316

Ray, defined 3 ; its experimental determination
14, 15; angle between it and the wave-
normal, in uniaxal erystals 192, in biaxal
crystals 208, 218; its significance in
erystals 251

Ray-axes 217

Ray-velocity 3; in uniaxal erystals 191; in
biaxal crystals 217 I

Rayleigh, Lord, on radiations from natural
sources 18 ; on limit to interference caused
by motion of the source 37; on the roots
of tanu=u 46; on achromatism of inter-
ference 50, 69; on an achromatic system
51; on resolving power, of a prism 104,
of a grating 113; on the image of a
luminous line in a telescope 124; on re-
flection, at a twin surface 257, from a
laminated medium 261; on iridescent
crystals 261

Reciprocal line 208, 217

Reflection, conditions for perfect 161 ; total, at
an isotropic surface 175; at a crystalline
surface 7, 242-249

Reflection and Refraction, crystalline, general
formule 252-256; with uniaxal crystals
256, 257 ; at a twin surface 257-260

, isotropie, its geometrical laws 165 ; of

unhomogeneous waves 166; of homogene-
ous waves 167; of common light 168;
rotation of the plane of polarisation by
170; elliptic polarisation by 182 effect of
a transition-layer on 184; at a pile of
plates 171; at a thin plate 179

Reflection and Refraction, metallic, its geo-
metrical laws 329 ; its theory 331, 332;
experimental investigations of 333 ; isola-
tion of long waves by 335

Resolution of double sources 107

Resolving power 104; of a prism 105; of a
ruled grating 113; of the echelon grating
114; of a telescope 126

Retardation, relative, produced by a plate 58,
by a thin film 62, by a crystalline plate
269, 276

Reusch, F. E., on combinations of plates of
mica 353

Reversion, principle of 58

Righi, A., on Fresnel’s experiment of rotary
polarisation 349

Rochon, A. M. de, his polarising prism 301

Romer, 0., determines the velocity of light 1;
his method gives the group-velocity 81

Rotary Polarisation, its discovery by Arago
344; Biot’s laws of 344 ; Fresnel’s expla-
nation of 345, the experimental proofs
insufficient 347, 349 ; Airy’s generalisation
349

See also Active media.

sang, E., his polarising prism 304

Savart, F., his plate 294 ; his analyser 305

Senarmont, H. H. de, his polarising prism 301

Shadows, laws of geometrical 90

Slit in interference experiments, its admissible
width and orientation 45-47, 49 ; localisa-
tion of fringes destroyed by 57 ; in general
necessary for visibility 57, 68

Smith, Archibald, his determination of the
wave-surface 206

Snell, W., his law of refraction 169

Spectroscopic analysis of interference 38, 39,
41, 47

Stokes, Sir G. G., his principle of reversion 58;
his law of the secondary disturbance 87;
on the integration of intensity in diffrac-
tion 124 ; ou a pile of plates 171; on the
central spot of Newton’s rings 180; on the
evidential value of conical refractions 223;
on the foci of lines seen through a plate
225; on iridescent crystals 261; on select-
ive absorption 337

Struve, H., on the telescopic image of a line
124 ; on the heliometer objective 127; his
functions 392-395

Talbot, W. H. Fox, his bands 110; discovers
anomalous dispersion 337

Total Reflection 7; limiting cones of 8; with
isotropic media 175, the refracted waves
in this case 177, their source of energy
178; with uniaxal crystals 243 ; with bi-
axal crystals 245; experimental methods
of 242

Tourmaline, its polarising action 300
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Transition-layer, produces elliptic polarisation
186; its thickness 187

Uniaxal crystals, their wave-surface 190, sur-
face of wave-quickness 191, of wave-
slowness 192 ; angle between ray and wave-
normal in 192; determination of rays and
waves and their polarisation in 193

Uniradial directions 255, 256

Vector, stream of light represented by 22; °

to represent the action, of molecules 338,
of a magnetic field 376

Verdet, E., his constant defined 371

Visibility of fringes, its measure 37; its ex-
pression in the case of, Fresnel’s mirrors
&c. 46, of Lloyd’s mirror 49, of complex
sources 71-73; analysis of radiations by
73-76; resolution of double sources by
108

Wave, line of, replaced by an ellipse 11

Waves, periodicity of luminous 17; unhomo-
geneous 78; propagation of singularities
of 79; velocity of a group of 81

Wave-quickness, surface of, defined 3; its ex-
perimental determination 8, from a central
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section indeterminate 286; in uniaxal
erystals 191; in biaxal erystals 202 ; in
active media 359 ; in isotropic magnetie-
ally active media 384

Wave-glowness, defined 5; surface of, defined 5,
il(m) uniaxal crystals 193, in biaxal crystals
203

Wave-surface, defined 2; in uniaxal crystals
188, 190 ; in biaxal crystals 207, its curva-

. ture 404411, its umbilics 407, 411

Wave-theory 2

Wave-velocity 3; in uniaxal crystals 192; in
biaxal crystals 197, 200; in active media
359 ; its dependence on period 339

Wernicke, C. W., investigates metalli reflec-
tion 333

Wollaston, W. H., his polarising prism 301;
investigates double refraction 189

Young, Th., suggests a wave-surface for biaxal
crystals 195 ; his explanation of chromatic
polarisation 263

Zeeman, P., his magneto-optic effect 873; its
kinematical explanation 873; its investi-
gation by absorption 375; analytical in-
vestigation 376-382
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