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PREFACED UNIVERSITY

IN
the following pages an attempt is made to give an account of physical

optics without having recourse to any hypothesis respecting the nature

of the influence that constitutes light or the character of the medium in

which it is propagated. From a few simple experimental facts it is shown

that a stream of light may be represented by a periodically varying vector

transverse to the direction of the beam, and on this result, with an appeal

where necessary to experimental facts, the treatment of the subject is based.

An abstract wave-theory cannot of course satisfy our requirements or be

regarded as the last word of science on physical optics; but as it is the

touchstone on which optical theories are tried, a thorough knowledge of its

teachings is essential as a preparation for penetrating below the surface of

ascertained facts into the domain of hypothesis. No one optical theory can

at present be said to hold the field so completely as to render a consideration

of others unnecessary, and so long as that is the case, much that is of value

in preparing the ground for a solution of the problem may be learned from

the various attempts that have been made to apply methods of ethereal

physics to the explanation of the phenomena of light. The introduction

of the salient points of these endeavours would have had the effect of

veiling by wealth of material the main purpose of the book.

As the object kept in view has been to give an account of the analytical

development of the wave-theory that might serve as an introduction to the

study of higher optics, experimental methods and results have been intro-

duced only with a sparing hand. Ample information on the descriptive side

of the subject is to be found in books readily accessible to students, and it

is for those that have already made an acquaintance with physical optics

that the present work is intended. A detailed knowledge of instruments

and of experimental methods can only be acquired in a physical laboratory.
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UNIVERSITY
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CHAPTER I.

GEOMETRICAL PROPOSITIONS OF THE WAVE THEORY.

1. THE science of Physical Optics may be regarded as comprising two

fields of enquiry ;
the one includes the study of the physical properties of a

stream of light, the other comprehends the investigation of the mechanism

by means of which the stream is propagated. These two divisions may be

termed respectively the kinematics and the dynamics of the subject.

The fundamental property of light, that forms the basis of physical optics,

is its progressive movement. The fact that light travels through space with

a finite, though very great velocity, was first deduced by Rb'mer in 1676 from

observations of the eclipses of Jupiter's satellites; it afforded Bradley in 1728

the explanation of astronomical aberration
;
and it was directly demonstrated

by the experiments of Fizeau in 1849 and of Foucault in 1850. That it is

energy that is radiated from a luminous body and is perceived by the eye as

light is shown by the phenomena associated with a stream of light and by a

consideration of the nature of the sources from which it is emitted. Now

energy can be transmitted through space in either of two mo'des by the

transport of matter connected with the energy or by means of waves. Each

of these methods of the transference of energy has in turn been applied to

the explanation of the propagation of light.

The emission or corpuscular theory, adopted and expounded by Newton,
attributes the sensation of light to the impact on the retina of particles

ejected from a luminous body by the vibratory motions of its parts. The

particles, according to Newton, must be assumed to be capable of exciting

vibrations in an "setherial medium" and it is to the waves thus set up that

he ascribes the mutual dependence of reflection and refraction : he further

suggests that the "bignesses
"

of the vibrations started by the corpuscles

depend upon the colour or refrangibility of the light. Thus Newton to a

certain extent adopted some of the features of the wave-theory, but it is to

be noted that according to him the waves are the effect and not the cause of

light. That these waves are not an essential adjunct of the emission theory

has been shown by Boscovich and also by Biot, to whom several brilliant

extensions of the theory are due. As thus developed, however, the emission

theory is lacking in simplicity, and overcrowded with hypotheses ;
moreover

w. 1
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it contradicts the facts in an important particular, for it leads to the result

that the propagational speed of light is greater in a dense medium, such as

water, than it is in air, whereas direct experiments show that the reverse

is the case.

The wave-theory, based on the second mode of the transport of energy,

was first presented in an intelligible form by Huygens, but owes its recog-

nition to the work of Fresnel. This theory regards light as consisting in

vibrations of or in a medium, that is supposed to fill interstellar space and to

pervade all ponderable media. When however we enquire into the character

of the vibrations and the properties of the medium, we find that the wave-

theory has assumed different forms : according to the dynamical theories the

vibrations are assimilated to those of a medium, that has either intrinsic

rigidity, or a quasi-rigidity imparted to it gyrostatically ;
while the electro-

magnetic theory applies to the problem the equations of an electromagnetic

field and regards the ether as a dielectric medium subject to a rapidly

periodic electric displacement. These two forms of the wave-theory must be

regarded as distinct, until it is possible to form a conception of an ether that

is competent to coordinate optical and electrical phenomena: on the other

hand the explanation of the physical properties of a stream of light is

independent of the particular idea that we may formulate respecting the

nature of the vibrations in a train of luminous waves.

2. We owe to Huygens a very important principle, according to which

the direction of propagation of a luminous disturbance within or at the

confines of homogeneous media is made to depend upon the form and the

orientation of a certain surface characteristic of each medium. This surface,

which is called "the Wave-surface," is the locus of the points to which a

disturbance emanating from a luminous point travels in unit time: in ordinary

isotropic media it is a sphere ;
it is a double surface or a surface of two sheets

in media such that in general two disturbances can be propagated in any
direction with different speeds ;

and so on.

Fig. 1.

Huygens' principle, which follows at once from that of the superposition

of small disturbances, lies at the very basis of the wave-theory and consists

in this : that each of the points of a wave W may be regarded as a centre of
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disturbance, the wave at any subsequent time t being the envelope of secondary
waves of form characteristic of the medium and proper to the wave TF,

described round the points of W as centres with dimensions corresponding to

the time t.

It follows from this that the surfaces W and W are so related that to a

point P on the former there corresponds a point R on the latter, at which it

is touched by the secondary wave that emanates from P, and it is clear that

the time required for the disturbance to traverse all lines joining corre-

sponding points is the same, being that in which the wave travels from W to

W, and that this time is less than that in which it would traverse any other

line connecting the surfaces; for any other line such as PR' cuts the secondary
wave described round P in some point Q and the time along PQ is equal to

that along PR.

Hence denning a ray as a line joining corresponding points on a wave in

its successive positions, we arrive at Format's law that the time in which a

disturbance is propagated along the rays from a wave-surface to its position

at any subsequent time is the same and less than for any other path. This

is expressed by saying that a ray is the course of earliest arrival*.

Fresnel introduced an important simplification into the study of the

propagation of waves by recognising that, since a surface may be regarded
as the envelope of its tangent planes, we may substitute for a wave of any
form a system of plane waves coincident with the tangent planes of the wave-

front at the given time. If now we consider a plane wave that touches the

wave-front W at the point P, it follows from Huygens' principle that after a

lapse of time t this wave will coincide with the tangent plane to the new

position of the wave W at the point R, and it becomes necessary to distinguish

between the ray-velocity er with which the disturbance traverses the ray and

the wave-velocity w with which the corresponding plane wave advances in the

direction of its normal. These velocities are connected by the relation

< = <r cos (NR)

where (NR) denotes the angle between the normal and the ray.

Another surface that is of fundamental importance in the study of waves

of light is the pedal of the wave-surface. The physical significance of this

surface arises from its being formed by the assemblage of points, that are

obtained by taking on every radius-vector through some point a distance

equal to the velocity of the plane wave that has its normal in this direction.

It may therefore be called
" the surface of wave-quickness."

* The ray is only a course of earliest arrival " for paths from P up to all points P' such that

the successive wave-fronts between P and P' belonging to a radiant disturbance maintained at P
do not develope any singularity along the course of the ray." Larmor, Miher and Matter, pp. 32

and 276.

12
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3. Huygens' principle is of itself insufficient for the explanation of all

the questions that arise in connection with the propagation of light, and the

determination of its analytical expression, as well as the justification for its

employment, must be reserved for future consideration. In the mean time

however it will be convenient to consider it in its geometrical aspect for

the purpose of obtaining some results that will be of service to us in the

sequel.

When a wave meets the interface of two homogeneous media that have

different optical properties, the waves in each medium at any subsequent
time are by Huygens' principle the envelopes of the secondary waves charac-

teristic of that medium, described in it round the points of the interface with

dimensions corresponding to the time that elapses between the passage of the

incident wave through these points and the instant under consideration.

In accordance with the simplification introduced by Fresnel, these reflected

and refracted waves may be regarded as the envelopes of those that result

from a system of plane waves, coincident with the tangent planes of the

incident wave, and each reflected or refracted at a plane surface, separating

two media identical with the given media and coincident with the tangent

plane to the actual interface at the point, in which it is met by the corre-

sponding ray of the incident wave. The problem is thus reduced to the

consideration of the reflection and refraction of a plane wave at a plane

surface, and in this case it is readily seen that the reflected and refracted

waves are themselves also plane.

Now if the incident wave cut the interface of the media at times T and

T + t in the lines / and /', the reflected and refracted waves at time T+t
must by Huygens' principle pass through /' and also touch the wave-surfaces

Fig. 2.

$!, $2 of the two media, described round any point of 7 with dimensions

corresponding to the time t, and the position of the line /' is determined by
the fact that if the second medium be identical with the first, the wave at
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time T+t would coincide with the tangent plane through /' to that sheet

of $j which corresponds to the incident wave.

Hence we have the following construction : round any point of the

line in which the incident wave cuts the interface at time T, describe the

wave-surfaces <S\, 2̂ characteristic of the media with dimensions corresponding
to unit time : draw in the second medium a plane parallel to the incident

wave to touch the corresponding sheet of S1} and through the line in which

this plane cuts the interface draw in the first medium tangent planes to the

sheets of Sl and in the second medium tangent planes to the sheets of $2 .

These tangent planes represent respectively the reflected and the refracted

waves : the vectors from to the points of contact of the tangent planes to

the wave-surfaces give the reflected and the refracted rays and the corre-

sponding ray-velocities: the perpendiculars from on the tangent planes give
the wave-velocities.

It thus follows that the normals to the incident, the reflected and the

refracted waves at any point of the interface separating two media lie in a

plane perpendicular to this surface, and since the waves at any time intersect

the interface in the same straight line, the sine of the angle between either

wave and the surface bears to the corresponding wave-velocity a ratio that is

the same for each of the waves.

4. For this construction we may substitute another, that will be found

more convenient in theory and practice, though it is without the same

physical significance. This is due to Sir William Hamilton* and is obtained

from Huygens' construction by reciprocating with respect to a sphere of unit

radius concentric with the wave-surfaces.

The polar reciprocal of any surface being the inverse of its first pedal, it

folloAvs that the surface required for the new construction is the inverse of

the surface of wave-quickness : that is, the radius from the centre represents

the wave-slowness, or the reciprocal of the propagational speed of a plane
wave with its normal in that direction. On this account the surface is

termed the surface of wave-slowness : obviously in an ordinary isotropic

medium it is a sphere ;
and a double surface or a surface of two sheets in a

doubly-refracting medium, having always a centre round which it is

symmetrical.

As an example of Hamilton's construction let us consider the case of the

passage of light through a parallel plate of a doubly refracting crystal

embedded in an ordinary isotropic substance, wherein the constant wave-

velocity is H
; supposing first of all that the crystal is more strongly refracting

than the surrounding medium, so that H is greater than the wave-velocities

within the crystal.

* Trans. R. Irish Acad. xvn. 141144 (1833). Cf. also MacCullagh, Collected Works, p. 34.
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Now in Huygens' construction the incident, reflected and refracted waves

at any time intersect the surface separating the media in the same straight

line : hence the corresponding points on the surfaces of wave-slowness of the

media lie on a line perpendicular to the interface, and the reflected and the

refracted wave-normals are determined by the following construction.

Round a point of the line in which the incident wave cuts the interface

at time t, describe the surfaces of wave-slowness of the media with dimensions

corresponding to unit time : these will be a sphere for the outer medium,
the radius of which represents the reciprocal of fl and a double surface for

the crystal entirely surrounding the sphere. Through the point E in which

the incident wave-normal 10, produced into the plate, meets the sphere,

draw EA perpendicular to the interface and produce it both ways to meet

the sphere again in R and the surface of wave-slowness of the crystal in the

points W-i, Wz within the plate and the points Tf/, W2

'

without it.

Fig. 3.

Then it is clear that OR is the normal of the wave given by ordinary

reflection at the first surface of the plate : W1} OW2 give the normals of the

refracted waves and the slowness of these waves
;
and since the surface of

wave-slowness is the polar reciprocal of the wave-surface, the perpendiculars

from on the tangent planes to the surface at Wi and W2 give the corre-

sponding rays and the slowness of these rays. Each of the refracted waves

on arrival at the second surface of the plate gives an emergent wave with

its normal in the direction OE and two reflected waves with their normals

parallel to W^ and W2

'

respectively, while each of these reflected waves is

again divided at the first surface into an emergent wave and two reflected

waves wfth their normals parallel to OR, OW1} OWZ respectively ;
and so on.

Thus the normal to every wave within the plate is parallel to one of the
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four lines OWl} OW2 , OWi, OW2

'

and the corresponding wave-velocities are

given by the reciprocals of the lengths of these lines. The directions of the

rays are determined by the perpendiculars from on the tangent planes to

the surface of wave-slowness at the points TF
3 ,
W2 , TP/, WJ and the ray-

velocities are given by the reciprocals of the lengths of these perpendiculars.

In order to determine the directions of the waves within the plate

analytically, let us assume that the first surface of the plate is the plane of

xy and the plane of incidence that of xz, the positive quadrant of xz being
that which contains the directions of propagation of the refracted waves.

Referred to these axes, let the equation of the surface of wave-slowness be

F(*,y,*)=0 (1).

If i be the angle of incidence, r the angle between the positive direction of

the axis of z and the normal to any one of the waves within the plate, the

coordinates of a point on the surface of wave-slowness are

# = sin*'/ft, y = 0, z = sin i/(fl tan r) (2).

Substituting these values in (1), we shall obtain an equation of the form

cr tan4 r + 4ax tan
3 r + 6a2 tan

2 r + 4a3 tan r + a4
=

(3),

in which the coefficients are functions of sin
2
i (since the surface is symmetrical

with respect to its centre) and of the quantities that define the interface of

the media and the plane of incidence in terms of axes fixed in the plate and

dependent upon its structure.

The roots of (3) give the tangents of the four angles that the normals to

the waves within the plate make with the positive direction of the axis of z

the normal to the first surface of the plate drawn inwards *.

5. In the case just considered, in which the surface of wave-slowness of

the first medium lies entirely within that of the second, the line EA meets

each sheet of the latter surface in two points, that lie one on each side of

the interface, whatever the angle of incidence may be. If however the plate

be less refracting than the outer medium and consequently the surface of

wave-slowness for that medium lie without that of the plate, different cases

occur as the angle of incidence increases.

When this angle is small, everything is as in the former case, but as the

incidence increases, an angle is attained for which the line EA touches the

inner sheet of the surface of wave-slowness of the plate, and for angles of

incidence greater than this there is only one refracted wavef. This then is

the critical angle of total reflection for the quicker wave and the corre-

sponding ray is clearly in the plane of incidence and in the surface of the

plate.
*

Liebisch, N. Jahrb.fiir Min. (1885) n. 181. Phys. Kryst. p. 290.

t Anomalies however occur in the immediate neighbourhood of a singular point of the

surface, see 156.
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The same thing occurs with the outer sheet of the surface of wave-

slowness.

Fig. 4.

If then a tangent cylinder be drawn to the surface of wave-slowness of

the second medium with its generating lines perpendicular to the interface

of the media this cylinder will cut the surface of wave-slowness of the first

medium in a curve, that will be the director curve of a cone having its

vertex at the centre of the surfaces, the generating lines of which are the

normals to the waves that are at the limit of total reflection at the interface

of the media. Since the equation (3) has equal roots when the angle of

incidence is the critical angle, the equation to the cone, obtained by equating
the discriminant of (3) to zero, is

(a a4 Aa&s + 3a2
2

)
3 27 (a a2a4 + 2a1a2a3 a

fl
a3

2 ata^ a2
3
)
2 = 0. . .(4),

in which sint and the quantities denning the plane of incidence are the

variables*.

6. It follows from the above investigations that we can find the directions

of the reflected and refracted waves, due to the incidence of a plane wave on

the interface of two homogeneous media, when the surfaces of wave-slowness,

or which comes to the same thing the surfaces of wave-quickness, of the media

are known. One of the chief methods of experimentally determining the

form of these surfaces for any substance is by measures made with prisms,

and we will now consider the case of a doubly refracting prism placed in a

less refracting isotropic medium, in which the constant propagational speed

of light is H.

With any point of the edge of the prism as centre, describe a sphere

*
Liebisch, loc. cit.
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with radius I/ft, and the surface of wave-slowness of the prism : produce the

incident wave-normal to meet the sphere in N and through N draw a line

perpendicular to the face of entry of the prism OA, meeting the surface of

wave-slowness in the points M and P on the same side of OA as the point

Fig. 5.

N: finally through M and P draw perpendiculars to the face of emergence
OB meeting the sphere in the points N' and N" respectively on the same

side of OB as the points M and P. Then OM and OP are the refracted, ON'
and ON" the emergent wave-normals.

We will first suppose that the incident wave is parallel to the edge of the

prism. Let

A be the angle of the prism, D the deviation of either of the waves,

*',
i' the angles of incidence and emergence,

r, r' the angles that the refracted wave makes with the faces of the

prism,

i/r
the angle that the refracted wave-normal OM makes with the plane

bisecting its angle.

Then if the figure represent the normal section of the prism, and 1/eu be the

length of M or the slowness in that direction, we obtain at once

sin i = (n/w) sin r (5),

sin i' = (fl/eo) sin r' (6),

r + r' = A (7),

i + i' =A+D (8),

and ^ + A/2 = Tr/2 + r, ^r-A/2 = w/2 -r'

or
2o/r

= TT + r r' (9).
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From these equations we may eliminate r and r', angles that we are

unable to measure, and one of the angles D, i or i' and thus obtain
-^r

and G>

in terms of A and two other measurable angles.

First we have sin i sin i' = (ft/G>) (sin r sin r')

i + i' i i' ft . r + rf r-r'\
or sin = cos =- = sin 5 cos 52

I (10),

i + i' , i i' ft r + r' . i rM
cos -g-

sin -3-=- cos
-^-

sin -^- )

and eliminating ft/&> between these equations

r T .
r + r' ,i i'. i + i'

cot
g

tan
g

= cot
-y-

tan
^

,

whence tan ilr = cot -^
cot I i -= 1 tan ^ (H)-Z \ i / z

Again eliminating (i i')/2 between the equations (10), we find

o r + r'
cos2

;r , sin2

a)
2 2 .

2
r-r' 2

2
r-r'

ft2
=

T+~T' ~2~~
+

T+77 "2~
cos2

^
sin^

^

!r + 5-2 sin2^ (12),

A+D . ^1+D
COS ^ S1H -.

where C
. .

cos^
sin-

Thus by means of equations (11) and (12), it is possible to determine

from measured quantities the points of the section of the surface of wave-

quickness made by the normal section of the prism*.

It follows from (12) that the trace of the refracted wave on the normal

section of the prism touches the ellipse

where the axes of x and y are taken along the internal and external bisectors

of the angle between the lines OA and OB. With a given prism, the form

of the ellipse depends upon the single parameter D and thus changes for each

angle of incidence : but writing the equation in the form

we see that it is satisfied identically by x = ft cos (A/2), y = + ft sin (-4/2),

and thus all the ellipses pass through the points in which the circle

a? + y*
= ft2

intersects the lines OA, OB.

*
Stokes, B. A. Report (1862), p. 272.
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6, 7] Oblique Refraction through a Prism^ 11

In the case of minimum deviation dD = 0, and the ellipse is unchanged

by an infinitesimal variation in the angle of incidence. Moreover in this

case the ellipse touches what may be called, for shortness, the line of the

wave, that is, the line in which the normal section of the prism cuts a

tangent cylinder to the wave-surface with its generating lines parallel to the

edge of the prism. For in the case of a wave that undergoes minimum

deviation, its intersection with a consecutive wave passes through a point on

the ellipse, and the intersection of these two consecutive tangent planes to

the wave-surface also passes through a point on the line of the wave : hence

since the trace of the wave touches both the ellipse and the line of the wave,

these two curves are tangents to one another and to the trace of the refracted

wave. Thus in the case of minimum deviation, the ellipse (C~l
,
$-1

) is a

tangent to the refracted wave at the same point as the line of the wave, so

that it has all the properties of this line and defines the wave-velocity and

the projection of the refracted ray on the normal section of the prism. Hence

the consideration of a complex line of the wave is replaced by that of an

ellipse symmetrically placed with respect to the faces of the prism, with axes

that are simple functions of the angle of the prism and of the deviation *.

7. Turning now to the refraction of plane waves that are not parallel to

the edge of the prism, it is clear in the first place that the incident and

emergent waves are inclined at the same angle x t tne edge. This follows

at once from the construction given above, for the points N, N', N" lie in

a plane perpendicular to the edge, and therefore since ON, ON', ON" are all

equal, these lines make equal angles with the edge.

Secondly the law of sines applies to the traces of the waves on the normal

section of the prism, provided that we take for the refractive index, not the

true value n = O/o>, but the value m defined by

m = \ln* + (n
2 -

1) tan
2

x-

For if OM make an angle % with the normal section, we have, since M
and N are at the same distance from it,

M sin % = ON sin ^, .'. sin x = n sin x ............ (14)-

Also ifM and N be projected on the normal section in the points /* and v,

Ou, OMCOSV COSY' /
-r-r-:TT

;

--
X1 eNm = -~ =

-^jff
-*. n-*- Vn2 + (n

2 -
1) tan2 v ......(15).Ov ON cos x cos x

Let AOB (fig. 6) be the normal section of the prism: describe a sphere

round as centre and through draw lines parallel respectively to the

normals to the faces of the prism and to the incident, refracted and emergent
waves to meet the sphere in the points Nlt NZ) Sl} S, $2 -

Let the internal and external bisectors of the angle AOB and the edge
*

Cornu, Ann. de Vtcole norm. (2) m. 1 (1874).
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of the prism cut the sphere in the points , i), and draw the great circles

f$1} fS, f$2 to cut the great circle 77 in the points <rlt <r, o-2 .

Then if D be the deviation S^ and D the deviation a^ of the projec-

tions of the wave-normals on the normal section of the prism, we have from

the triangle $a$2 ,
in which S\ = $2

=
?r/2 % and the angle S^S2 is D

,

cos D = sin2

^ + cos2

% cos D

or sin
-^
= cos ^ sin

-^ (16),

so that the minimum value of D corresponds to the minimum value of D .

Let

then D depends upon the lateral deviation A0 and the longitudinal deviation

AX; but
sin % = sin X sin 6 = sin X' sin 0',

hence if the lateral deviation be zero, or 6 = 0', we have

that is the arc $j$2 is bisected by the great circle rj and by symmetry the

point 8 is on this great circle.

then cos i = cos i cos %, cos i' = cos i
'

cos % )

,_^,

cos r = cos r cos ^', cos r' = cos r
'

cos %'
)
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and since the projections of the wave-normals on the normal section of the

prism obey the sine law with refractive index m, we have from (11) and (12)

A /. A+D \. A+D
tan ir = - cot -- cot U/. A+D \. A+DU --

^ )
tan o ............ '

'*

and (7
-2 cos2^ + o-

2

sin^ =m-== ......... (19).ir cos-'x tan2

^

It follows then that if we measure A, D, i, % we can determine D0y i
, ty, %',

<> in succession from (16), (17), (18), (19), (14) and hence find the direction

and the propagational speed of the wave within the prism.

8. Let us take the normal section of the prism as the plane of xy, the

internal and external bisectors of the angle between the traces of the faces

on this plane being the axes of x and y respectively, and the positive

quadrant containing the trace of the face of emergence. Then if I, m, n be

the direction-cosines of the wave-normal, the equation of the refracted wave

at unit time after passing through the origin is

lac + my + nz = co

or %x + ijy + %z = 1,

where f, 77, are the coordinates of the point M (fig. 5).

Now ^=sin^/O and since the lines MN and MN' are perpendicular

respectively to the faces of entry and emergence,

A A
% cos -= + 77 sin -~ = ON cos % sin i = cos % sin i' /fl,

~

A
-=

A A
cos -I- 1] sin -= = ON cos % sin i

' = cos ^ sin i '/fl,

whence

cos % (sin i
'

sin i ) sin -= cos % (sin i
'

+ sin i ) cos -=

O sin A >
-

n sin JL
~

'

and the equation of the refracted wave becomes

A A
sin -5 (sin i

'

sin * ) x + cos -~ (sin i
' + sin * ) y + tan % sin Az

JL L

-Hsec%sin^l = .....................(20).

If now x, y, z be the coordinates of the point in which this wave touches

the wave-surface, they must satisfy equation (20) and that derived from it

by giving infinitesimal variations to the angles i
,
i

r

and %. Thus in the

special case of a wave parallel to the edge of the prism we have, dropping

the suffixes as no longer needed,

A A
sin -= (sin i

1

sin i) x + cos -^ (sin i' + sin i) y il sin A = . . .(21)
'- Z
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and

(A A\ / A A\
x sin

-g
+ y cos -=

J
cos i'di' ( x sin -= y cos -=

J
cos idi + z sin .4 d% =

(22).

Let us suppose that we are looking in the plane of the normal section of

the prism so that the eye receives the light incident upon the prism, and let

01 be the normal to an incident wave parallel to the edge and inclined at an

angle i to the face of entry, 01' the normal to a wave inclined at an angle

d% to the edge. Then if i + di be the projection of the angle of incidence of

this wave on the normal section, and if
<f>

be the angle between the planes

101' and IOZ, reckoned positive to the right of IOZ,

tan < =

Similarly in the case of the emergent waves, the corresponding angle $' is

given by
tan ()' = di'

the change of sign arising from the fact that the increase in the angle i' is in

the opposite direction to that of i.

Substituting these values, (22) becomes

A A\/ A A\

(x sin
-^ + y cos -=

)
cos i' tan

<f>'

\. * */

/ ^ ^\
+

(
as sin

-^ y cos
-^ )

cos i tan
<j>
+ z sin A = (23).
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It follows then that the image, seen through the prism, of the slit of a

collimator placed parallel to the edge, will be turned through an angle <

'

given by

(A.
A\

x sin +2/COS -~] cosi' tan <<,' + ,? sin .4 =0 ............ (24),

and in order that the image may be parallel to the edge, the slit must be

turned through an angle $ > where

(A.
A.\

# sin -~y cos
)
cos i tan

<J> + z sin A = ............(25) ;

L &/

and if these angles be measured, the coordinates x, y, z may be determined

from (24) and (25) together with the equation of the wave, which may be

written

(26),

where C, S have the meanings given above.

In the case of minimum deviation, dD = di + di' = Q, and we obtain by

differentiating (26)

i i' ~ . i i'
C cos ^ x + S sin ^ y = 0,

Zt 2i

and from this equation and (26) we find

<c =
-CMBin*-^, 2/

=
S-'cos^ ...............(27),

and then equations (24) and (25) give

z = cosec (i + i') cos i cos i' tan
<f>

= cosec (i + i') cos i cos i' tan <' . . .
..
........... (28).

Thus from equations (24), (25), (26) or in the simpler case of minimum
deviation from (27) and (28) we can determine the ray corresponding to a

wave within the prism that is parallel to its edge*.

*
Cornu, loc. cit,



CHAPTER II.

ANALYTICAL EXPRESSION FOR A TRAIN OF PLANE WAVES.

9. THE analytical expression for a train of plane waves in an homo-

geneous transparent and isotropic medium is obtained by stating that the

disturbance at a distance r from a fixed plane parallel to the wave-fronts at

a time t is the same as that at a distance r + cot' at the time t -f t', where o>

is the propagational speed of the waves. It is hence given by one or more

functions of the argument cot r, since such functions alone have the special

property of remaining unchanged in value when t + t' is written for t and

r + cot' for r.

In the case however of an infinite train of plane waves of monochromatic

light, it is possible to assign to these functions a more precise form, which

may be deduced from the experimental fact that the state of things occurring
at any instant in a given plane parallel to the wave-fronts is at the same

instant exactly reproduced at certain definite intervals along the train of

waves; from this it follows that the functions representing the train must

be periodic with respect to r and hence also with respect to t.

This fact, which was first inferred by Newton, is shown very simply by
the following experiment due to Michelson*, from which important deduc-

tions will be made later.

Light from a vacuum tube is analysed by prisms forming a spectrum
from which any required radiation may be separated by passing through
a slit S. The light from this slit is rendered approximately parallel by
a collimating lens and then falls on a, transparent film of silver on the

surface of a thick parallel plate G^. Here it divides, part being transmitted

to a plane mirror Ml and part being reflected to a mirror M%. These mirrors

return the light to the silvered surface, where the first part is reflected and

the second is transmitted, so that both parts coincide and are received in a

telescope T. A second plate Gz ,
of the same thickness as Gl and parallel to

it, is introduced to equalise the optical paths of the two streams. Now if the

one mirror be parallel to the image of the other in the silvered surface and

*
Michelson, Phil. Mag. (5) xm. 236 (1882).
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the telescope be focussed on infinity, there will be seen a series of concentric

bright and dark rings, and on moving one mirror parallel to itself, so as to

alter the distance traversed by one of the streams, the rings move in towards

or out from the centre, which becomes alternately bright and dark, a given

shift of the mirror always producing the same number of alternations. But

in the case of the light that forms the centre of the pattern, it is clear that

the motion of the mirror alters the path of one of the streams by an amount

equal to twice the shift; and it thus follows that a given phenomenon is

reproduced when the path of one of the streams is altered by any multiple of

a given constant length X and that the train of waves is periodic with respect

to this length.

Hence the functions representing the train may be expanded in series of

the form

-^(a)t-r)-an \ (1),

and since on repeating the above experiment with light from a different part
of the spectrum, a result is obtained in all respects the same with the

exception of the value that is to be assigned to X, it follows that this

quantity is characteristic of the colour of the light, and as (1) is an aggregate
of terms in which the values of X are different, we are led to retain only the

first term of the series in the case of a train of waves of strictly mono-

chromatic light.

Monochromatic light is thus said to consist in simple harmonic vibrations,

of whatever nature these may be, the period of which is T = X/<o, where X is

the wave-length of the train of waves and o> is their propagational speed.

w. 2
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10. It is found however that as the motion of the mirror in Michelson's

experiment is gradually increased, the distinctness of the system of rings

varies, which would not be the case if the streams were of the simple
harmonic type assumed above. It is thus necessary to suppose that in any
actual case the light is not absolutely monochromatic and that the stream

must be represented by a series of simple harmonic terms of periods that

differ only very slightly from one another. It will be shown later how
Michelson has been able to deduce the terms of this series in the case of

light from different simple sources by means of determinations of the

visibility of the system of rings.

A consideration of the state of things occurring in a luminous source,

even of the simplest character, also leads to the result that the light emitted

cannot be absolutely monochromatic*.

In the first place there is gradual loss of energy from communication

to the etherf: thus, supposing that the vibration rises from zero to a

maximum and then decreases again to zero, Fourier's theorem gives

2 r
00

r

Q-W cos nf _ I cos at,da I g-fc'
2*2

cos nx cos ax . dx
TT JQ Jo

1 f (*-n\z /a+n\2
= of . I {e \ 2k ) + e \ 2* /

}
cos at . da,l

and the second member represents an aggregate of trains of waves, each

individual train being absolutely monochromatic. If the variation of the

amplitude be slow, k is small compared with n and the second exponential

may be neglected while the first is only sensible when a. is very nearly

equal to n.

In the next place there is departure from regularity due to abrupt

changes of phase and amplitude. To illustrate this let us suppose that the

vibrations in the source are given by

ty (t)
= sin ^Trt/r,

wherein the positive sign applies from to mr, 2mr to 3mr, ..., and the

negative sign from mr to 2mr, '3mr to 4mr, .... Then since Fourier's

theorem gives

i /.\ f
mr ^TT , 2, mr f

mT
. 2?r mr ,

T > (0= sm f ,<*f 4-S.AOOi t\ sm z.cos z.dz
Jo r i mr Jo r mr

mr
f N f

Jo

_ 2, T 1 cos mr mr

i TT
'

1 w2

/(4ra
2
)

' '

mr '

* Lord Bayleigh, Phil. Mag. (5) xxxiv. 407 (1892) ; xxvii. 298 (1889).

t Jaumann, Wied. Ann. LIU. 832 (1894) ;
LIV. 178 (1895). Galitzin, ibid. LVI. 78 (1895).

Lommel, ibid. LVI. 741 (1895). Michelson, Astrophys. J. n. 251 (1895).
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the light will consist of an aggregate of trains of waves given by
2 nir

cos t,
WITT {1 n2

/(4m
2

)} rrn

the summation extending to all odd values 1, 3, 5, ... of n.

When n is nearly equal to 2m, the terms of this series become relatively

very great, the most important being

cos
27T / 1 \ 27T / 3 \- 1 - H }t, cos - 1 + ^ }r \ 2m/ r \ 2m/

the train of waves with period T not occurring at all.

Again there is the motion of the molecules as wholes to be considered,

and the effect of this is twofold.

Firstly by Doppler's principle if be the component of the velocity of a

molecule in the direction of the line of sight and &> be the velocity of light,

the natural wave-frequency N is changed by the motion into n, where

n = N (a) + )/o>.

Now the number of molecules, for which the component velocity in the line

of sight lies between and f + dg, is proportional to exp { /3f
2

} dg ;
hence

what would be a mathematical line is dilated in the spectrum into a band

and the intensity of the part of the band corresponding to frequencies

between n and n + dn will be proportional to

e-^n-N^'N
'

2

dn,

or at a distance x from the centre in a spectrum formed on a scale of wave-

frequencies to exp ( cu;
2

) *.

Secondly there is the motion of rotation to be considered. The effect of

this will depend upon the law of radiation in various directions from a

stationary molecule, but in any case it will in general cause the amplitude
of the vibration emitted in a given direction to be a periodic function of the

time, whence it follows that the light so radiated ceases to be monochromatic.

In the case in which the luminous source is a narrow band isolated from

a spectrum, other considerations lead to the same result, and it will be shown

in dealing with diffraction that the finiteness of the wave-length of light

imposes a limit on the resolving power of a spectroscope and causes at each

point of a spectrum a superposition of light of slightly different wave-

lengths f.

*
Ebert, Wied. Ann. xxxrv. 39 (1888); xxxvi. 466 (1889).

t The nature of white light and the origin of the periodicity introduced by dispersion into its

constituents has been discussed by : Gouy, J. de Phys. (2) v. 354 (1886) ; Ann. de Ch. et de Phys.

(6) xvi. 262 (1889); C. R. cxx. 915 (1895); cxxx. 241, 560 (1900). Schuster, Phil. Mag. (5)

xxxvn. 509 (1894); C. E. cxx. 987 (1895). Poincare", C. R. cxx. 757 (1895). Larmor, Miher

and Matter, 239251 (1900). Carvallo, C. R. cxxx. 79, 130, 401 (1900); J. de Phys. (3) rx. 138

(1900). Fabry, C. R. cxxx. 238 (1900). Corbino, C. R. cxxxin. 402 (1901). Godfrey, Phil.

Trans, cxcv. A. 329 (1901). Planck, Drude's Ann. vii. 390 (1902).
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It thus follows that in any actual case a stream of light is complex in

quality ;
but it is convenient in considering optical phenomena to assume

that the light is monochromatic, and then to determine when necessary the

modifications that are introduced by its departure from this simple character.

11. If two streams of light, coming initially from the same source, are

made to cross one another at a small angle, interference phenomena may be

observed in the region common to the two streams and at certain points the

illumination is greater and at others it is less than that due to either of the

beams alone. Beyond the region of crossing, however, each of the streams is

found to have the same characteristics as if it alone existed, and we must

therefore infer that the result of the superposition of two streams is merely a

superposition of their effects without any permanent modification of the

streams themselves. This being so, it must be possible so to choose the

analytical expressions <, %, ty, ... characterising a stream of light, that the

result of the superposition of several streams is expressed by the sum of the

corresponding functions
</>n , %w , tyn,- characteristic of the constituent streams,

so that we have

These equations are the analytical expressions of the principle of inter-

ference*.

12. The next step in the analytical specification of a train of plane
waves of monochromatic light is afforded by the phenomenon of polarisation,

discovered by Huygens in 1678 during the course of experiments on the

double refraction in Iceland spar and published by him in 1690 in a book

entitled
"
Traite" de la Lumiere."

Iceland spar, a crystal of calcium carbonate, cleaves very readily in three

definite directions, so that a block may be obtained by cleavage in the

form of a rhombohedron : the three obtuse angles of such a rhombohedron

are all equal and are so turned that two opposite solid angles are contained

by equal obtuse angles, while each of the remaining six is contained by one

obtuse and two acute angles. A direction equally inclined to the three

edges that meet in one of the obtuse solid angles is called the axis of the

crystal, and a plane through the axis perpendicular to a face of the rhomb is

called the principal plane of that face.

Now it is found that when a cylindrical stream of light, coming directly

from a luminous source, falls normally upon a rhomb of Iceland spar, it is

subdivided into two refracted streams : the one, called the ordinary stream,

traverses the crystal without deviation
;
the other passes obliquely through

the rhomb with its axis in the principal plane of the face of entry and

emerges parallel to the first, from which it will be entirely distinct provided

*
Voigt, Komp. der Theor. Phys. n. p. 531.
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the diameter of the incident stream does not exceed about one-tenth of the

length of the rhomb. These two streams have practically the same intensity,

and the phenomenon is unaltered by a rotation of the rhomb about an axis

normal to its end faces.

The case is however different if either of these emergent streams be

transmitted through a second rhomb with its end faces parallel to those of

the first : for then the relative brightness of the two streams, into which it

is in general divided, depends upon the orientation of the second rhomb, and

in certain cases one of these streams entirely vanishes. Thus the ordinary
stream emergent from the first rhomb gives rise to an ordinary stream alone,

when the principal planes of the faces of entry of the two rhombs are

parallel, and to an extraordinary stream alone when these planes are at right

angles ;
while the reverse is the case with the extraordinary stream of the

first rhomb.

Hence while a stream of light coming directly from a luminous source

exhibits properties that are alike on all sides of its direction of propagation,
in the streams emergent from a rhomb of spar different directions round their

axes are no longer of equal value. The streams may in fact be said to have

acquired sides or to be polarised. The sides of the stream must in some way
be connected with fixed planes in the rhomb and considerations of symmetry
lead to their being referred to the principal plane of the face of entry or to

the plane perpendicular to it. Either of these planes might be selected, but

it is assumed that the ordinary stream has its sides or is polarised in the

principal plane, and that the extraordinary stream is polarised in the perpen-
dicular plane.

13. Before leaving this fundamental experiment of polarisation, a further

point may be mentioned, that will prove of use subsequently. The direction

of the axis of the extraordinary stream in the first rhomb is clearly indepen-
dent of the diameter of the incident beam, so that the axes of the emergent

pencils will be at a distance apart dependent only upon the length of the

rhomb. It is then possible by increasing the diameter of the streams to make

their perimeters intersect, giving rise to a complex stream in which three

parts may be distinguished. The two outer parts are due to the streams

ordinarily and extraordinarily refracted respectively and have equal inten-

sities : the central part is formed by the superposition of these two streams

and has twice the intensity of the two outer parts.

Now if this central part be examined with a second rhomb, it is found to

exhibit no traces of polarisation and to behave exactly like common light.

Thus a stream of common light has the same properties as that which results

from the superposition of the two equally intense streams polarised at right-

angles, into which a rhomb of Iceland spar divides a beam of common light

incident upon it. Further, since the two streams traverse the rhomb with
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different speeds, they will on emergence have a relative retardation depen-
dent upon the length of the rhomb. Hence common light may be regarded
as equivalent to the stream resulting from the superposition of two streams

of equal intensity polarised at right-angles, whatever may be the retardation

of the one stream with respect to the other.

14. In order to express the phenomenon of polarisation analytically, it

becomes necessary to assume that a train of plane waves of polarised light

may be represented at any instant by a vector d, the rectangular components
of which may be written

= cos
(27T ,

4 [ (27T , 4
. ,}

< (cot r) a\, v B cos
\ ((at r) o\,

(A, J (A, j

w = G cos
|

-
(cot r) c

[
.

I
* J

From these equations it follows that this vector always lies in the plane

U /J \ / \ W / TS

-j
sm (6 c) + -n sin (c a) + -~ sin (a 6)

= 0,

and that its extremity in general describes an ellipse, the projections of

which on the coordinate planes are given by

UV

and two similar equations.

If the plane of xy be parallel to the plane of the elliptic path of the

extremity of the vector, (7=0, and the angle 6 that the axes of the ellipse

make with the coordinate axes is given by

tan 20 =
-j5 ^ cos (a b)

= tan 2<r . cos (a b),

where tan <r = B/A, and if tan ft be the ratio of the axes of the ellipse,

sin 2/3 = sin 2cr . sin (a 6).

Now
v B ,. B .

,
(2-7T, . )- = -7 cos (a b) -T sm (a 6) tan
\ (cot r) a

\U A. A.
(

A, J

gives the tangent of the angle that the vector d makes with the axis of x at

(2?r 1

any time t. As the time increases, tan
j (cot r) a> increases, and hence

the vector moves from left to right or from right to left on the upper part

of its path, according as (jB/J.)sin(a 6) or ABsin(a b) is positive or

negative : in the first case the motion is said to be right-handed and in the

second left-handed. Thus A and B having the same signs, the motion is

right-handed when a 6 is between and TT or between TT and 2-Tr, and

left-handed if this angle lie between TT and 2?r or between and TT.
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15. It has been mentioned that the phenomenon of interference is to be

ascribed to a superposition of the effects of different trains of waves without

any modification of the waves themselves. From this it follows that the

differential equations of the polarisation-vector d are linear, and this leads to

a symbolical representation of the vector, that is often useful.

Since 2 cos 6 e
l9 + e~t6

,
and each exponential repeats itself on differentia-

tion, all the terms in any one equation can be arranged in two groups, one

containing &6 as a factor and the other containing e~ie as a factor : these two

groups will be independent and each will satisfy the differential equations.

Hence we may introduce one exponential alone, and then writing the result

of our calculations in the form P+iQ, we have only to throw away the

imaginary part or else to reject the real part and omit the i, since the system
of quantities P and the system Q must separately satisfy the conditions of

the problem.

Thus when convenient the components of the polarisation-vector may be

represented by the symbolical expressions

the bars ( ) placed over the letters A, B, C denoting that they may be

complex. Let

A = A'-iA" = Ae-M,
B = B'-iB" = Be-*, C = C' - tC" = Ce~

;

then the actual components of the vector are

u = A cos \ -^ (a>t
-

r)
- al = A' cos~ (cat -r) + A" sin (wt - r),

[
A, J

A, A,

w = C cos e-r)-c = C"cos(*>*-r) + C"' sin

and we may remark, what will be of use later, that if A', B', C' be the

expressions conjugate to A, B, G,

I A-A IB-B'

Clearly A', B',C' and A", B", C" are the components of the

polarisation-vector d, at the times for which

27r(a>t-r)/\
= h7r and (2A+l)?r/2

respectively, where h is an integer. Determining the condition that d has

then a maximum or a minimum value, we obtain

A. A" +&.&'+&.&' = $,
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whence A 2 + B2 + G'2 is real, and this condition can always be satisfied by a

proper choice of the origin of time. When this is so chosen,

of = A'jd', /3'
=
B'ld

f

, y'=C'ld
f

,

and similar expressions with doubly-accented letters give the semi-axes d', d"

of the elliptic path of the extremity of the polarisation-vector and their

direction-cosines.

16. Before proceeding to a precise localisation of the polarisation-vector,

it is necessary to obtain a measure of the intensity of a train of plane waves

of light ;
and though this is scarcely possible, until some theory is formulated

respecting the nature of the polarisation-vector, the following considerations

lead to an estimate of the intensity, that is sufficient as a working hypothesis*.

Since the phenomena that are associated with a stream of light indicate

that it is energy that is propagated by the waves, and since moreover the

intensity of light from a given source varies inversely as the square of the

distance from the source the same law as obtains in the case of the rate at

which energy is propagated across a given area perpendicular to the direction

of flow it is natural to measure the intensity of the stream by this quantity.

It is thus necessary to express the energy in terms of the polarisation-vector,

and this can only be done when the nature of the vector is itself determined.

Since however energy is a scalar quantity, it must be expressed by an even

power of the vector and this for present purposes may be taken as the second,

for the variation of energy must be the same in sign as that of d2
,
and if d2

vanishes, so must the energy.

But light to be perceived must act for a finite period on the retina, and it

is impossible to follow the rapid variations of the polarisation-vector during

its vibrations. The intensity may thus be taken as measured by the mean

value of the square of the vector for the time T required for light to affect

the eye, and on account of the rapidity of the vibrations, T may be taken as

an integral multiple of the period. Hence with monochromatic light

If the light be not monochromatic,

^ /< !** y j \ V r> i**** / M \ ~L IU = 2,.An COS ( r (CDC T) dn >-
,

V = 2,X>n COS <
-

(cot r) On r
,

l^n

w = n cos (cot r) cn \ ,

A,n

and since T is very great compared with rn ,
the terms in the expression for /

that arise from the product of different cosines are vanishingly small and may
be neglected : whence

Voigt, loc. cit. pp. 524, 529, 537.



15-17] Conditions for Interference 25

and the intensity is the sum of the intensities of the different monochromatic

constituents a result that depends upon the mean value of the square of the

polarisation-vector being taken as the measure of the intensity.

17. In 1816 Fresnel and Arago, in consequence of a discovery made by
the latter, were led to investigate the conditions of the interference of

polarised light. Postponing for the present any consideration of their experi-

ments, it suffices for the completion of the specification of the polarisation-

vector for a train of waves of monochromatic light to mention, that among
other results they found that two polarised streams coming from the same

stream, whether polarised or natural, are capable of interfering perfectly.

when the polarisations are the same
;

that they do not interfere at all, if

polarised in perpendicular planes ;
and that in intermediate cases, they

interfere in intermediate degrees.

In order to determine the analytical significance of this result, we must

investigate the conditions of the interference of two polarised streams, and

for this purpose there is no occasion to consider the manner, in which they
are related to the original stream, but it is sufficient to start with the

component streams themselves*.

Taking the direction of propagation as the axis of z, let l and 90 + 61 be

the azimuths of the axes of the ellipse that is the projection on the plane of

the waves of the path of the extremity of the polarisation-vector, azimuths

being measured round z from x to y, and let tan /3j be the ratio of the axes of

this ellipse, & lying numerically between and 90. Then if ^ and vl be

measured along the axes of this ellipse, the components of the polarisation-

vector of the first stream may be represented by

u, = Cl cos

v,
= -

ic, sin&
wl
= ;

where T is written for shortness in place of STT (cot z)f\ and fti is positive or

negative according as the projection of the path on the plane of xy is

described in a left- or a right-handed direction.

Let Ma, c2 ,
... be for the second stream what ul} cl} ... are for the first, and

let pl} p2 be the retardations of phase that occur before the recomposition of

the streams : then resolving all the components along the axes of x, y and z,

and writing S = a2 p2 UI + PI,

u = (Ai cos 61 + tB, sin 0J e<
r+a'-^ t + (A, cos 0, + t,Bz sin

=
{(A, cos l + A 2 cos 0^) + 1 (B, sin 6l +B2 sin

v = {(A,, sin 0! + A % sin 0^) - i (Bl cos l + B2 cos 2 e*
1

)} e<r+a'- pl)t
,

w =
{kjpj. + &2c2e

(6+e'- e
')t

}
e<
r
+i+i-pi)',

*
Stokes, Camb. Phil. Trans, ix. Part 3, 399 (1852).
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and the intensity is given by

1= {(Aj, cos #! + A 2 cos <92 <?
8t

) + 1 (#! sin 1 + B2 sin

x .! cos j + 2 cos 2e~
l

t sn X + 2 sn

sin 0j + .4 2 sin 2 e
8t
)
- 1 (J5j cos X + 52 cos

x 4j sin 0j + A 2 sin ^e"8' + 1 #1 cos + 2 cos

) cos (^2
- ^) cos 8

sin (^2 0j) sin 8 + 2^^0102 cos (8 + e2 ea)

{cos (/32 /Sj) cos (^ #1) cos B sin (/32 + ySj) sin (02 ^) sin 8

+ A;^ cos (8 + e2 e^}.

Now if there be no interference, the intensity must be independent of the

relative retardation of phase p2 plt and we must have

cos (/32 &) cos (#2 0i) + kjcz cos (e2 e^ = 0,

and sin (/32 + ^j) sin (^2 ^) + ^^2 sin (e2 ex)
= 0,

which conditions may be satisfied in an infinite number of ways, all of which

appear equally admissible, unless recourse be had to other considerations.

There is however a case that leads to a definite conclusion
;
for it is found

that there is no interference, when the two streams are both, say, the ordinary

streams emergent from two rhombs of Iceland spar so placed that the planes

of polarisation are at right-angles. In this case the one component stream is,

so far as relates to its polarisation, what the other stream becomes on being
turned about its axis through a right-angle. Writing then

6*2-^=90, & = &, &, = &!, e2 = l ,

the above conditions become

kf = 0, sin 2& = ;

that is, the polarisation-vector has no component in the direction of propaga-
tion of the stream and its vibrations are rectilinear.

Now the streams emergent from a rhornb of Iceland spar are said to be

plane polarised, and thus in a stream of plane polarised light the polarisation-

vector is transverse to the direction of propagation and its vibrations are

rectilinear*. By symmetry these vibrations must be either in or perpen-
dicular to the plane of polarisation : in what follows we shall assume that the

latter is the case.

*
Fresnel, Mim. de VAcad. des Sc. vn. 56 (1821) ;

(Euvres completes, n. 490. Verdet, Ann. de

Ch. et de Phys. (3) xxxi. 377 (1851) ; (Euvres, i. 73.
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If a stream of plane polarised light be resolved into two streams, polarised

at right-angles to one another, and these be recompounded after one has

been retarded relatively to the other, the polarisation-vector of the resultant

stream will have for its components

u = A cos 6 cos
\

-
(mt z) + a\ ,

v =A sin 6 cos
\ ^ (cot z) + a

(\ J (A-

where 6 and 90 are the angles that the plane of polarisation of the

original stream makes with the planes of polarisation of the components.
The vibrations of the polarisation-vector of the resultant stream are thus

represented by an ellipse lying in the plane of the waves, and the light is

said to be elliptically polarised.

In the particular case in which = 45 and the relative retardation of

phase is + (2/n- l)7r/2, the vibrations are circular and the light is said to be

circularly polarised.

18. Returning to the general conditions that express that there is no

interference between polarised streams, and writing ^ = k2
=

0, we obtain

cos (ft
-

ft) cos (02
-

0j)
= 0, sin (ft + ft) sin (02

-
0j)

= 0,

which are satisfied if

cos (02 0j)
= and sin (ft + ft) = 0,

or sin (<92
-

0,)
= and cos (ft

-
ft) = 0,

or cos(ft-ft) = and sin (ft + ft)
= 0.

The first case gives 2 0j = 90, ft = ft , and these results express that the

ellipses described are similar, their major axes at right-angles and the

directions in which they are described are contrary.

The second pair of equations gives 2 l
= or 180, ft = 90 + ft,

which is merely a different manner of expressing the same result.

From the last pair of equations we have ft = ft = + 45, or the streams

are circularly polarised in opposite directions a special case of the former

result.

Thus the intensity of the stream made up of the two components is only

independent of any retardation, that the one has undergone relatively to the

other before recomposition, when the one component stream is, so far as

relates to its polarisation, what the other becomes when it is turned through
an azimuth of 90 and has its nature reversed as regards right- and left-hand.

Streams thus related are said to be oppositely polarised.

19. On the other hand the interference will be perfect, that is, the

variations of intensity will be the greatest that the difference of intensity of

the components admits of, so that if these be equal, the minima are absolutely

zero, when the coefficient of 2c!C2 has unity as its maximum value.
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The maximum of P cos 8 Q sin & is \/P2 + Q 2
,
so that the condition for

perfect interference is

cos2
(yS2

- &) cos2
(02

- 00 + sin2 (& + A) sin2
(0a

- 00 = 1

= cos2
(02

- 00 + sin2
(0a

- 00

or cos2
(02
- 00 sin2 (& - A) + sin2

(0,
- 00 cos2

(& + &) = 0.

This is only satisfied if

sin2

(02
- 00 = and sin2 (& - &) = 0,

or cos2

(02
- 00 = and cos2 (& + &) = 0,

or sin2 (& - &) = and cos2 (& + A) =

From the first pair of equations we have /32
=

/S1 , 2
= 0i, that is, the

streams are identical as regards their polarisation.

The second case gives /32
= 90 &, 2 1

= 90, expressing the same

result.

The third case gives /&J = /31
= 45, so that the streams are circularly

polarised and of the same kind a particular case of the former result.

Thus for perfect interference the polarisations of the two streams must be

identical.

20. It now becomes necessary to determine the analytical representation

of a stream of natural or unpolarised light*.

Experiment gives as the distinguishing characteristic of a stream of

common light, that it can be resolved into two streams plane polarised in

perpendicular planes ;
that the intensities of these streams are independent

of the orientation of their planes of polarisation ;
and that the stream

resulting from the recomposition of these components has the same property,

whatever may be their relative retardation.

Now since this stream compounded of two streams that are plane polarised

in rectangular planes, behaves in all respects as common light, and since each

constituent is represented by a vector that is perpendicular to the direction

of propagation, it follows that it must be possible to obtain an analytical

representation of a stream of common light, in which no vector with a

longitudinal component occurs. On the other hand a stream of monochro-

matic light with a polarisation-vector that is entirely transversal, must be

polarised, whether elliptically, circularly or plane ;
whence it results that a

stream of common light cannot be absolutely monochromatic.

Representing then the stream as the superposition of trains of waves of

monochromatic light, let

un = cn cos /3n e
l(T +a > = An e

i(T +an)
,

vn = - icn sin /3nei(Tn+an) = - iBn el(Tn+a^

*
Stokes, loc. cit. Verdet, (Euvres, i. p. 281; Ann. de I'ecole norm, super. 11. 291 (1865).
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be the components of the polarisation-vector for the nth constituent in

directions making angles 6n and 90 + 6n with the axis of x, where the axis of

z being in the direction of propagation of the stream Tn ='27r(o)t z)/\n , and

ftn is less than 90 and positive or negative according as this constituent is

left- or right-handed.

Then the stream of common light may be represented by the two plane

polarised components

M = 2 (An cos 6n + iBn sin B) ei(Tn+a^,

v = 2(A n sm6n - iBn cos B) e'<
r +>.

Now let the second component stream receive a retardation of phase 8

relatively to the first, and let the stream of common light thus modified be

resolved into two plane polarised components with their vectors in azimuths

<f>
and 90 + < with respect to the axis of # : then for the first of these

components the polarisation-vector is

U= 2 {An (cos 6n cos <f>
+ sin 9n sin <f)e~

iS

)

+ tBn (sin On cos
<f>

cos 6n sin ^>e~
l&

)} e
t- (Tn+an}

,

and since the intensity is the sum of the intensities of the monochromatic

constituents

/*
= 2 (A n

2 cos2
n + Bn

* sin 2
n) cos

2

$ + 2 (A n
* sin2 Qn + Bn

* cos2
B) sin

2

<f>

+ sin
<f>

cos < {22 (4 n
2 -

n
2
) sin n cos n cos 8 - 22^1nBn sin 8}

= (P + Q) cos2 + i (P - Q) sin2
<> + sin

</>
cos (j)(Rcos8-S sin 8),

where P = 2 (^w
2 +5n

2

)
= Scn2

,

Q = 2 (.4 n
2 - Bn

2

) cos 2^n = 2cw2 cos 2/3w cos 2^n ,

JR = 2 (^ n
2 - 5n

2
) sin 20W = Scn

2 cos 2 B sin 2^w ,

>Sf = 2S^Ln5w =2cn
a sin2

/
Sn .

But if the group of monochromatic constituents be equivalent to common

light, 1$ must be independent of < whatever 8 may be, and for this to be the

case, Q, R, S must separately vanish.

The effect of a change of coordinate axes is to write 0n~X ^or ^

(n
= l, 2, 3, ...): this will leave P and S unaltered, while

Q becomes 2cw2 cos 2/3w cos 2 (0n %) = Q cos 2^ + .R sin 2^;,

.R becomes 2cw2 cos 2/3n sin 2 (^n %)=R cos 2^ Q sin
2^;.

Hence the conditions that the group may be equivalent to common light

are satisfied for any set of axes, if they be so for one set, and it is a matter of

indifference with respect to what plane of polarisation the retardation 8 is

supposed to be introduced.

The conditions given above are then sufficient, as well as necessary, to

characterise a stream of common light.
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21. We may now find the condition that two polarised streams of a

definite character may be together equivalent to a stream of common light.

Representing the first stream by the components

u' = cos /3'Scn cos (Tn + an),
v' = sin ft' Scn sin (Tn + an)

in directions making an angle 6' with the axes of <v and y respectively, and

employing doubly accented letters to denote quantities that refer to the

second stream, the stream that results from the superposition of these trains

of waves is characterised by

Q = cos 2/3' cos 20'2cn
'2 + cos 2/3" cos 20"2cn

"2
,

R = cos 2/3' sin 20'2cw
'2 + cos 2/3" sin 20"2cw

"2
,

8 = sin 2/3'2cn
/2 + sin 2/3"2cn

"2
.

Writing that the intensities of the two components are as k2
: 1, the

condition that their mixture is equivalent to common light gives

cos 2/3' cos 20' + k* cos 2/8" cos 26" = 0, cos 2/3' sin 20' + &2 cos 2/3" sin 20" = 0,

Transferring, squaring and adding, these equations give &* = !, and since &2

must be positive, k2 = 1 . Thus the streams must have equal intensities.

Since /3' and /3" are supposed not to lie beyond the limits of + 90, the

last equation gives

/3"
= -/3' or /3"

=
/3' + 90,

the upper or lower sign being taken according as /3' is positive or negative.

Now clearly any solution may be expressed analytically in two ways, in which

the values of /3 are complementary and the values of 9 differ by 90, since

either principal axis of the ellipse characterising the stream may be that for

which the azimuth is 6. Accordingly the second solution may be rejected as

being merely a different method of expressing the first, then substituting

/3"
=

/3' in the first two equations, they give

cos 20" = - cos 20', sin 20" = - sin 20',

and hence & and 0" differ by 90. The equations are also satisfied by

/3"=-/3'=45,
which is only a special case of the foregoing.

Thus common light is equivalent to any two oppositely polarised streams

of half the intensity, and no two polarised streams can be together equivalent

to common light, unless they are oppositely polarised and have their intensi-

ties equal.

22. Returning now to the case of a stream of light of the most general

character, it is clear in the first place that the quantities P, Q, R, S are
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restricted in value and so related that P2 can never be less than Q2 + R* + S*
;

for

= 22cm2cn
2

(sin
2
(/3TO

-
) cos

2
(0m - n) + cos2

(/3m + j3n) sin
2

(0m - n)},

the summation extending to all values of in and n, and this expression

is always positive, and only vanishes if

BUL(/3m -pn)cos(em -0n)
= and cos (/3m + ) sin (0m - B)

= 0.

These conditions, as we have seen ( 19), express that the polarisations

of all the monochromatic constituents are identical, so that the stream

is elliptically polarised with elliptic constants given by

tan 20 = R/Q, sin 2/3 = S/P,

the polarisation being left- or right-handed according as S is positive or

negative.

In general then P2 exceeds Q2 + R? + $ 2
,
but it is always possible to find a

positive quantity H, such that

and consequently the stream may be regarded as compounded of two groups,
for one of which the constants are H, 0, 0, 0, representing a beam of common

light, while for the other the constants are P H, Q, R, S giving a stream of

elliptically polarised light with elliptic constants determined from

tan 20 = R/Q, sin 2/3 = S/(P - H).

If S = 0, the second group is plane polarised, and if Q = 0, R = 0, its polarisa-

tion is circular.

A stream of the character just described is said to be partially polarised.

23. As examples of the above investigation, let us take the following

cases:

(1) A polarising prism and a crystalline plate, set so as to give a stream

of elliptically polarised light, are made to revolve together uniformly and

rapidly with regard to the duration of impressions on the retina.

Let u' = c cos 0^{*-*+}, v '=-ic sin fie
1{*-+}

represent one of the monochromatic constituents of the stream and the

azimuth of its first axis at a given time, so that =
p, + vt.

The components of this constituent along the axes are

u = {c cos @ cos
(fj, + vt) + ic sin /3 sin (p + vt)} e^nt

~ KZ+a}

= %c (cos /3 + sin 0) & w+I/><-++>

+ \c (cos /3
- sin /3) e -")-*+-},

v = -i$c (cos /3 + sin /3) & *+K> -++*>

+ i \c (cos
- sin /3) #-')
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If the light be approximately monochromatic, /3 will be practically the same

for all the constituents, and the stream will be composed of two oppositely

circularly polarised streams represented by

Ul = \ (cos 13 + sin /3) ^ce
L ^n+ v)t

- KZ+a+^,

Vl
= _ 4 (cos/3 + sinyS) 2Cet n+>'>*- +0+ 't

>,

and u2
= (cos/3

v2 = 4 (cos /3
- sin

We thus find P = Sc2
, Q = Q, R = Q, S = sin 2/32c

2 and the group is equivalent
to a stream of common light of intensity (1 + sin 2/3) Sc

2
, together with a

stream of circularly polarised light of intensity + sin 2/3Sc
2 and of the same

character as regards right- or left-hand, as the original stream would be, if

the polariser and plate were stationary. The upper or lower sign must be

taken according as @ is positive or negative.

If the plate were set so as to give plane polarised light, we should have

/3
= and the light would be completely depolarised.

(2) A plane polarised stream is transmitted through a thin crystalline

plate, that is made to rotate uniformly and rapidly.

Let 2S be the relative retardation of phase introduced by the plate, and 6

the azimuth of the plane of polarisation of the least retarded stream within it

at any time t, measured from the primitive plane of polarisation : then the

emergent stream may be represented by the components

u - 2c (cos
2 QeA + sin2 6e~i&

)

= c cos *- + tc sn

+ 4Sc Sin

v = Sc sin cos 6 (e
lS e~iS

)

= 2c Sin 8ein+2*)*-

polarised respectively in planes parallel and perpendicular to the original

plane of polarisation.

Thus the stream is composed of three groups : one polarised in the

primitive plane and represented by

M! = Sc cos ge*<*-+>,

and two circularly polarised streams of the same intensity

us
= c sn et---*-i v3

= - c sn

It is hence equivalent to a stream of common light of intensity 2c2 sin2
S,

combined with a stream plane polarised in the same azimuth as the initial

stream and of intensity 2c2 cos2
8.



CHAPTER III.

INTERFERENCE.

24. WE have seen that a train of waves may always be replaced by two

trains polarised in perpendicular planes, and that the stream is equivalent to

common light, provided the two component streams have the same intensity

and no fixed relation exists between their corresponding monochromatic

constituents.

In the case of common light, the modifications of the constituents of the

one component must during the passage of the stream be identical in

character with those of the corresponding constituent of the other, so long
as no phenomena of polarisation supervene; for the characteristic property
of common light is that all directions transverse to that of propagation are

of equal value. Hence in considering the phenomena of common light, it is

sufficient to take into account only one of the polarised trains of waves.

The phenomenon of interference lies in the forefront of physical optics

and has already been appealed to for the purposes of illustrating the periodic

character of a stream of light and of obtaining the form of the functions that

characterise a train of luminous waves. We must now take up the subject

in greater detail, in order to explain the appearances that result from the

interference of streams of light, and to determine the conditions under which

interference is possible and the limitations to which it is subjected.

25. When a number of trains of waves of the same simple harmonic

type are propagated in one direction, the resultant train is of the same type ;

for

2-7T 2?r ^ .

= cos (cat z) ^An cos an sin (wt z) 2,An sin an
A X

I2-7T , A x J= Jl COS
\ (cat Z) + CY

,

( * J

where J.2 =&An cos aw)
2 + @An sin aw)

2
,

tan S = (ZAn sin an)/(S-4n cos an).

w.
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In the special case of two component trains, the amplitude of the

resultant is given by

A 2 = Af + A? + 2A!A, cos (! - a2)

and is equal to A^ A? according as the phases of the two components are

the same or differ by half a period. In the latter case when the intensities

of the components are equal, the amplitude of the resultant is zero and the

component trains neutralise each other.

When the component trains travel in the same direction, the intensity is

necessarily the same over the whole wave-front, but this is no longer the

case, if they be inclined to one another at a small angle. The phenomenon
then observed on a screen placed in the region common to the two streams is

that known as interference fringes.

Suppose that we have two small sources of light, that are placed near one

another and are of such a character that the corresponding monochromatic

constituents of the streams emanating from them agree in amplitude and

phase ;
and let us determine the effect produced on a screen parallel to the

line joining the sources and at such a distance that the waves arriving at

any point of it from the two sources may be regarded as sensibly plane and

parallel.

Let Si and S2 be the sources and X the point on the screen at which the

effect is to be determined, then assuming
for the present that the light is rigorously

monochromatic, the phases at X will be

accordant or completely discordant, accord-

ing as

S1X~S9X = n\ or (2n + l)\/2.

With centre X and radius XS^ (S2 being

supposed nearer X than S^ describe a circle

in the plane XS1S2 , cutting $j$2 produced
in Q and XS-i in P: then being the

middle point of S^, 0' being the point on

the line through X parallel to S^ that is

equidistant from $j and S2 ,
we have

+XS2)
= S,S2 . 8,Q = WX. 8,8,,

Fig. 9.

20'X.SA. O'X.8,8,

^X+XSt 00'

if X be near to 0'.

Taking the point as the origin of a system of rectangular coordinates of

which the line OS2 is the axis of x and the normal to the screen is the axis
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of z, then if the coordinates of X be x, y, z and $j$2
= 2c, the points at which

the phases are accordant are given by

and the points of complete discordance of phase are given by

2c#/(2/
2 + z2

)*
= (2w + 1) X/2.

Thus the points of accordance or of complete discordance lie on similar and

similarly situated hyperbolas and the screen will be intersected by a series

of bright and dark bands, that will appear nearly straight and perpendicular
to the plane taken as that of xz, since the curvature of the hyperbolas is very
small at their vertices.

The linear width of the bands in the plane of xz (from bright to bright,

or from dark to dark) is

A =
\z/(2o).

26. Let us now consider the effect of interposing a plate of some

medium between the screen and the sources of light.

Let S2PQX be the ray from $2 to X, meeting the plate in the points P
and Q ;

and through Q draw QR parallel to the screen meeting >S2P produced
in R and the line through P perpendicular to the screen in R' : call d the

thickness of the plate, p, its refractive index, and ft its inclination to the

screen.

Fig. 10.

Then if i and r be the angles of incidence and refraction at the point P,

and we suppose the angles i and ft so small that the cubes and higher powers

of their sines may be neglected, we have

PQ =
d/cos r = d{l+ sin2 /(2/*%

PR' = d cos (ft r)/cos r = d d sin2

ft/2 + dsini sin ft/fi,

QR = PQ sin (i
-

r)/cos (i
-

ft)
= d (p

-
1) sin i/p.

32
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Now the optical length of path from S2 to X is

^=SsP +nPQ+QX = SX'-PR + fjLPQ = (z-PR')sec(i-ft) + (
Jl,PQ

sin2
ft sin i sin ft

J
(1 + (sin i - sin ft)

2

}

- 1)4+ } ff
- ^ ^

c?) (sin i - sin /3)
2 + ^-^ d sin2 .

V /j, / Zfj,

But * tan (t
-

ft)
=

(a?
-

c) + EQ,
or approximately

(sin i sin ft)
= (x c) + --- d sin i

;

whence

|
z _ c- ^

J (sin i sin /S)
==

(a? c) +
\ A4 / A4

Substituting in A2 we have

sin 8.

The optical length of path Aj from ^ to JC" is obtained from this expression

by changing the sign of c, and hence the relative retardation of the two

streams is

A*

Thus the points of accordance of phase occur where

z- A* ^ 7

a,
_-vr^

' '^
. n\ -- d sin A

2c A4

and the central band of the system, which corresponds to n = 0, is at the

point

x = d sin /3,

A4

and this gives the shift due to the interposition of the plate.

If the plate be parallel to the screen and be traversed by the stream from

>S2 alone, the shift is approximately (A* 1) d . a/(2c) on the side of the stream

that passes through the plate.

27. Since the light from the correlated sources is not strictly mono-

chromatic, the only line of complete accordance of phase is that equidistant

from the sources and there is no place of complete discordance of phase for
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all pairs of constituents. Hence on receding from the line of complete

accordance, the coincidence of the bands arising from the different mono-
chromatic constituents becomes less and less complete, and finally all

appearance of interference will be obliterated.

As an illustration of the result of the defect of the monochromatism of

the light, the case may be considered in which this arises solely from the

progressive motion of the molecules of the source as wholes*.

If be the velocity of the molecules in the direction of propagation of the

light, and & be the relative retardation of phase calculated on the assumption
that the molecules are at rest, then the actual retardation of phase is

8 = So (1 + l/w).

Now the intensity corresponding to a retardation of phase 8 is proportional to

2(1 + cos 8),

and the number of molecules with velocities between and % + dg varies as

where ft
= 4/(?rw

2
),
u being the mean velocity ;

hence the intensity may be

represented by

= 2 r
J -o

+ cos S cos - sin 8 sin -
&> W

V
= 2y (1 + cos 8 e *-') = TTW {1 + cos 8 e

Hence the maximum intensity is

and the minimum intensity is

./2bV
/2
= 7rw{l-e ^}.

Assuming with Michelson that the visibility of the fringes is given by

we have V=e ^*"'
,

and taking the limit of visibility as determined by F= 1/40,

t VJ I i.\JSZ*p. *'

On =
7T

or the limit of relative retardation A is given by

A _ S _ 2 co /I

'\
=

%7r
=
K'uV

"

TT

'loge 40

7T

Lord Eayleigh, Phil. Mag. (5) xxvn. 298 (1889) ; Ebert, Wied. Ann. xxxvi. 466 (1889).
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In the case of sodium vapour at 1000 C., u 1172 metre/sec*, whence since

co = 3 x 108
metre/sec, we have

= 180,000.

28. When the range of periods in the correlated streams extends over

the visible spectrum, the limit of visibility depends upon the possibility of

distinguishing chromatic variations : the central band is white and this is

bordered by fringes, that on account of the limitation of the sensitiveness of

the eye to periods extending over less than an octave appear to be sensibly

black
;
to these succeed coloured bands, until a point is reached at which the

annulments for waves of different periods are so numerous as not to affect

the colour of the light.

The interference may however be rendered visible in this case by a

spectroscopic analysis of the light. If the slit of the spectroscope be parallel

to the direction of the fringes and be narrow in comparison with their

breadth, a channelled spectrum is obtained, that is, a spectrum intersected by
dark bands at right angles to its length, the centres of which occur at points

corresponding to wave-lengths given by

X=2A/(2n + l),

A being the relative retardation of the streams and n an integer. As the

slit is moved in a direction perpendicular to its length to places of continually

higher relative retardation, the bands will travel along the spectrum from

the blue to the red end, in the case of an ordinary refraction spectroscope

closing up as they move.

The relative retardation A may be calculated from the number of bands

between two parts of the spectrum corresponding to known wave-lengths;
for if n and n' be the orders of the bands corresponding to wave-lengths
X and X' respectively,

A = (2n + 1) X/2 = (2n' + 1) X'/2,

whence if n' n = m,

(2w + l)/2
= mX'/(X

-
X') arid A = raXX'/(X

-
X').

* The kinetic theory of gases gives that p = <nt
2
/3, where p is the pressure and <r the density

of a gas: the density of air at 0C. and under normal pressure is 1/773-4, whence if be the

density of the gas relatively to air at C. and under normal pressure

,

. (cm/sec),

and since by the gaseous Iawsj>/(s#)=j> /(s ),
where is the absolute temperature

6 metre

sec

By Gay-Lussac's law the densities of two gases at the same temperature and under the same

pressure are in the proportion of their molecular weights : thus the density of hydrogen relatively

to air being '0693, and sodium vapour being monatomic, we have in this case

s =23x-0693-7-2=-8.
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The number of bands that can in this way be rendered visible depends

upon the resolving power of the spectroscope.

A second method of employing the spectroscope is to place the slit at

right-angles to the direction of the fringes : the spectrum is then traversed

by slightly curved bands running more or less along its length and approach-

ing one another towards the violet end (fig. 11). The intercepts made by

ii

Pig. 11.

these bands on the lines of constant wave-length of the spectrum are equal
and proportional to the length of the wave. If the slit intercept the central

bright band, the fringes will be symmetrically placed with respect to a

bright line.

29. In order to obtain visible interference, it is necessary that the

streams emanating from the two sources be of such a character that all

the corresponding monochromatic constituents have initially the same

difference of phase : otherwise there would be no line of complete accordance

of phase and the superposition of the systems of fringes due to the different

constituents of the streams would tend to an obliteration of all appearance of

interference.

Now though experiment shows that the streams from simple sources of

the same nature, such as soda flames, are constant as regards their con-

stituents, there is no reason to assume that the phases of these constituents

are invariably related to one another. Were this the case, it would be

possible to obtain interference fringes with streams of light from two distinct,

though similar sources, which is found to be impossible. In order then to

obtain interference fringes, it is essential that the streams should have come

initially from a single source and should traverse paths that are optically

nearly equivalent.

30. We will now consider four principal methods of obtaining inter-

ference fringes that may be classed together as being simple in theory

and as having certain distinguishing characteristics.

The first method was devised by Fresnel* in 1816, in order to demon-

*
Fresnel, (Euvres Completes, i. 150, 327.
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strate the fact of the interference of light by an experiment that was free

from the objections brought against an earlier experiment of Young by the

opponents of the wave-theory.

In Fresnel's experiment, light from a narrow slit falls upon two plane

mirrors, inclined to one another at an angle of very nearly 180 : in this way
two streams are obtained that partially overlap, and in their common part

the phenomenon of interference is observed.

In order to calculate the position and width of the fringes, let us suppose
that a plane through the line of intersection of the mirrors is the plane of yz,

the axis of y being parallel to this line, and that the plane is so chosen as

nearly to pass through the image of the luminous point in the plane bisecting
the acute angle (2w) between the mirrors.

Let the origin be so chosen that the coordinates of this image are
, rj,

and let the screen on which the interference is observed be the plane
z= a + b.

If a be the distance of the line of intersection of the mirrors from the

origin, the equations of the mirrors may be written

x sin (6 <w) + (z a) cos (6 o>)
=

x sin (6 + ft>) + (z a) cos (6 + at)
=

The coordinates of the luminous point are

# = a sin 20 + f cos 20, y =
r), z

(>

= a + a cos 20 f sin 10,

and those of its image in the first mirror are

# 2 sin (0 &>) {# sin (9 co) + (z a) cos (9 &>)}=& sin 2&> + cos 2o>,

2/o,

z 2 cos (6 a)) {# sin (9 w) + (z
-

a) cos (0 ft))}
= a a cos 2<w + sin 2eo.

Hence, the propagational speed of the light being taken as unity, the

undulatory time of passage from the source to the point (x, y, a + b) is

for the stream reflected at the first mirror

Fj = {(x a sin 2&) f cos 2ft>)
2 + (y 77 )

2 + (6 + a cos 2w sin 2ft))
2

}*

=
{(b + a cos 2w)

2 - 2 (x cos 2&> + b sin 2&)) + (x a sin 2<o)
2 + (y

-
77)* + 2

}*

as cos 2w + b sin 2<o .,
- (x a sin 2&>)

2 + (y 77 )
2 + f2

== 6 + a cos 2ft) :
-

-f * ; ^ *-
.

b + a cos 2ft) b + a cos 2&>

For the stream reflected at the second mirror, the undulatory time of

passage F2 between the same two points is obtained from Fx by changing
the sign of ca : hence the relative retardation of the streams, measured in

length, is

A - - Sin 2f (b%+ ax).
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and the points of complete accordance of phase are given by

2 sin 2ft)
j-

=- = n\
b + a cos 2o)

and the linear width of the bands is

b + a cos 2<B

2a sin 2a>

The phenomenon is in reality not so simple as here represented, as the

streams being limited in extent, it is modified by variations of intensity near

their edges or in other words by diffraction. When the incidence on the

mirrors is nearly normal, the phenomenon is only affected by variations of

intensity near the adjacent edges of the streams, the other limits being too

remote to have any effect : but in the ordinary arrangement the light falls

on the mirrors at nearly gi'azing incidence, and though the intensity is

thereby increased, the streams are so narrow that the disturbance due to

diffraction becomes very marked.

Let us now consider the result of a small motion of one of the mirrors

parallel to itself. Suppose that the first mirror is moved towards the

luminous point through a distance e in the direction of its normal : then

assuming for simplicity that the luminous point is so placed that f = 0, the

coordinates of its image in this mirror are

a sin 2ft> + 2e sin (0 to), 77, a a cos 2to + 2e cos (0 G>),

and the value of Fx becomes

[{x
- a sin 2< - 2e sin (0

-
to)}

2 + (y
-

tj)
2 + {b + a cos 2&> - 2e cos (0

-
to)}

2

]*

, 6 cos (0 ft)") + a cos (0 + tu) . (x a sin 2&))
2 + (y 77 )

2

== b + a cos 2&) 2e , ^
' + * v ^ ;

6 + a cos 2&) 6 + a cos 2&>

to obtain VZ) we have merely to change the sign of G) and write e = 0, whence

_ v _ a sin 2ft) . x + e {a cos (0 + co) + b cos (0 to)}

b + a cos 2&)

Hence as the mirror is moved towards the source of light, the interference

fringes move across the screen in a direction from the moving towards the

fixed mirror and the displacement of the fringes is proportional to the shift of

the mirror.

This method was employed by Fizeau and Foucault* for obtaining

interference with a large relative retardation between the streams. Adopting
the first of the spectroscopic methods of analysing the phenomena that have

been described above, they obtained bands when the displacement of the

*
C. R. xxi. 1155 (1845) ; Ann. de Ch. et de Phys. (3) xxvi. 138 (1849).
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mirror was such as to give 141 bands between E and F of the spectrum,

corresponding to a relative retardation of 1737 wave-lengths for the

ray E.

31. In a second method of obtaining two correlated streams of light,

Fresnel employed a biprism*. This instrument is a glass prism with a very

large obtuse angle and, as far as regards light incident on its flat surface,

may be regarded as made up of two prisms of very small refracting angles

joined together by their bases. Hence a stream of light incident on the

plane face of the prism is divided into two beams that are slightly bent

towards one another, so that they overlap, and in the common part of the

two streams the interference fringes are perceived.

Let the plane through the edge of the prism perpendicular to the

opposite face be taken as the plane of yz, the edge being parallel to the

axis of y\ and suppose that the flat face is towards the luminous source

which is in the plane of xy and very nearly in the axis of y.

If a be the distance of the edge of the prism from the origin and a1} a? be

the acute angles of the prism, the equations of its plane faces are

z = a x tan
i

and z = a + x tan a2 .

Let t be the distance of the flat face of the prism from its edge, z = a + b the

equation of the screen of observation, and suppose that the ray from the

source (, ??, 0) to the point (x, y) of the screen meets the faces of the half of

the prism on the side of positive x in the points (a?]} ylt a t) and (x2 , y2 ^2)

respectively. Then the undulatory time of passage through this half of the

prism is

V, = *(x1 -)* + (y1 -<r,)* + (a-ty + p V(*2
-
atf + (yt

-

+ (a?
-
xtf + (y- y2)

2 + (a + b -

= a t +
/j, (za a + t) + (a + b za

, ! f(*i-g)
2 + (yi-g)

a

. fo- -i
~~r~

' + ^
, 4zz a + t a + b z2

== a + b + (/* 1) t
(fji 1) x2 tan cti

-yi)
a

, (as
- x,Y + (y

-~~~
a -t

with the conditions

,a t t 9yx a - 1

x, x2 x2 = 0,-j , adx2 t b dy2

*
Fresnel, (Euvret, i. 330.
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whence

F! = a + b + (fj, 1) t (p 1) tan ^ . #2

/a iv 6

= a + b +O -
1) t + %bO -

I)
2 tan2 ^ + b (/*

-
1) tan a^ . (^ - <v2

f a? (u, 1) 6 tan a,
But "' = - '

_ (|
-

a?)
-

(^
-

1) b tan gl

~y

.-. Fa
= a+ 6 + (/A

-
1) t + %b (n - I)

2 tan2 aT

;

(yu, 1)6 tanjiw-
1) tan j

(yu, 1)6

2 yll(a + 6) (yU, 1)

which becomes on reduction

/* (a +&)-(/*-

f + 7?
2 + a;

2 + y
2

T r'

The undulatory time of passage V2 to the same point of the stream that

passes through the other half of the prism is obtained from Fa merely by

writing tan a^ for tan a
3

: hence the relative retardation of the streams,

measured in length in air, is

IT T7- T
6 fyu,a (/LI 1)^} (ft I)

2
(tan

2 a
1 tan2

o.2)A= K 2 r^f

(/A 1) (tan dti + tan a,,) [/n6| + {/za (/t 1) ^} a;]
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and the width of the bands is

{/j,a (p 1) t] (/A 1) (tan ! + tan o^)

'

As an instrument for the production of interference fringes the biprism is

more convenient than Fresnel's mirrors, as the latter are rather difficult to

adjust, but as a measuring instrument it has the disadvantage that the

phenomenon is complicated not only by diffraction, but also by an almost

unavoidable imperfection in its construction. This arises from the fact that

in polishing the faces of the prism it appears to be impossible to prevent a

slight curvature near its edge, which is the very part through which the,

interfering portions of the streams pass. The result of this is that the

deviation produced by the biprism, as calculated from the measured width of

the bands, depends upon its distance from the source of light and is entirely

different from that obtained from measurements with a spectrometer.

32. A third method of obtaining interference fringes is by means of

Billet's* divided lens. This is a convergent lens of short focal length,

divided by a plane through the principal axis into two halves, that can

be separated from one another in a direction perpendicular to the plane
of section by means of a screw. A second screw serves to adjust the sections

to parallelism. The advantage of this instrument consists in the interfering

streams being entirely separated during part of their course, so that either

can be acted upon independently by the interposition of a retarding plate or

otherwise: on the other hand the field is illuminated by the narrow stream

that passes through the space between the halves of the lens and this tends

to complicate the phenomenon.

In order to determine the relative retardation of the streams at a point of

the screen, let us take the plane of xz through the principal axes of the two

parts of the lens, the axis of z being parallel to and midway between them,

and let the luminous point be in the plane z = and near the origin. Then

an investigation exactly similar to that given in 31, leads to the result that

at the point (xy) of the screen (supposed perpendicular to the axis of z), the

relative retardation of the streams that emanate from the point (, 77, 0) and

traverse each one half of the lens is

rl r%

where 2e is the separation of the halves of the lens,

t is the thickness, F the absolute value of the focal length of the lens,

a, b are the distances of the source and the screen from the side of the

lens nearest the former,

* Ann. de Gh. et de Phys. (3) LXIV. 315 (1862) ;
TraiU d'Optique, i. 67 (1858).
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and rlf ra are the absolute values of the radii of the surfaces nearest the

source and the screen respectively.

33. It has been assumed in what precedes that the dimensions of the

source are so small that we may regard the light as coming from a luminous

point. In practice the source is an elongated slit and it remains to determine

under what conditions such an extension of the source is permissible and in

what degree the phenomenon is thereby modified*.

Suppose that the slit, or in the case of Fresnel's mirrors its image in the

plane bisecting the acute angle between them, is initially in the plane of xy
with its centre at the origin and its central line coincident with the axis of y,

and that it is then turned (1) about the line bisecting its length through an

angle </>,
and (2) round an axis through its centre normal to its new plane

through an angle 6. When this has been done, it is necessary in the above

formulae for the relative retardation to write

a sin
<f> (u sin 6 + v cos 6) for a

and u cos v sin 6 for
,

where u and v are the distances of a point of the slit from lines bisecting its

width and its length respectively.

The intensity at the point (#, y} of the screen due to an element du.dv at

the point (it, v) of the slit will be proportional to

r 2-Tr

1 + cos ^ {a + fix + (7 cos 6 $' sin 6 siri
<f>

. as)
u

[.
x

(7 sin Q + /3' cos 6 sin
<f>

. so) v} dudv\,

where the values of a, /3, 7, /3' are given by the following schedule :

a

9

/8

Mirrors Biprism Divided Lens

O -
I)

2

(tan
2

!
- tan2 a2) ab

a + b

2a sin 2w (/" !) (tan j + tan a2)

"

a> + 6 a + b

26sin2<w (p 1) (tan t + tan
.,)

b

7 a cos 2w + b a + b
"

ab-F(a + b)

,
2b sin 2a> (//. 1) (tan o^ + tan ag) b _ Fb_"

(acos2w + 6)
2

(a+b)
2

'e

{ab
-F (a + b)}*

neglecting the thickness in the cases of the biprism and the divided lens.

*
Fabry, These de Doctoral, Marseille, 1892; J. de Phys. (3) i. 313 (1892).

t In the case of the biprism,
- o' sin B sin

<f>
should be added to the coefficient of u and

a' cos 6 sin
<j>

to that of v, where a'=^ " 1^
1**'***

*'
: these terms are however vei7

small.
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Assuming that each element of the slit acts as an independent source of

light the condition most favourable for. brightness* the intensity due to

the whole slit is proportional to

I k

fZ
f2 r

2-7T
1 + cos (a + ftx + (7 cos 9 ft' sin 6 sin < . x) u

J
_l_J k_\_

A,

~Z ~2

(7 sin 9 + ft' cos 6 sin < . x) v] dudv

( 2-7T~
|
+ s T

where

*7T *TT

sin {(7COS0 /3' sin sin </>.#)&} sin {(7 sin +/3' cos sin <.#)}
-.i- A> A,

-
{(7 cos 6 ft' sin Q sin

<f>
. x) k}

-
{(7 sin + ft' cos 6 sin < . x) 1}

A. A,

k being the width and I the length of the slit. Hence the intensity fluctuates

between kl (1 + F) and according to Michelson's estimate the visibility of the

fringes is measured by the absolute value of F.

When there is no tilt of the slit towards the interferential apparatus,

< =
0, and if besides 9 = 0, the visibility is given by the absolute value of

sin (7rykl\)/(7ryk/X) and is independent of the length of the slit. The fringes

will then vanish when k is of such a magnitude as to make yk a multiple of X

and the maxima of distinctness will occur when tan (7ryk/\)
=

7ryk/\, the

corresponding value of the visibility being the absolute value of cos (Tryk/\).

The roots of the equation tan (Tryk/X)
=

(7ryk/\) may be calculated by the

following method due to Lord Rayleigh f : assume

7ryk/\ = (m + 1/2) 7r -y=U-y,
where y is a positive quantity that is small when 7ryk/\ is large; then

substituting this value, we find coty=Uy, whence

y if
I 7 i 7

and solving this equation by successive approximations, it will be found that

It is thus determined that the maxima of distinctness occur when

yjfe/\
= 0, 1-4303, 2-4590, 3'4709, 4-4747, ...,

the corresponding values of the visibility being

1, -217, -128, -091, -079, ...;

* Lord Rayleigh, Phil. Mag. (5) xxvm. 81 (1889).

t Theory of Sound, Vol. i. 207 (1894).
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when <yk/\
= 0, the intensity is zero, but so long as jk/\ is small the distinct-

ness of the fringes will be considerable. Now the linear breadth of the

bands (from bright to bright or from dark to dark) being

the condition for maximum distinctness is that k must be a small fraction of

/3A/7 or of aA/6 in the case of Fresnel's mirrors and in the cases of the

biprism and the divided lens when the thickness is neglected : in other

words the angle subtended by the breadth of the slit at the interferential

apparatus must be a small fraction of that subtended by the width of the

bands at the 'same point.

As the width of the slit is gradually increased, the distinctness of the

fringes will gradually decrease : they then vanish and reappear again in the

complementary position, since sm(7ryk/\)l(7rjkl\) changes sign on passing

through the value zero
;
the distinctness then increases up to a maximum,

that is about a fifth of the prime maximum of distinctness, and so on.

An interesting method of observing this phenomenon is to allow white

light to pass and to subsequently analyse the mixture by a spectroscope with

its slit placed at right-angles to the interference fringes. When the source

of light is a narrow slit, the ordinary fan-like appearance already described is

obtained, the bands being continuous along the whole length of the spectrum.
As the source is gradually made wider, the bands become less distinct, the

visibility decreasing most rapidly at the violet end, until a region without

bands takes its rise at that end and passes along the spectrum to the red end,

to be followed by a second such region and so on, the bands on the two sides

of the bandless space being complementary.

In the general case in which the slit is tilted towards the interferential

apparatus, the visibility depends upon the order of the bands, and when =
is independent of the length of the slit at the point # = 0, its value then

being the absolute value of sin (Tryk/'^K'jryk/X). On moving away from this

point the fringes become less and less distinct, vanish when a; = X/(/3' sin <)

and then reappear as a set of fringes complementary to the former and so on.

At a given point of the field, the visibility is only independent of the length

of the slit if

8' x .

tan 6 = x sin <f> = -j sin d>,

y d

where d = a cos 2a> + b for the mirrors,

= a+b for the biprism,

= (a + b) -ft
for the divided lens,

and the visibility at this point is then the absolute value of

sin (iryk sec B/^Kiryk sec 6j\).
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It thus follows that if the slit be inclined with its upper part towards the

interferential apparatus, the effect of rotating it in its own plane from y
towards x is to move the point of maximum distinctness in the direction of

positive x.

34. In 1834 Lloyd* gave a method for obtaining interference fringes,

that depends upon the interference of a direct stream of light with a stream

from the same source reflected at nearly grazing incidence at a plane mirror.

Though this method is not of great practical importance, it deserves mention

on account of its theoretical interest.

If be the distance of the source from the plane of the mirror, the

relative retardation of the reflected and direct streams at the point of the

screen distant x from its line of intersection with the plane of the mirror and

on the same side as the source, is 2x^/d, so far as it depends upon the

distances traversed, where d is the distance of the source from the screen,

which is supposed at right-angles to the plane of the mirror.

Assuming then that no change of phase is introduced at reflection, the

position of the bands is given by

where n is an integer, its even values giving the places of the bright bands

and its odd values those of the dark bands.

In this case it is clear that at most only one-half of the system of fringes

is visible and that only in a plane through the edge of the mirror, as other-

wise the plane of symmetry, in which the central band lies, falls outside the

region common to the two streams.

If however the phase of the reflected stream be accelerated at reflection

by an amount fnr, the position of the bands will be given by

2^/d = (n + n) X/2,

and while the linear breadth of the bands remains unaltered, the system is

shifted away from the mirror by an amount

where A is the linear breadth of the bands. Lloyd deduced from his experi-

ments that such a shift actually occurs and that it amounts to A/2, whence it

follows that
fj,
= 1 or that the acceleration of phase is equal to TT.

The effect of an extension of the source in Lloyd's experiment is in some

respects essentially different from that determined in the former cases.

Suppose that the source is a slit of light, with its plane initially parallel

to the screen and its central line parallel to the mirror, and that it is

then turned round the line bisecting its length through an angle <f>
and

*
Papers on Phys. Sc. p. 149; Trans. R. Ir. Acad. xvn. 172 (1834).
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next round the normal to its new plane through its centre through an angle
6. If u and v be the distances of an element of the slit from the lines

bisecting its breadth and its length, we must write

d sin < (u sin 6 + v cos 0) for d,

and c + u cos v sin 6 for
,

where c is the distance of the centre of the slit from the mirror, and

proceeding as in the former case we find that the intensity at a given

point of the screen is proportional to

where

. 2-7T (X I a C . a . ,\j} 2-7T (X f . - C
sin -{-; I cos a + -= sin a sm o #> sin

{
-J sm = cos sm

T7._ X |a\. a r
/ j

X, (d\ d

-j(cos0 + -jsin0sin6)^^
-

] jfsin 6 ~, cos sin <6
) 4a V a / j X (a \ a J

}

k and Z being the breadth and the length of the slit.

In order that the visibility may be independent of the length of the slit,

it is necessary that

tan 6 = c sin <f>/d,

which holds for any part of the field, and when this is the case

. 27T/0
/.\/(2w/ 7 a\\= sm -

-j
k sec 6

}
4 -

-, k sec 6 U-
,X \d )l \\\d J}'

or if n be the order of the bands, so that xl(d\) = n,/(2c),

V = sin (vrnk sec 0/c)/(Trnk sec ^/c).

The arrangement most favourable for distinctness is when
<f>
= 0,

= 0.

Thus the case of Lloyd's mirror is characterised by the fact that, even

with the most favourable orientation of the slit, the distinctness is dependent

upon the order of the bands, the prime maximum of visibility occurring when
& is a small fraction of c/n. The effect of a progressive widening of the slit is

the same as in the former case.

This dependence of the visibility upon the order of the bands and their

periodic disappearance may be easily observed with monochromatic light by

leaving the width of the slit unaltered and moving the eyepiece, with which

the bands are observed, away from the source, keeping it all the time in the

doubly illuminated field.

35. In the cases hitherto considered, when white light is allowed to pass,

there is an achromatic band, that is situated at the centre of symmetry of

the system, where the interfering streams have traversed equal paths : the

w. 4
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achromatism of this band is complete. There will, however, be an incomplete

achromatism, the band being achromatic only in the same sense as a telescope

is achromatic, in the case in which there is coincidence of the fringes due to

waves corresponding to the most brilliant part of the spectrum ;
and if in

addition the width of the elementary system be a maximum or a minimum
for some wave very nearly at the centre of the spectrum or in other words

has the same value for two waves of finitely different frequencies, this

coincidence of the fringes will occur for several bands, giving rise to an

achromatic system*.

The relative retardation of phase of the interfering streams for light of

wave-length \ at a point whose coordinate is x may be regarded as a function

of x and X : whence writing
= <(#, X) and expanding by Taylor's theorem,

we have

where 8 =
<f>(x0> X ).

Hence the condition for an achromatic fringe at the point x is

and further the condition for an achromatic system at this place is

=0 .

when both these conditions are satisfied, 8 becomes very approximately a

function of x only throughout the region in question.

The following are cases of some importance :

(1) When the fringes are viewed through a prism with its refracting

edge parallel to the bands, each of the separate systems may be regarded as

shifted through a space dependent upon the wave-length : then if 2c be the

distance between the sources, and d be their distance from the screen,

~ 2?r 2c (

and the condition 98/9\ =
gives

or the position of the achromatic fringe is given by

x = - F(\) + \>F' (X ).

Thus there is an abnormal shift of the central band, which is in addition to

* Lord Rayleigh, Phil. Mag. (5) xxvra. 77, 189 (1889). Cf. also Cornu, J. de Phys. (2) i. 293

(1882). Mascart, ibid. (2) vni. 445 (1889), (3) i. 509 (1892); Phil. Mag. (5) xxvn. 519 (1889);

C. JR. cvm. 591 (1889). Mac6 de Lepinay, J. de Phys. (3) in. 241 (1894).
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the normal shift introduced by the prism, since F' (X ) is negative. This was

first discovered by Potter* and the explanation was given by Airy-f-.

(2) When one of the streams passes through a dispersive plate

.

d

where F(\) is the retardation in wave-lengths introduced by the plate.

The achromatic fringe is here determined by

This case is important as illustrating the difficulty of obtaining the refractive

index of a plate by a measurement of the shift of the fringes caused by its

introduction into the path of one of the interfering streams. With mono-

chromatic light no band has a distinguishing characteristic that can afford a

means of determining the number of complete bands that have been displaced

through a given point by the interposition of the plate : while with white

light, the motion of the centre of symmetry depends upon the dispersion of

the plate and cannot be calculated until that is knownj.

(3) When the distance between the sources of the interfering streams is

a function of the wave-length

2^ FQ)~
\' d

the position of the achromatic band is x = 0, and there will be an achromatic

system if

the achromatism of this system will be complete, if F(\)oc\.

This condition can easily be realised with Lloyd's mirror by the following

arrangement suggested by Lord Rayleigh. A series of real diffraction

spectra are formed by white light from a slit, that falls successively on a

grating and an achromatic lens : the central white image and all the spectra

with the exception of that which is to form the proximate source of light, are

intercepted by a screen. Then since the deviation of any colour from the

central white image is proportional to X, the condition for an achromatic

system of fringes will be realised by an arrangement of the mirror, such that

its plane passes through the position that would be occupied by the central

white image.

A less perfect fulfilment of the achromatic condition is obtained by

replacing the diffraction spectrum by one formed by a prism, adjusted so that

*
Potter, Phil. Mag. u. 83, 276 (1833).

t Airy, ibid. n. 161, 451 (1833). Hamilton, ibid. n. 191, 284, 371 (1833).

J Stokes, B. A. Report, 1850, part 2, 20; Math, and Phys. Papers, n. 361.

Lord Eayleigh, Phil. Mag. (5) xxvni. 86 (1889).
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for the brightest part of the spectrum. Assuming Cauchy's law of dispersion,

we may write

and the condition for an achromatic system gives SB = A\<?, whence

F(\)l\ = A(\*- X 2

/3)/X
3

.

As an illustration of the effect produced by the employment of the

prismatic spectrum, let us determine the increase in the number of bands

that can be observed, when the light has wave-lengths X and

When complete discrepance first occurs for wave-lengths X and X
,

x _ _
X d~ ~TT d~ f

2'

1+1 =
2w F(\)/\ 3X X2 -X 2

/3 3 (X/X,,)
2 -

1/3
'

whence if X = X + &X,

?(1+SX/X )
3

(
i_ _ o , _ \AQ

o o

and

n ^(^r I <= +z^
USX

_
3X 1

This gives the order of the band at which complete discrepance first occurs

for waves of length \ and X + &X, the adjustment being made for X . When
no prism is used, so that ^(X) is constant, the corresponding value of n is

X /(28X), so that the effect of the prism is to increase the number of bands in

the ratio 2Xo : 38\.

(4) A fourth case is that in which not only the separation of the sources

but also their distance from the screen of observation varies with the wave-

length of the light : in this case

27T
"

X

and the condition for an achromatic system is that

This case may be realised with Billet's divided lensf; for since the focal

* Lord Eayleigh, loc. cit.

t Mac<5 de Lepinay and Perot, J. de Phys. (2) ix. 376 (1890).
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length depends upon the wave-length, the various coloured images that form

the proximate sources of light are at different distances from the screen, and

they are also at different distances apart, as they are situated on lines

through the source and the optical centres of the two parts of the lens.

To determine the position of the achromatic system, we have (neglecting

the thickness of the lens)

,, _ 2-7T %CIX
=T ab-F(a + b)'

a and b being the distances of the lens from the source and the screen.

Hence the distance of the screen at which the achromatic system is formed

is given by

ab = (a + b)

whence 6 = -

o

Since this distance is independent of the separation (2e) of the halves of lens,

it is always possible to adjust the separation so that the position just

determined falls within the region common to the interfering streams.



CHAPTEE IV.

INTERFERENCE PRODUCED BY ISOTROPIC PLATES.

36. IN the cases of interference considered in the last chapter, it is

necessary that the dimensions of the source be strictly limited, and the

phenomena are characterised by the fact that the fringes are visible through-
out the region common to the interfering streams, whatever may be the

distance of the screen or of the observing instrument from the interferential

apparatus.

There are however cases of interference in which the limitation of the

source is unnecessary and the fringes are then localised, requiring a definite

focal adjustment of the instrument with which they are observed, if they are

to be seen distinctly.

This distinction between the two classes of interference phenomena must

not be insisted on too strongly; for in the case of the former class it is

possible theoretically to obtain localised fringes with an extended source,

while in the cases now to be considered interference bauds, visible at all

distances within the region common to the streams, can be obtained,

provided the stream of light be limited by a properly orientated slit placed

either before or after the interferential apparatus.

37. Suppose that light from a luminous point S (#', y ', z') is divided into

two streams and that these, after traversing different routes, meet again at a

Fig. 12.

point P(x, y, z): then if the suffixes (1) and (2) refer to the two streams,

their relative retardation, measured in length in air, is at the point P
A=F2 -Fa (1),
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where V denotes the undulatory time of passage between the two points, the

propagational speed of light in air being taken as unity.

But if the initial and the final media be air and a, /3, 7 and a', /3', 7' be

the direction-cosines of the final and initial straight portion of a ray, the

principle of least time gives for the variation of the undulatory time of

passage
8V=a8x + @8y + y8z-a8x - &&/ -

y'Bz' ............... (2),

whence the variation of the relative retardation is

54 = (a,
- oO 8x + (& - A) 8y + (7l

-
71) S*

-
(a,'

-
a/) 8x' - (&'

- &') ay - (72
' -

7l') S/ ............(3),

which is zero if

8x : By : 8z :: a2 + i

' & + fti
'

V* + 7i>

If then, as is generally the case, the two waves issuing from 8 have very

nearly the same form and position at P and their radii of curvature are large

compared with their relative retardation, it follows that this relative retarda-

tion will remain unaltered when the initial and final points are displaced

along the bisectors SS' and PP' of the angles between the initial and the

final directions of the two rays that start from the one point and cross at the

other point.

Let a/, &/, pi, qi be the parameters of the initial straight part /SJ.J and

i> h, pi, ql those of the final part .BjP of one of the rays between 8 and P
and let similar quantities with the suffix (2) denote the parameters of the

initial and the final parts SA 2 ,
B2P of the second ray; and suppose $

displaced to 8' on the bisector 88'.

The two rays from 8' that meet at P are for the first part of their course

very near to &4 a and A 2 respectively and have for their bisector SS'. If

then a/ + Sa/, &/ + Sb^, pi + SpS, qi + SqS be the parameters for the one and

aj + 8a2', 62
' + S62', p2

' + Sp2', q2

' + 8q2

'

be those of the other,

*
= 0.

The new parameters for the final portions of the rays are

where 8alt 8a3 ,
... are of the form

A lt A^, ... depending upon the interferential apparatus and being given

when that is known. But the relations connecting the parameters of B*P to
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those of SAz are only slightly different from those connecting the parameters
of S1P and SA l ;

we can therefore write

8a2
= A 1 Sa2

'

+ Bl 8b2

' + Pl Bp2

f + Q, Sq*'

= -AM - BA' - Pfa' - &V = - Saj ;

similarly 86X + 862
=

8pi + 8p2
= 8ql + Bq2

= 0,

which express that the rays at P that emanate from S' have the same

bisector as those at the same point that start from &

It follows that the relative retardation is completely determined if the

position of PP' be giveu, without its being necessary to define the position

of P on PP' or of 8 on 88'.

If a = az+p, y = bz + q be the equations of PP', then

&=f(a,b,p,q) ................................. (4).

Now to different points of the source correspond different directions of

the line PP', and the condition for the distinctness of the fringes at P is

that A must be stationary for all points of the source that contribute to the

illumination of this point : if this condition be satisfied for the point P, it

will be sensibly so for the neighbouring points.

Suppose that the fringes are observed with an optical instrument, the

focal adjustment of which can be altered while its optic axis remains fixed

in space, and let us take the axis of z along the optic axis, the origin being
some point in the final medium distant D from that on which the instru-

ment is focussed. Then the values of the parameters corresponding to the

optic axis are

a^= 6 =p= q=Q,

and these parameters will be small for all neighbouring directions.

Let f^_!^_=J> ........................... (5 )
#i- yin -

be the equations of a line near the optic axis, then the values of the

parameters are

_ ft- _ _
~-r ~D-c' p ~

D-S ' q
~

and the equation

gives

* -
f.} ^-^,
dp) /)-?
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the suffix (0) denoting that in the partial differential coefficients the para-

meters are replaced by their common value zero. These coefficients are

therefore constant, and 8A may be written in the form

At the point on which the optical instrument is focussed, xl =yl
= 0, and

hence the condition of visibility is

(A-PD)^ + (B-QD}r} = ........................ (9),

and if this condition be satisfied, the orientation of the fringe at this point

is given by
yl/a!l

= -(A-P^/(B-Q^ ........................ (10).

Now and 77 being independent variables, the condition of visibility

cannot in general be satisfied, unless a linear relation is established between

them by limiting to one plane the final directions of the rays through P,

as may be done by the introduction of a slit either before or after the

interferential apparatus.

Suppose the slit introduced between the apparatus and the observing
instrument in the plane z = and let

<f>
be the angle that the final plane of

the rays through P makes with the plane of xz, then rj/g tan <, where

tan
<f>
= - (A - PD)I(B - QD) .....................(11):

thus the orientation of the slit depends upon the focal adjustment of the

observing instrument, but is independent of the plane of the slit
;
on the

other hand the orientation of the fringes given by (10) is independent of the

focal adjustment of the instrument but depends upon the distance of the slit

from the point observed.

If however the interferential apparatus be such that

A/B = P/Q = m say ........... . ...............(12),

the condition for visibility becomes

(4-PD)(ro+i7) = ...........................(13),

and without any limitation of the stream, the interference is visible, localised

at the point given by
D = A/P .................................(14),

while by limiting the stream in such a way, that the final directions of the

rays intersecting on the optic axis of the observing instrument lie in a plane

making an angle tan"1

( m) with that of xz, the localisation is destroyed and

the interference becomes visible at all distances.

In this case y^x-i
= m and the bands are parallel to the plane, to which

the final direction of the rays must be limited, in order that the localisation
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of the fringes may disappear : however, if the slit be in the plane of localisa-

tion, 2/i/#i is indeterminate and no bands are visible*.

38. Having obtained these general propositions respecting the visibility

of interference fringes, we may now proceed to the consideration of the

phenomena of interference produced by isotropic plates. In the first place it

is necessary to calculate the intensities of the reflected and the transmitted

light, when a train of plane waves of monochromatic light (\) falls upon a

parallel plate of index /*. The resultant reflected train is then made up of

an infinite number of components, of which the first is reflected at the outer

surface of the plate, while each of the remainder has been reflected an odd

number of times within it. Similarly the first component of the resultant

transmitted train passes through the plate without reflection and each of

the remaining components passes out after an even number of internal

reflections.

So far as it depends upon the distances travelled in the plate and in the

surrounding medium, which we shall suppose to be air, the relative retarda-

tion of two successive components, measured in actual length in air, is

A = 2jj,d sec i 2d tan r . sin i = 2pd cos r (15),

where d denotes the thickness of the plate, i is the angle of incidence, and

r is the corresponding angle of refraction. Representing the polarisation-

vectors by complex quantities, this retardation is expressed by the introduc-

tion of a factor exp ( iB) where 8 = 2?rA/X = /cA is the relative retardation

of phase.

At each reflection and refraction, the polarisation-vector is altered by a

certain factor : this shall be supposed to be 6 for reflection and c for refrac-

tion in the case of progress to the plate from the surrounding medium, and

to be e for reflection and f for refraction when the light proceeds to the

surrounding medium from the plate. Further we may suppose that at these

reflections and refractions there occur corresponding accelerations of phase,

represented by ft, 7, 17, <f> respectively : these will be expressed by the factors

exp(t/3), exp (iy) ....

Now between the factors of reflection and refraction and between the

corresponding changes of phase there exist certain relations, that Stokes has

determined from an application of the principle of reversion }.

Let be a point on the interface of two transparent, homogeneous and

isotropic substances and let 10 be the direction of propagation of a wave in

the first medium incident on the surface, OF, OR the directions of the

normals of the reflected and refracted waves and OR' the normal of a

* Mace de Lepinay and Fabry, J. de Phys. (2) x. 5 (1891). Fabry, These de Doctoral,

Marseille, 1892; J. de Phys. (3) i. 313 (1892).

t Camb. and Dub. Math. J. iv. 1 (1849) ;
Math, and Phys. Papers, n. 89.
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reflected wave corresponding to an incident wave propagated in the direction

RO and hence also that of a refracted wave due to a wave propagated in the

direction FO. As we are dealing with one of the plane polarised com-

ponents of a stream of common light, we may assume that the polarisation-

vector of the incident waves is perpendicular to the plane of incidence and

then by symmetry the vectors of the reflected and the refracted waves will

be in the same direction.

Let z be measured from negatively backwards along 01 and positively

forwards along OF, OR and OR', and let it denote the equivalent length of

path in vacuum : then writing for shortness

the polarisation-vectors for the incident, reflected and refracted waves may
be represented by

and it follows, from the principle of reversion, that the reflected and the

refracted waves reversed must produce simply the incident wave reversed.

Now in order to represent this reversion, it is sufficient to change the

signs of t and of z, or which is the same, those of /9 and 7. The reversed

reflected wave then gives rise to waves with polarisation-vectors

propagated respectively along 01 and OR', and the reversed refracted wave

gives rise to waves propagated in the same two directions, for which the

polarisation-vectors are respectively

c/e<r-y+*)t and cee<

Hence we must have

or &e (2y-0-*)i + e = 0.

Whence equating real and imaginary parts, we obtain

4>
= 7, c/=l_6a

, + 77
= 27, e = -b ...............(16).

Returning now to the light reflected from or transmitted by the parallel

plate, let us suppose for the sake of obtaining a result that will be of use to

us later, that the plate is slightly opaque, and let the polarisation-vector be

reduced in the proportion of 1 to 1 qdx in traversing a distance dx within

the plate : then writing for shortness exp (- qd sec r) = g, 1 to g will be the

proportion in which the vector is reduced by the defect of transparency in a

single transit.

Measuring now z positively forward along the directions of propagation

of the reflected and the transmitted streams, and denoting the maximum
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value of the polarisation-vector of the incident train by unity, the symbolical

representation of the reflected train is

if we may suppose that the slight opacity of the plate does not invalidate

the relations (16).

In like manner the expression for the transmitted stream is

Hence the intensity of the reflected light is

* (1-^ + 4^8
(1
- &y)

2 + 46y sin2 (8/2
-

and that of the transmitted light is

.(18).

.(20).
(1
- 6y)2 + Wtf sin2

(8/2
-

17)

The corresponding intensities in the case of a perfectly transparent plate,

obtained from the above expressions by writing g=l, are

- 62
)
2 + 462 sin2

(8/2 -77)

39. It has been assumed in the above investigation that the reflection

and refraction takes place at a definite surface, up to which the media on the

two sides retain their homogeneity without any change. That such a state

of things really exists is in itself extremely improbable, and indeed the

observed phenomena of the reflection and refraction of polarised light appear
to indicate that the passage from one homogeneous medium to another is

through a very thin transition-layer, within which a rapid variation of

properties occurs: if the thickness of this layer be comparable with the

wave-length of light, we shall see that a change of phase at reflection and

refraction will result. So long as the distances with which we are concerned

exceed a few wave-lengths, no great error will probably be introduced by

ignoring the transition-layer, but that our results cannot be applied to the

case of extremely thin plates is shown at once by the fact that the expression

for the intensity of the reflected light does not vanish with the thickness, as

it should of course do.

It has also been supposed that the disturbance within the plate is fully

represented by waves with transversal polarisation-vectors. If the existence
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of a transition-layer be denied, tbe changes of phase must be attributed to

undulations with a longitudinal vector, that are called into existence at

reflection and refraction and would be themselves capable of producing trans-

versal waves on encountering a reflecting surface. These longitudinal waves

must be of the nature of superficial undulations becoming insensible at a

very short distance from the surface, and they may therefore be left out of

our calculations, so long as the plate that we are considering is not very thin.

Now the case of thin plates is the very one to which we want to apply
our calculations, and for such plates, as we have just seen, our formulae no

longer hold. We may however obtain a result that agrees very well with

observed facts, if we neglect any changes of phase at the reflections and

refractions, as well as the transition-layers, or the superficial undulations, to

which they appear to be due. Writing then 77
= 0, we have as the intensities

of the reflected and the transmitted light

i.
-

(1
-

&y.)
2 + 4&y sin2

(8/2) (1 - 6y )
2 + 4&y sin2

(8/2)'

' '

in the case of a semi-transparent plate, and

46' sin2
(8/2) (1-62

)
2

(1
- 62

)
2 + 462 sin2

(8/2) (1
- 62

)
2 + 462 sin2 (8/2)

* '

when the transparency is perfect.

It follows then that the reflected light becomes a minimum and in the

case of perfect transparency vanishes, when 8 = 2ri7r, or when

2fjid cos r
= n\ (24),

n being an integer.

40. Suppose now that the light is not strictly monochromatic, but is

made up of a number of constituents with periods only slightly different from

one another. If the thickness of the plate be very great compared with the

wave-length, then 8 will vary enormously for a very small change in X, and

sin (8/2) will assume all values from 1 to +1. This being the case, the

intensity of the reflected light, that of the incident light being taken as

unity, may be represented by

-Jl

TT J o ( 1
- &y)

2 cos2
C + ( 1 + 6y)

2 sin2 f
'

provided we may assume that the intensity of the constituent streams varies

but slightly with the wave-length. Similarly the intensity of the transmitted

light is

o (1
- &y)

2 cos2
f+ (1+ &y)2 sin2
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Now writing tan =
(b/a) tan

,
we see at once that

a2 cos2 + 62 sin2 a&
'

Hence the intensities in the two cases are

(1
-
ftyy

- 62
(1
-

gr

2

)
2

_ (1
- 6

and
i

the result that would be obtained by summing the intensities of the different

components into which the incident stream is divided by the reflections and

the refractions*.

41. We have now to justify the application of our formulae to the cases

that actually occur, in which the faces of the film are not necessarily parallel

and in which the light incident upon it consists not of a train of plane waves

but of a number of distinct streams coming from the various points of an

extended source placed at a finite distance from the plate.

Suppose that the film of index /z is included between two media of index

fi, of which the upper one is a thick parallel plate, while the lower boundary
of the film is either a spherical surface of very large radius or a plane not

necessarily parallel to the faces of the plate.

Let S be a point of the source and let us determine the relative retarda-

tion at some point P of the streams, that emanate from S and have been

reflected at the outer and the inner surfaces of the film respectively.

In the case of the stream externally reflected, the ray through P lies

entirely in one plane and is projected on the upper surface of the film in the

straight line SA 1AA 3P, the points A 1} A, A 2 denoting the places at which a

change of direction occurs : on the other hand the ray internally reflected lies

S A, A A
2

P

Fig. 13.

in general in two planes and its projection on the upper surface of the film is

the broken line SB^B^BB^B^P, refraction or reflection taking place at the

points indicated by Blt B2) ....

Let i and r be the angles of incidence and refraction at A 1} then r' is the

angle of incidence at A and r' and i are the angles of incidence and emergence
at Az .

*
Kirchhoff, Vorl. iiber Math. Optik. p. 164.
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Let t'j , r/"

<r
' v

,
>- be the angles of incidence and refraction at

' 3 ) '3 A*3

r '
?* 3 > ^4 ./

and 0, 1} 2 the angles that &4P, SB, BP respectively make with some

fixed straight line on the upper surface of the film.

Denote the heights of S and P above the surface of the thick plate by c

and C, the thickness of the plate by h and that of the film measured normally
to the faces of the plate by t. Then

A = c (sec ij sec i) + C (sec it sec i) + p!h (sec r/ + sec r3

'

2 sec r')

+ fit (sec r2 4- sec r3) (25),
with the conditions

= c (tan i cos 6 tan ^ cos 0^ + G (tan i cos tan it cos #2)

4- A (2 tan r' cos tan r/ cos #j tan rs

'

cos 2)

t (tan r2 cos 6^ + tan rs cos 2) (26),

= c (tan t sin tan i\ sin 0j) + (7 (tan i sin tan *4 sin #2)

+ ^ (2 tan r' sin tan r/ sin 0! tan ?V sin 2)

(tari r2 sin 6^ + tan r3 sin 2) (27).

Multiplying the last two equations by sin i cos 6 and sin i sin respec-

tively and adding them to the former, we obtain

/I sin i sin i^ cos cos 1 sin i sin ^ sin sin 0, A
A = c : cos i

\ cos ij y

'1 sin i sin t'4 cos cos 2 sin i sin i4 sin sin #2
cost

, , /I sin r' sin r/ cos cos X sin r' sin r/ sin 9 sin #x

cos

+ lit

1 sin r' sin r/ cos cos #2 sin r' sin r3

'
sin # sin

H-- 7
cos rs

I sin r sin r.2 cos cos 6^ sin r sin r2 sin sin l

cos r2

1 sin r sin r3 cos cos #2 sin r sin rs sin sin 62\
H

cos r3 /

where r is the angle of entry into the film corresponding to an angle of

incidence i on the first surface of the plate, so that sin r = sin
i/fi.

Hence

1 COS 6i ^ 1 COS 64 ,, /I COS 1 1 COS 3

'

A = c-;
--hi/. -.

--
1- ft hi
-

7
--h

cos i-i cos i4 V cos *! cos rs

1 cos 62 1 cos es\

cosr2 cosrs

(29),
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where e denotes the angle between corresponding parts of the rays, so that

for instance

cos e2 = cos r cos ra + sin r sin r2 cos (01 6).

When the angles e are very small, which will be the case when t is very

small, we have neglecting e
2

A = 2/i cos r.

To the same degree of approximation, the stream that is reflected (2p 1)

times within the film is retarded relatively to that reflected at its upper
surface by an amount

Ap = 2/A ( a + ti + ... + tp) cos r,

where ti, tz ... denote the distances below the upper surface of the points at

which the reflections at the lower side of the tilm occur. Since however the

importance of the successive components decreases very rapidly as their order

becomes greater, we may, provided the thickness varies only very slowly,

write the above expression for the retardation as

Ap
= p . 2/j,t cos r,

where t is the thickness at the point of reflection of the externally reflected

stream, and in that case the intensity of the reflected light is given by the

expression already obtained for the case of a parallel plate. If however the

incidence be very oblique and the variation of the thickness be not very

small, there may be a considerable departure from the theoretical simplicity

assumed in the above investigation *.

42. If now we pass to another point of the source, we obtain for the

intensity at P an expression of the same form, in which r and t have new

values, and since there is no regular interference between streams that start

from different points of a source, the resulting intensity is the sum of all

such expressions for those points of the source that contribute to the illumina-

tion of P.

In general then there will be no visible interference at P, unless at this

point A has the same value for all the points that send light to P, or which

is the same, for all points of the upper surface of the film, that are included

in the area traced upon it by the rays through P, that meet the object glass

of the optical instrument, with which the interference is observed.

The condition of visibility then is

cZA = 2/ji cos rdt Ipt sin rdr

=
2/u, cos rdt 2t tan r cos idi = (30),

for all points of the film utilised.

43. As a first application of these considerations, let us take the case in

which the film is a parallel plate. Then dt = and the condition of visibility

* Mac6 de Lepinay, J. de Phys. (2) ix. 121 (1890).
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is that di = 0, which expresses the fact that the interference is localised at

infinity.

The bands are arcs of circles and have this peculiarity that the order of

the band decreases as the angle of incidence increases
;

for at normal

incidence

A =
2/j,t

= n \,

where n is not necessarily integral, and at an angle of entry r

A = 2fit cos r = ri\,

T
whence A A = 2/j,t (1 cos r)

= 4tu,t sin2 - = (w n) X.
Z

To determine the angular width of a band, corresponding to a change of

n into n 1, we have

2/j,t sin rdr = X,

whence di =
cos r

t
'

sin 2i
'

Thus the bands are very broad at normal and at grazing incidence, and their

minimum separation, corresponding to the minimum value of cos r . cosec 2i,

occurs when

These bands were first observed by Haidinger with plates of mica*.

44. An interesting case of these bands occurs when the plate is less

dense than the surrounding medium and the angle of incidence is very

nearly that corresponding to total reflection : they are then known as

Herschel's bands t. This case may be realised by employing a parallel plate

of air bounded on one side by the face of a prism.

Denoting by r and i the angles of incidence and refraction at the plate of

Fig. 14.

*
Haidinger, Fogg. Ann. LXXVH. 219 (1849); Wien. Ber. xiv. 295 (1854). Mascart, Ann. de

Ch. et de Phys. (4) xxin. 126 (1871). Lummer, Wied. Ann. xxni. 49 (1884).

t Herschel, Phil. Trans, xcix. 274 (1809). Mascart, C. R. cvm. 596 (1889); Phil. Mag. (5)

xxvn. 524 (1889); J. de Phys. (2) vm. 445 (1889) : (3) i. 509 (1892). Lord Kayleigh, Phil. Hag.

(5) xxvin. 197 (1889).

w. 5



66 The Analytical Theory of Light [OH. iv

air, and by p and 6 the angles of incidence and emergence at the surface of

the prism, the angle of which is A, let r
, Tr/2, p0> be the values of these

angles, when the light meets the plate at the critical angle. Then

A = 2cost = n\ ...........................(31),

sin i =
fi sin r 1 =

/i,
sin r

^

sin =
fjL

sin p sin 8 =
/j,

sin p V ............... (32).

A =
p + r = pQ + r

Since the differences 6 6 , p po, r r are very small, these equations

give

6 - QQ = n (p
-

po) cos po/cos
= -

yu, (r
- r ) cos /3 /cos \

smi = l+fi(r r ) cos r = 1 - (0
-

) cos r cos /cos p
j-

...... (33),

cos2 i = 2 (6 ) cos r cos /cos p

whence A* = ?i
2X2 = 8P

C S r C S &0
(9
-

) . ...(34),COS pQ

and the angular width of the ?i
th band in monochromatic light X, correspond-

ing to a change of n into n + 1, is given by

4<t
2

'

cos r cos ^

Hence the width of the wth band is approximately proportional to the order,

to the square of the wave-length and to the inverse square of the thickness.

Let us now consider the phenomenon in white light*. Since cos#
,

cos p and cos r vary but slowly with the wave-length, we may write

A = ?iX = A(0-0 )* ...........................(36),

where h may be regarded as constant, and is a function of the wave-length.

TVT 7/1 sin A 7Now a0 =-n
- du,

cos B cos r

and since the coefficient of dp may be considered as constant, is a linear

function of /z,
and we may write

6 = a + b\-2
................................. (37).

Now the bands will be superposed for all colours for which the wave-

length is near a certain value chosen arbitrarily, if the differential coefficient

of the deviation with respect to the wave-length be zero, the order n being

supposed to be constant. The deviation of the fringes of the same order

relatively to more remote colours, whether of greater or less wave-length, is

then in the same direction, and the band may be said to be achromatised for

the colour of concordance.

* Mac de Lepinay, J. de Phys. (3) in. 163 (1894).
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The condition for achromatism for light of wave-length X is

and the deviation of the band achromatised for this radiation is

= a + 2b\~2
.................................(39),

the order of the band being given by
n\ = h(d-e$ = hjll\ ........................... (40).

Eliminating \ between these last two equations, we obtain

= a + 2njb/h................................. (41),

and the width of the bands is 2 Jbjh, which is practically constant.

Thus in white light the coloured bands are nearly equidistant, though in

monochromatic light their width varies as the square of the wave-length.

45. Let us next consider the case in which the film is contained between

a thick parallel plate of thickness h and a plane surface inclined to the

faces of the plate at a small angle a*.

Let us take as origin the point in which the edge of the wedge-shaped
film is met by a plane through the optic axis of the observing microscope
normal to the thick plate, and let

-v|r
be the angle between this plane and one

perpendicular to the edge of the film.

Then denoting by R the radius-vector to the point in which the upper
surface of the film is met by the ray that emerges from the thick plate in

the direction of the optic axis and by a the distance of the same point from

the edge of the wedge,
t = a tan a = R cos

T|T
. tan a,

. '. dt = tan a (cos yjrdR R sin ^rd^fr)
= t (cos -ty-dR R sin tydty)/a.

If C be the height above the top of the thick plate of the point P on which

the microscope is focussed

R = const + C tan i + h tan /,

. . dR = C sec2 idi + h sec2 r'dr = (C sec2 i + h cos i sec3

r'/ji') di

= (D sec i + h cos i sec3
////) di,

where D is the distance of P from the top of the plate measured along the

optic axis of the microscope.

Hence the condition of visibility (30) becomes

yu,cosr /
, D .

,
-, .^ tan r cos i , D-

(COS "drdR R Sin -JrcMr)
= r--r -r--:

-
,. , dR,

a D sec i + h cos i sec3

r/jf

or writing dR = %, Rd-^r
=

r),

a sin r sec2r cos2 i

sty-i) sm^ = -
.
- - =-n-,

yu-
D + h QQ&I secsr

/fj,

Mace de Lepinay, J. de Phys. (2) ix. 121 (1890).

(42).

52
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Now f and 77 being independent variables, this relation cannot in general be

satisfied, unless the final directions of the rays that pass through P be limited

to one plane by the introduction of a slit : the points at which the rays are

reflected at the upper surface of the film will then form an element of a

line, and if this make an angle <J>
with the trace of the plane of incidence,

77/
= tan

</>
and

n _ h cos2 i a cos2
i sin r cos

<f>

/jf cos
3 r ft

'

cos2 r
'

cos
(<j> + >Jr)

whence it follows that the plane of localisation depends upon the orientation

of the slit.

If the fringes be visible with an extended source, the value of D must be

independent of
<j>

: this occurs

(1) when
-/r
= or 180, the plane of localisation being then given by

~ _ h cos2 i a cos2 i sin r

fjf cos
3
r'
~

fi cos2 r

the upper or lower sign being taken, according as ty
= or 180

;

(2) when r= or the incidence is normal
;
the fringes are then localised

at the point

that is at the apparent upper surface of the film
;

(3) when r = 90 or the light meets the film at the critical angle. The

plane of localisation is then at infinity.

We may notice that the expression h cos2
i sec3

r'/p' gives the position

of the first focal line of the pencil, that emanates from a point on the lower

surface of the thick plate and has its axis on emergence along the optic axis

of the microscope.

46. As a final application of the formulae, let us take the case of

Newton's rings formed by reflection from a thin film included between a

thick parallel plate and a convex surface of the same substance of very small

curvature*.

Take the point of contact of the surfaces as the origin of a rectangular

system of coordinates, the upper surface of the film being the plane of xy,

that of xz being parallel to the plane normal to the plate through the axis

of the microscope, with which the rings are observed, and the axis of x being
directed towards the luminous source.

Let (x, y, 0) be the cartesian and (R, i/r)
the polar coordinates of the

point, in which the top surface of the film is met by the ray that emerges

* Mac6 de Lepinay, loc. cit. Cf. also, Feussner, Marburg. Ber. (1880) 1
; (1881) 1 ; (1882) 1 ;

Wied. Ann. xiv. 545 (1881). Wangerin, Pogg. Ann. cxxxi. 497 (1867) ; Wied. Ann. XL. 738 (1890).

Sohncke and Wangerin, Wied. Ann. xn. 1, 201 (1881); xx. 177, 391 (1883). Gumlich, ibid. xxvi.

337 (1885). Flux, Phil. Mag. (5) xxix. 217 (1890).
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from the plate in the direction of the optic axis of the microscope : then if

(oc + f, y + 1], 0) be the coordinates of a point near to x, y, 0, we have

p being the radius of the spherical surface, and

.= cos r + t] sm YT
= cos - + i sm

**p p
%

and % = (D sec * + ^ cos i sec3

r'/p) di,

D having the same meaning as in the last case.

Hence we have for the condition of visibility

sin r sec2 r cos2
i,

, \

-g (f COS >Jr -f 77 Sin l|r)
=

.R
v

and introducing the relation T;/
= tan 0, the plane of localisation of the

fringes is given by

~ _ A cos2
1 .R sin r cos2

1 cos < , . .

^

fji

'

COS3 /
2/Lt COS2 r

'

COS(<^ i/r)'"

an equation that gives the same results as were obtained for the case of a

wedge-shaped film.

47. In the case of curved interference fringes, the retardation of phase 8

is to be regarded as a function of oc, y and X, and the equation

=
<t>(x,y, X) ................................. (45),

in which X is regarded as a constant, determines the form of the fringes as

seen in homogeneous light.

If the light be white, the bands will be in general coloured, but those

points will be achromatic for which

-0

This condition gives a relation between x and y, and determines a curve

that may be called the achromatic curve, but inasmuch as the value of 8 is

not constant along it, this curve is not an achromatic band. The achromatic

bands are a system of infinitely short lines, that exist only at the points of

intersection of the achromatic curve with the lines 8 = const.

In the case of Newton's rings, the thickness of the film at the point

(x, y) measured from its thinnest point is

(x* + y*) .............................. (47),

-7T

whence 8 = (a + b (x* + y
2

)} cost ........................... (48),X

and the achromatic curve is

..............................(49).
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It is thus wholly imaginary, if a and b be both positive and finite : but if

a = there is an achromatic point x = 0, y = 0.

The result is however different when the rings are viewed through a

prism. We may then suppose that each monochromatic system is shifted as

a whole parallel to the axis of x by an amount dependent upon the wave-

length of the light. The apparent coordinates being f and
77, so that

= *-/(X), V = y ...........................(50),

the equation of the rings as seen through the prism is

and the equation of the achromatic curve is

{ +/(V> - *,/' <*)}" + ^ =V I/' (V>}
2 -

a/6 ............(52),

which represents a circle with its centre on the axis of .

If a = 0, the curve is real and passes through the point

that is, the image of the point of contact (# = 0, y = 0) in light of wave-

length \o- At the point

I=-/(V> + 2X /'(X ), 77
= 0,

in which the circle again meets the axis, the bands are parallel to the

achromatic curve and are specially developed.

As a increases from zero, the radius of the achromatic circle decreases, the

centre remaining fixed, so that the two points in which the circle cuts the

axis are on the same side of the image of x 0, y = 0. When a is such that

the circle reduces to a point, given by

and since there are two coincident achromatic points on the axis, the

condition is satisfied for an achromatic system. We then have

a/6
=

of,

so that t = a + bat? = 2a,

and hence for an achromatic system, the thickness at the point must be due

half to curvature and half to imperfect contact at the place of nearest

approach of the surfaces*.

48. It has already been stated that a defect in the monochromatism of

the light leads to the final obliteration of the interference fringes as the

* Lord Bayleigh, Phil. Mag. (5) xxvin. 203 (1889).
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relative retardation of the interfering streams increases, and the visibility of

the phenomenon has been determined in the simple case of a source emitting
radiations that are grouped about some principal period with intensities

given by Maxwell's law.

Another instance of a somewhat different character is afforded by
Fizeau's* celebrated experiment with Newton's rings viewed at normal
incidence in the light from a soda-flame. Roughly speaking, this light

may be said to consist of two systems of radiations, the wave-lengths of

which differ from one another by about one-thousandth of that of the one

with the lower frequency. When the film is very thin, the difference of

phase is sensibly the same for both systems, so that the maxima due to

each coincide and the rings will have their greatest possible distinctness.

As the thickness of the film is increased, the rings will move in towards

their centre, becoming less and less distinct, and when the distance between

the surfaces of the film is of such a magnitude that the relative retardation

of phase for one radiation exceeds that for the other by half a period, the

maxima of the one will be superposed on the minima due to the other and

the rings will be no longer visible. A further increase in the thickness of

the film will cause a reappearance of the fringes, the distinctness of which

will increase up to a maximum, corresponding to the case of the relative

retardation of phase for the one radiation being a complete period in excess

of that for the other.

If the light from the soda-flame had the simple character stated above,

these phenomena would be repeated indefinitely and the visibility of the rings

would be the same at the successive maxima of distinctness : this however is

not the case, and it becomes important to determine the manner in which

the visibility of interference phenomena depends upon the radiations from a

complex source and to investigate whether the variation in the visibility

as the relative retardation increases affords a means of discovering these

radiations.

49. Suppose then that / (X) d\ is the intensity of illumination due to

streams, the wave-lengths of which are comprised between \ and \ + d\, and

that A is the relative retardation in actual length in air introduced by the

interferential apparatus : then the intensity due to these streams is

/ 27T \

2(l+cos^A }f(\)d\ ........................ (53),
\ A, /

and if the radiations from the source are grouped about some principal

radiation, the total intensity is obtained by integrating this expression

between the limits \ and X2 the wave-lengths of the extreme constituents

of the complex stream.

*
Fizeau, Ann. de Ch. et de Phys. (3) LXVI. 429 (1862).
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Let X"1 =
( 1 + x) \

~l
, the values of x corresponding to \i and \2 being

#j and #2 respectively, then writing /(A,) d\ = (j) (x) dx and A =p\ ,
we have

p2 r*2

7 = 2 < (x) dx + 2 I cos 2?rp (1 + a?) . < (
./ Xi J X l

(54),

where

rx-i rx% rxz

P = I < (x) dx, C = I cos Zirpx .
<f> (x) dx, S = I sin %Trpx .

<j> (x) dx.
J Xi J Xi J Xi

If the interval x^ + #2 be small, the variations of C and S with p may be

neglected, and the maxima and minima of the intensity occur when

C sin 2?rp + S cos 2jrp
= 0,

the value then being

/=2{PVC 2 + S 2

}
...........................(55),

whence the visibility of the fringes is given by

V1
* = (C* + S*)IP* ........................ ...(56).

If now the radiations from the source form several groups such as that

just considered and the values of # for their principal radiations be ttj, 2 , ...,

then replacing x by an + z and
</>n (an + z) by tyn (z), we have

C = S I cos 2-Trp (an + z) tyn (z) dz = '2Cn cos ^Trpoin 'ZSn sin

I
= sn ?r an -|- ^ irn 2: z = n cos ircin + n sn

and the visibility is given by

(2P)
2F2 = $ (CmCn + 8mSn) cos

+ 2(CmSn -CnSm)sm27rp(an -am)} ............(57).

When each group is symmetrical,

(2P)
2F2=2PmPnFmFn cos27r^(an - am) ...............(58),

and if the groups be alike, except for a constant factor h that may represent

intensity,
COS m ,

Q
,

where Fz denotes the visibility for a single group.

The most interesting case is that in which the intensities in the groups
are distributed in accordance with Maxwell's law, or

<f> {x)
= exp ( kz

a?}.

When the coefficient k is very large, the exponential diminishes very rapidly

and the important terms are those near the principal radiation, for which

x = : taking the limits of integration as oo
,

Fj = exp (- TT
2

/)
2

/^
2

) ..............................(60),
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and in the case of two groups, for which the intensities are as 1 : r, the

visibility is _
-

(61).

50. Conversely suppose that the visibility is found to be represented by

F- 2-^-'2

A 7
1 +r2 + 2r COSM/̂

C62)V "

l + 2r + r2

X being the retardation in length, and let us determine the radiations

present in the streams.

The form of the expression shows that the source is double
;
that its

components have the intensity-ratio 1 : r, and that in each the light is

distributed according to the exponential law expressed by its first term.

From a comparison of (62) with the expression for the visibility in the

case of a double source of which the constituents are known, we have, if X

be the mean wave-length,
a2
-

ai = X/D:

but X! and Xa being the wave-lengths of the principal radiations

2 <*!
= X (X 2

-1 X^1

)
= (Xx X2) X"1

,

and hence on a scale of wave-lengths the distance between the principal

radiations is

\-\2
= \2

jD (63).

Again comparing the exponentials, we have

TT^/P = (X/C)* loge 2 = (p\/CY loge 2,

7 TrC/ 1
fa ___^_

X Vloge 2
'

But if e be the " half-width
"
of the spectral line the value of x that makes

= -5

2, or e =
7T U

and on a scale of wave-lengths the "
half-width

"
of the spectral line is

(64).
7T U V

Hence the expression for the visibility gives the ratio of the intensities of

the components, their width and the distance between them
;
but the order

in which they are arranged in the spectrum remains indeterminate*.

*
Michelson, Phil. Mag. (5) xxxi. 256, 338 (1891); xxxiv. 280 (1892); Travaux et Memoires

du Bureau Intern, des Poids et Mesures, xi. 129 (1895).
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Fabry and Perot* have however succeeded in determining this by
Fizeau's method ( 48) ;

but instead of using Newton's rings, they employed

Haidinger's fringes formed by the light transmitted through a parallel plate

of air contained between two thick plates of glass, the adjacent surfaces of

which were lightly silvered. By thus increasing the reflecting power of the

faces of plate, the dark bands are made much blacker, while the bright rings

are rendered very fine, and in consequence the rings produced by radiations

extremely near to one another can be easily separated by a progressive

increase of the thickness of the plate.

51. In order to determine the expression for the visibility, Michelsonf

employed the refractometer described in Chapter II, deducing the form of

the function from his measures by a graphic method. A reference to the

description of the apparatus already given will show that, so far as inter-

ference is concerned, the streams comport themselves as if they were reflected

at the first and second surfaces of a film of air contained between the image
of the mirror M in the silvered surface of the glass plate Gl (which image is

called the plane of reference) and the surface of the mirror M2 ,
since when

the silver coating of GI is very thin, the change of phase on reflection at it

amounts to TT whether the reflection takes place in air or in the glass J.

There is here clearly no question of multiple reflections within the film, and

the dark bands will occur when

and the bright bands, when
2t cos i = n\.

When M2 is parallel to the plane of reference, the fringes are concentric

circles localised at infinity, while if Mz be inclined to this plane and the

plane of incidence be perpendicular to their line of intersection, the fringes

are straight lines, parallel to this line and localised on the surface of the film.

For the determination of the visibility Michelson adopted the first of

these two cases of interference. The mirror M2 was first adjusted to

coincidence with the plane of reference, in which case the two streams

have traversed equal distances, and it was then displaced through 1 mm.,

giving a difference of path of 2 mm. and the visibility was estimated, and

so on.

These eye estimates of the visibility having been checked and corrected

by previous observations of fringes having a visibility that could be calcu-

lated, a curve was drawn by taking the differences of path as abscissae and

the visibilities as ordinates, and the equation of the curve was then found by
trial

*
Fabry and Perot, Ann. de Ch. et de Phys. (7) xii. 459 (1897); xvi. 115, 289 (1899); xxn.

564 (1901) ; Astrophys. J. xin. 265 (1901).

f- loc. cit. p. 115.

J Edser and Stansfield, Nature, LTI. 504 (1897).
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The following examples will serve as specimens of the results obtained by
Michelson*. In the figures the curves drawn in full on the right represent

the visibilities given by the observations, the dotted curves represent the

equations adopted as the expressions for the visibility: the figures on the

left give the character of the spectral lines deduced from the curves of

visibility.

(1) The visibility-curve of the red hydrogen line (X = 6'56 x 10~4
)

practically agrees with

F=2-W19> cos 7/30,

the form cosr/D being written for Vl -I- r2 + 2?- cos 27rX/D/(l + r), so that it

is practically the same as that due to a double source, the components of

which have the intensity-ratio 7 : 10.

0-5-

0-1 6-2 0'3 0-4 10 mm

Fig. 15.

20 30mm

The distance between the components of the line is

^r
x (6'56 x 10~4

)
2= 1*4 x 10~8 mm. = 014 divisions of Rowland's scale.

The width of each component on the same scale is 0'099.

(2) For the red cadmium line (X = 6'44 x 10~4
) the visibility-curve agrees

with

this then is a remarkably simple line of breadth 0'013 on Rowland's scale,

and the red cadmium line thus affords a specially homogeneous source of

light.

(3) The orange-red oxygen line (A,
= 6'16 x 10~4

) gives for the curve of

visibility

V= 2-WW JO'36 + 0-32 cos 2-rr^ + 016 cos 27r -- + 016 cos 27r
'

loc. cit. p. 138.
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This expression indicates that the source consists of three simple and similar

lines, the intensity-ratios of which are 2:2:1, the last being at the end of

the series: the width of the lines is 0'05 and their distances apart are

1-41 and 0'78.

i-O

1

0-5

1-0 2-0 10 15 mm

Fig. 17.

(4) The green thallium line (\ = 5'35 x 10~4
) gives

!
= 2~W246>

z

,
F2
= 2

-

200mm

The light thus consists of two sources, for which the intensity-ratio is 2 : 1,

and each of these is a doublet, the elements of which are determined from

Y1
= 2-W24*)

2
cos -2/160 and F2

= 2~W188 )
1

cos -2/160.

Thus the components of each doublet have the intensity-ratio 5 : 1 and for

each the distance between the components is O'OIS on Rowland's scale
;
the

width of each component is for the one source O'OOo and for the other is

O'OOT on the same scale. The distance between the doublets is 0113.



CHAPTER V.

DIFFERENTIAL EQUATIONS OF THE POLARISATION-VECTOR.

52. BEFORE proceeding further, it is necessary to determine the differential

equations that the polarisation-vector must satisfy in the case of an isotropic,

dispersionless, transparent medium, that is, one in which waves travel with

the same speed, whatever their period and their direction.

It has been shown in Chapter II that the phenomenon of interference

indicates that the result of a superposition of trains of waves of light is repre-

sented by a summation of their separate effects without any modification of

the waves themselves. Since then in a train of waves the vibrations of the

polarisation-vector are in the plane of the waves, provided they are identical

over the whole extent of the wave-front, the components of the polarisation-

vector d must satisfy the equations*

w = 2< n (arf-r), v = 2xn (arf-r), w =^n ((ot-r) ......... (1),

ul + vm + wn = .............................. (2),

where
<f>n , %n , -fyn are periodic functions, o> is the propagational speed of light,

I, m, n denote the direction-cosines of the normal to the wave-front and

r=

Eliminating the arbitrary functions and the direction-cosines, we obtain

, . .

5j
du dv dw

Writing now $ = _ + _+_,

5.
1 /du , dv dw

we have 8 = -- (^il + ^ni + ^-
ft> \ot dt dt

by (2). Hence the condition

du dv dw

Voigt, Kompendium der Theoretischen Physik, Bd. n. 554.
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which expresses that the polarisation-vector has no convergence anywhere,

may be regarded as equivalent to (2), and the differential equations required

are given by (3) and (4). These equations may clearly be written in the

symmetrical form

d = curl CT, -ar = curl e (5),

where the components of the vector e are given by

(*,*.*>-
1(1;.

, )(-(*
+ * + *)) (6).

53. As a first application of these equations, let us determine the nature

of the vibrations when the waves are unhomogeneous, that is when they are

no longer identical over the whole front. Using bars ( ) over the letters to

denote complex quantities, let us assume as a solution of the equations

u = ad, v = (3d, w = jd, d = A exp {*.
(loo + my + nz + st)} (7),

where a2 + y9
2 + 7

2 = 1 (8),

2-rr
lac + my + nz = -

{as
cos i + y cosj + z cos k

A/

+ iv (x cos / + y cos J + z cos K)} (9) ;

a, y9, 7 are then the complex direction-cosines of the vector d,

cos i, cosj, cos k are the direction-cosines of the normal to the planes

of like phase,

cos/, cose/, cosK are the direction-cosines of the normal to the planes

of like amplitude, and

v is the coefficient of extinction of the waves along this normal.

Then equation (4) gives

al + J3m+yn = (10),

and from each of equations (3)

s2 = to
2

(Z
2 + w2 + n2

) (11).

Separating the real and imaginary parts of this equation, we have

fl2 = o>
2
(1

-
i/
2
),

= v (cos i cos / -f cosj cos J+ cos k cos K) . . . (12),

fl being the propagational speed of unhomogeneous waves of period r : since

fl is real if the waves be propagated without change of type, i> < 1.

Also since we are assuming that v = 0, it follows that

cos i cos / + cos_; cos J + cosk cos K =
(13),

which expresses that the planes of like phase are at right angles to those of

like amplitude, and this being so

A
J
2 + w2 + n2=^:

(l-i/
2

) (14).
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Taking the axis of z in the direction of the wave-normal and the axis of x

along the normal to the planes of like amplitude, we have

j
27T 27T

l = i~v, m = 0, n = -

,

and a : 7 :: 1 : iv.

It follows then that the vibrations are elliptical and no longer in the plane
of the wave

;
but though this is so, they are still of the nature of transversal

vibrations, for the equation du/dx + dv/dy + dw/dz = is still satisfied, and

this is the distinguishing characteristic of such vibrations.

54. An important question in the problem of wave-propagation is that

of the direction in which any peculiarity of phase or amplitude is propagated
in a stream of light and the speed with which it travels. In a simple train

of waves there is no distinguishing mark by which any portion is identified,

and consequently the determination of the velocity of light is generally
effected by measuring the propagational speed of some peculiarity impressed

upon the train : this will only give the wave-velocity if the singularity travel

at the same rate as the waves.

We will now consider this point, taking the case of a medium that is

characterised by equations (3)*.

Let U, V, W be three functions of the rectangular coordinates of any

point in the medium, such that

U=alt F=o2 , Tf = 3 (15),

in which the parameters a1} a2 ,
a3 are given all possible values, form a system

of conjugate or orthogonal surfaces: and let us take U, V, W as new

coordinates.

In order to transform the equations (3) to this new system of coordinates,

we note that V 2u is the divergence of a vector, the components of which are

dujdx, dv/dy, dw/dz, and therefore the volume integral of V 2u taken throughout

any region is equal to the surface integral of the vector over the boundary of

the region, that is, to f(dn/dn)dS, where n is the normal to dS drawn

outwards. Let us apply this theorem to the small rectangular parallelepiped,

the faces of which are parts of the six surfaces U, U+dU, V, V+dV, W,

W+dW.
If adU, bdV, cdW be the lengths of the edges of the parallelepiped, the

pair of faces, forming part of the surfaces U and U+ d U, contribute to the

surface integral the amount

3 {be du
2771 ~
du (ad

*
Poincare, Theorie Hathematique de la Lumiere, n. p. 114.
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and similarly for the other two pairs of faces. Hence since the volume of the

parallelepiped is abcdU. dV. dW, we have at once

1 (d fbcdu\ d (cadu\ d tab du\\= ~ ++ '

and the equations (3) become in the new system of coordinates

abc d*u d (be du\ d_ ica du\ _9_
fab du\ ,. .~~ ++ '

and two similar equations.

Now let us suppose that the surfaces W=OLy are a system of parallel

surfaces : then c = 1 and ab is proportional to the section at any point of a

small tube of normals to the surfaces
;
and if these surfaces be the wave-

fronts we may write

u = A exp {i (nt K W)},

where n = ZTTJT, K = 2?r/X and A is a function of (U, V, W, t).

Substituting this value in (17) and writing ab = <r, we obtain

dA . d /bdA\ d adA\ 9 / dA\

IKA ^jjr
- 2t/C<7 ^fTf K2A(T .........(18).^fTfdW

Since n = tca>, the terms involving A cancel, and if the differential coefficients

of A be all finite, we may neglect the terms that do not involve the large

quantity and we obtain

<r 9A dA . . do-

~*

*J<r dA _ dA .~ = ~ cr ~ l

and as cr is independent of t,

) _" ~

whence AJ<T=f(U, V, W-
at) .......................(20).

Thus any singularity of phase or amplitude is propagated along the normal

to the wave-front with the speed o>, and since the amplitude varies as l/vV>
the intensity is inversely as the section of the beam of light.

55. This result that the peculiarities of phase and amplitude travel with

the speed of the waves, depends upon the assumption that the wave-velocity
is the same for all waves whatever their period may be and cannot be applied
to the case of dispersive media. The effect of impressing any distinguishing
mark on a train of waves is to destroy its simple harmonic character, and if
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the constituents of the altered stream travel with different velocities, it by no

means follows that the group thus formed is propagated at the same rate as

the original train.

If the original train be characterised by the vector

u a cos (nt KX).............................(21),

we can represent the group by the vector

u' = a,! cos {(n + SnJ t (tc+ Stc^ x+a 1}+ a2 cos {(n + 8n2) t (/c + SK^) x + a2 ]

............(22),

where 5wa ,
Sn2 , ... and SKI} S/c2 ,

... represent small variations of n and K. This

may be written in the form

cos (nt KX) 2a cos (8n . t SK . x + a)

sin (nt KX) Sa sin (Sn .t 8/c.x + a.) ......... (23).

Now n and K are connected by some relation, such as n = < (), where the

form of
<f> depends upon the nature of the medium : hence

Sr^ 8n2 dn

and the resultant group is represented by

F(Ut-x)cQ$ {nt
- KX + x ( Ut - x)} .................. (25).

Thus the peculiarities of phase and intensity travel with the speed

U d (Ka))/d/c,

and this differs from the wave-velocity o> unless waves of all periods are

propagated with one and the same velocity*.

56. Taking now the methods employed for the determination of the

velocity of light, we see that the measurements depending upon astronomical

aberration give the true wave-velocity <w, but that it is the group-velocity U
that is found by the methods of Rb'mer and Fizeau, since they both depend

upon the rate of progress of a peculiarity of intensity.

Foucault's method requires further consideration f; in this experiment
the subject of measurement is the deflection of a stream of light produced by
the rotation of a mirror during the time of passage of the waves from the

revolving to a fixed mirror and back again.

Now the motion of the mirror impresses a variation of wave-length along
the fronts of the waves as they leave the mirror, making it greater on the side

of the stream that is reflected at its receding part. Consequently if the

medium be dispersive, that side of the stream will travel faster than the

* Lord Rayleigh, Nature, xxiv. 382 ; xxv. 52 (1881).

t Lord Eayleigh, loc. cit. Schuster, Nature, xxxm. 439 (1886). Gribbs, ibid. p. 582. Gouy,
C. R. ci. 502 (1885).

W. 6
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other, and there will be an aerial rotation of the waves during their passage
between the mirrors. Since the waves are inverted by reflection at the fixed

mirror, the side of the stream that leaves the receding part returns to the

preceding part of the revolving mirror, and the aerial rotation of the stream

is in the opposite direction to that of the mirror.

Hence if D be the distance between the mirrors, 6 the angular velocity of

the rotating mirror, & that of the aerial rotation of the waves, the angular
deflection of the stream is

% = 2D(20 + 0')/&> .............................. (26).

Denoting by z distances measured along any wave-front in a direction

perpendicular to the axis of rotation of the mirror, we have

e' = da)/dz
= d(o/d\.d\/dz ........................ (27);

but dX/dz is the angle between corresponding elements on two wave-fronts in

the same phase, and this angle is due in part to the rotation of the mirror

and in part to the aerial rotation of the waves
;
hence if r be the period

d\/dz = C20-}-6')T = (20 + 6')\/a) .................. (28),

and d
' = d + 6

'

whence 20 + & =-^-7- = 4? &> ....................... (30),\ da> U
o) d\

and %= ~~

Thus by this method it is the group-velocity U and not the wave-velocity
that is determined.



CHAPTEE VI.

HUYGENS' PRINCIPLE*.

57. IN the last chapter it was assumed, when considering the propaga-
tion of a stream of light, that infinite space is filled with an homogeneous

medium, in which no foreign substance occurs, except such as exists at

a centre of luminous disturbance, and we must consider the effect that is

produced by the introduction into the ether of media that differ from it in

their optical properties. In this way we shall determine, in what degree the

wave-theory accounts for the rectilinear propagation of light and thence leads

to the laws of geometrical optics.

Let us consider a portion T of the ether bounded by a surface 8, on the

outside of which luminous sources and different bodies may be distributed

in any manner, and let us determine the disturbance at any point within this

space T.

Let U (x, y, z, r) be a function of the coordinates (x, y, z) of any variable

point and its distance r from the given point, this function together with

its first differential coefficients being single-valued, finite and continuous

for all points of T and of its bounding surface S : then denoting by d total

differentiation and by 9 partial differentiation with respect to x, y, z, r we

have the identity

fa
_ = _

dx\dx dx2 drdxdx dx2 drdxdr'

A (
l ?E\ = 1 ?!? 1 U_ dx _ 1 dUdx

dx \r dx J r dx2 r drdx dr r2 dx dr
'

whence

v d f!dU\ l_, rr I (d fdU\ d*U] 1 (dU dU
2,-y---^ = -V 2

l/ + --<-y--x I ~-rh -- -\-j
--

-^~dx \r dx/ r r (dr \dr J or2
j

r2

{
dr dr

*
Kirchhoff, Berl. Ber. (1882) 641; Wied. Ann. xvni. 663 (1883); Ges. Abh. Nachtrag, p. 22;

Varies, iiber Math. Optik, p. 22. Beltrami, N. dm. (3) xxvi. 233 (1889) ;
Rend. Lined (5) i. [1]

99 (1892); iv, [2] 29, 51 (1895). Maggi, Annali di Mat. (2) xvi. 21 (1888). Potier, C. R. cxn.

220 (1891). Bruhnes, Mem. des Fac. de Lille, iv. No. 16 (1895); J. de Phys. (3) iv. 6 (1895).

Carvallo, C. R. cxx. 88 (1895). Gutzmer, Crelte's J. cxiv. 333 (1895). Morera, N. dm. (4) n. 17

(1895).
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which may be transformed into

/7 /I r) 77\ 1 /7ft TT \
=

. ...(1)._
r2 dr \ dr J dx \r dx

Now draw a cone from the pole to the element dS; its cross-section at a

distance r is ?'
2 sin ddddtf), but this is also equal to

8(1)A. \T/
cos rn . dS or r2

dS,
on

where n is the normal to the element drawn inwards
;
then

d dU\dT Cd / dU\

r J

dU\

*3r-
(2);

f^dfldU},,- [(IdUj ,
} [UnjQ* j- (

-
5 )

dr H- -5- dydz + . . .}
= - I

---dS,
J dx \r dx J J (r dx

j J r

^T ^~
dx dn

Multiplying then (1) by dT and integrating over the whole space T, we

obtain

- -
r J dn r

} J [dr
2

j
r

If
<f> (x, y, z, t) be a function of x, y, z, t that satisfies the equation

and if Z7 be what
<f>
becomes when t r/co is written for t, then

32/7 3277^ = o>
2^ = o>

2V^, tf =
<#> (b, 2/ , *, )

=
^o,

whence the volume-integral in (4) vanishes, and we obtain

in the first term of the second member the differentiation with respect to

the normal being operative only on the radius-vector r, while in the second

term t r/co is written for t after the differentiation.
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This equation still holds, if the luminous points be within the space T
and the pole at which the effect is required be without it, provided we regard
n as the normal drawn outwards, that is, into the portion of space in which

the pole is situated, and ascribe to the function
<j>

the ordinary properties
of a potential function at infinity. For in this case the integrations have

to be extended over the whole of space outside S, and hence the surface-

integrals consist of two parts, of which the one is extended over S and has

the value just determined, and the second is extended over the surface of

a sphere of large radius and vanishes on account of the second of the above

assumptions.

58. Let us next suppose that the closed surface 8 either includes the

luminous points as well as the pole, or else includes neither the one nor

the other.

Consider the first case and imagine a closed curve drawn on 8 dividing

it into two parts, 8^ and $2 >
and through this curve a surface Sa described

so as to include the pole between S3 and Si and to exclude all the luminous

points. Then, denoting by ft the integrand on the right side of (6) and

supposing the normals to Si and $2 to be directed inwards, that to S3 to be

directed into the space containing the pole, we have

47r<f> = [ OdS+ f ldS = - f ldS + f
J S^ J S3 J Sz J S

whence ( fldS + ! ndS = 0,
J s, J s,

or the surface-integral over the closed surface S is zero.

Similarly for the second case : we imagine the surface S3 drawn through
the closed curve on S, so that the pole alone is contained between Si and $3 ;

then, as in the first case,

47r< =
( ndS-t ldS=f OdS+f CldS,
J S3 J S, J S3 JSt

whence t tidS + f CldS = 0.

J8i JBt

From this result it follows that the surface-integral is the same for any
two unclosed surfaces S and S' having the same bounding curve, provided

neither the pole alone, nor the luminous points alone are included in the

space between these surfaces. For

f
J s1

if the normals to the elements have the same sign, when they are directed

either within or without the included space. Hence if we regard the normals
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to the two surfaces to be positive, when they are similarly directed with respect

to corresponding elements

f fldS = ! ndS.
J s J s1

59. Let us assume that we have a single luminous point and let us

call r the distance of the element dS from this point and r the distance

of dS from the pole at which the effect is required.

Then if we assume

A
iK(at_r]

where K = 2?r/X, we have

i^(i-r /o,)=A^M-n-) 5

and
a <M*-?>) = A _.

,

on rQ r-i on r^ on

since in forming this expression r alone is to be regarded as variable.

On the other hand in forming

$n (t
- r /co)

we have to differentiate
</> (t) with respect to n, and after differentiation to

write t rjat for t : hence

<t>n(t-r,/m) = A _ e
-- r._ ^

r r 9w i\rQ dn

Thus

Since X is a very small quantity, the first term in the expression for fl is

of very slight importance in comparison with the second, and wre may write

................ (7).On

If now the surface of resolution be a wave-surface,

drjdn = 1, dr /dn
= cos 0,

where 6 is the angle between the normal to dS and the line joining the

element to the pole, and if the primary disturbance at dS be represented by

A 2?r
-cos (co^-n) .............................. (8),
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the actual disturbance at the pole due to the element dS is given by
O_ A O__

which is Stokes' law of the secondary disturbance*.

r

60. We now require the value of ICldS over a surface that is not closed,
J

and this may easily be determined in the case in which Ii has the special
value (7) and A, is very small.

With the luminous point and the pole as foci draw a series of spheroids
r1 + r =^ = const., determining a series of curves on the surface S, and define

the equation

the integration being extended over the part of the surface between the lines

%=Z and f= and the + sign being taken according as Z $ so that

F() increases with f whether it be greater or less than Z, if for example
A O

~- (rx r ) be positive. Then if d be taken positive,
^*i^*o uH

df ... AS.

in which the integration is extended over the region of the surface between

the curves corresponding to the values and + d.

Let and be the least and the greatest values of on the surface 8,

then I fldS is of the form

whence, integrating by parts,

4-* [f,-^V+^g,-^? ............(10).

Consider first the term

and let us divide the interval to x into partial intervals, such that in some

-77^ remains finite, while in the remainder ^- ^
becomes very great of the

d2F
order K. Now we may neglect the intervals in which -^ remains finite;

d(y

for if
"' '

be one of these intervals, we may assume that within this

, d*F c dsF
interval -^ always either increases or decreases, so that the sign or -^

*
Stokes, Camb. Phil Trans, ix. 1 (1849) ; Math, and Phys. Papers, n. 243.
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remains the same
;
otherwise we have only to subdivide the interval into

smaller parts for which this is the case. Integrating then by parts

l d*Ff=-
\J

d?F
and the integrated term may be neglected, since e~"*$ is < 1 and -77^ is finite

d
d2F I d3F

so that the ratio -TZ;/* is very small; also since -^ has the same sign
at;-/ at;

throughout the region of integration

d? ^2 '

and this quantity is finite, so that its quotient by K may be neglected.

Hence the integral in question may be neglected except at parts of the

d*F
surface at which -7 becomes very great of the same order of magnitude as K.

at;

dF ,,, A
But we have

and -

dF ,,, [A 9(n
dt;=

(Xt, J ^'0^*1

jo
-da,

r \

on
is finite and continuous : hence the only portions of the

surface that can contribute anything to the integral are those at which

7 CT

Consider next the term I -77^ e~
lK

excluding the case in which d= at any point of the surface, the maximum
and minimum values of lie on the bounding curve of 8 and if we farther

assume that for no finite portion of this curve f is constant, the lines and

, only touch this curve, in which case I dS and hence also I dS
J Jr^ dn

is at these limits an infinitesimal of a higher order than d Whence for

dF f

each of these points -y- = and the integrated term of I ldS vanishes.

Let us now consider in what cases d= at a point of the surface S. Let

g (x, y, z) = be the equation to the surface, and x, y, z the coordinates of a

point on it, at which d = for a displacement of the same on the surface,

then

dx dx dx

=
dy

~
dy dy dy

Sf-cjn,.?^.,^
dz

~
dz dz dz.

cos Tjoc + cos r x = M cos nx

> or -I cos r^y + cos r y =M cos ny

I COS r^Z + COS TgZ = M COS WZ,
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where L is an undetermined multiplier and M = L\/(^-\ + [ } +(</] .V \dxj \dy) \dzj

The conditions for the vanishing of d% can then be satisfied in two ways,

either

M = and cos i\x = cos r^, cos r^y
= cos r y, cos i\z = cos r^z,

, 9^ 3 3 9<7 3<7 3<7
or M and ^ : : ^ :: ^ : /- : ^ .

a* 9;y as 9# cy oz

In the first case the line joining the luminous point to the pole cuts the

surface at the point (x,y,z)\ and in the second, the spheroid = const.

touches the surface at this point.

Hence it follows that \ldS extended over the surface S vanishes when

K is very great, except in the following cases :

(1) when for a finite portion of its bounding curve r^ + r = const.,

(2) when the line connecting the luminous point and the pole cuts the

surface,

(3) when there is contact of any order between the surface and the

spheroid r + r = const.

The last case however does not really form an exception : for, as we have

seen, IfldS depends only upon the bounding curve of S and hence in the

cases in which the spheroid touches the surface, we can substitute for S
another surface with the same contour, for which this is not the case.

The value of IfldS extended over the surface, when the line from the

luminous point to the pole cuts it, may be determined in the following

manner. Complete the surface S by a surface including the source and not

cut again by the line in question : then the normal to the complete surface

being everywhere directed outwards, we have

({MS

the integral being extended over the whole surface : but for the part com-

pleting S, we have

hence I fldS
J s

the integral being extended over $ and the normal being directed away from

the luminous point. When the normal is directed towards this point, so as

to make an obtuse angle with the line joining it to the pole, we have

...(11).
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The case, in which the line from the source to the pole passes through the

bounding curve or infinitely near it, is at present excluded, the value of the

integral being then indeterminate.

61. Let us apply these results to the case in which some foreign sub-

stance is present in the ether, external to the luminous point and to the pole

at which the effect is to be determined.

Exclude this body from the region of integration by a surface S drawn

infinitely near its surface and let a- be a surface excluding the luminous

point : then the normal being reckoned positive when it is directed into the

region of integration, we have

in which equation the value of H is changed from what we had before on

account of the change in the values of
</>

and
<f>n occasioned by the intro-

duction of the body.

If, as we are free to assume, the surface cr be a very small sphere, the

introduction of the body into the field will cause a comparatively small

alteration in the values of < and < n on the surface of cr, except in certain

cases, such as that in which the body is a concave spherical reflector with

the luminous point at its centre, and since the sphere is very small, the

influence of this change on the integral over its surface is also very small.

If then <f> denote the value of
</>

before the introduction of the body

and 47no = 47r<l> +
ftldS

........................(12),

from which equation </>
can be in general determined, if <I> and the values of

<f>
and

<f>n on S be known.

Let us now suppose that the body is opaque and has a black surface that

reflects no light : then on the side turned towards the luminous point, the

disturbance is the same as if the body were not there and on the side turned

away from the luminous point there is no disturbance at all. Hence in (12)

the integration is to be extended over the part of 8 alone that is turned

towards the source of light and is bounded by the tangent cone to S from the

luminous point, and in H the values of
c/>
and

c/>n are the same as they would

be if the body were absent.

It follows then that for points outside the cone, I ldS = and hence

<f>
= <3>

,
or the presence of the body is without effect : while for points within

the cone on the side of the body opposite to the source,

CldS = -
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from (11), and 47r< = 47r<I>o
- 47r<l> = 0,

or there is no light at such points.

We are thus led to the laws of geometrical shadows. This result has

however been obtained on the assumption that the wave-length is infinitesi-

mal and we have excluded the cases in which the line from the source to the

pole passes very nearly through the boundary of S and in which a finite

portion of this curve is on one of the spheroids r1 + r = const. We then have

the phenomena of diffraction.

62. As a further application of the analytical expression of Huygens'

principle, let us determine how the vibrations of the polarisation-vector

change as we pass along a ray, that is, in what manner $ depends upon z
,

where z is the distance of the point considered from a wave-surface, this

distance being measured along a normal to the surface*.

Fig. 19.

Let 8 represent a wave-surface, P the point at which the effect is to be

determined, PQ the normal to 8, and Glt C2 the centres of principal curvature

of the surface at the point Q.

In the system of curvilinear coordinates U, V, W employed in 54, let

the surface W = const, represent the wave-surface, then the primary disturb-

ance on the surface 8 may be taken as

4>(t)
= Ae*W-w> ..................... . ........ (13),

A being a function of U, V, W, all the differential coefficients of which

remain finite : taking this surface as that of resolution, the effect at P is

given by

g. + coBff)e-*
fd8 ............ (14),

4r7T

r being the distance of P from the element dS and 6 the angle that the

radius-vector makes with the normal to the element.

*
Poincar^, Theorie Math, de la Lumiere, n. 174.
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Let us now take Q as the origin of a system of rectangular coordinates,

the tangent plane to the surface at Q being the plane of xy and the principal

sections of the surface at this point being those of xz and yz : then if
<f>
be

the angle that the element dS at the point (x, y, z} makes with the plane
of xy,

dS = dxdy/cos <,

and * -"*-
Now by drawing a series of spheres round P as centre, so as to determine

a number of curves on 8, it is easy to show by reasoning analogous to that

employed in 60 that the above integral extended over any part of S is zero,

unless this part has contact of any order with one of this system of spheres :

it follows then that we may confine the integration to a small area including

the point Q, the dimensions of which are actually very small, though large in

comparison with the wave-length A,.

The factor - will not in general vary very rapidly and will have

sensibly the same value over the whole of this area, and we may therefore

assign to it the value that it has at the point Q, where

r=QP=z ,
cos 6 = cos

<f>
= 1, A = A

,

A 1 + cos 2A
so that becomes .

r cos
<f>

z

On the other hand the variations of exp ( ncr) are rapid, for the

differential coefficient of this expression contains K as a factor and is

consequently very great : it thus becomes necessary to determine its value

for points on the surface near to Q.

Let /15 /2 be the principal radii of curvature at Q, then the equation to

the surface is approximately

whence r = V#a + y
2 + (z zf = za + f^x

2 + fj,2y
2
,

where ^= ' =
'

hence
</> (*)

= - A^^~W-^ e-(M,^+^) dxdy.

Let us now write
ff
= x */K, t)

= y \/K, and take, as we are at liberty to do,

the form of the area, over which the integration is to be extended, as a small

rectangle with its edges parallel to the coordinate axes : then since the

dimensions of this area are very large compared with the small quantity \
the limits of the integration for and

77
are oo

,
and we have

-ir-s,)
f e~^d%r e-^drj ...... (16),
J -oo J -oo
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f Al-
and since I e tM' du = (1 + i) \/ -

,

J QQ V ^i

r /

we have I e~ L^'2

d% = (l+i)\/ -^ ,

J QO V "T_ ^[A*

according as /A is positive or negative.

Let us suppose in the first place that the points are in the order Q, P,

<?!, (72 , then ^ and /^ are both positive, and

4> (0 =

= A /- _ ^1^2

V (/;-*) (/;-

Secondly, if the points occur in the order Q, C1} P, (72 , ^ is negative and

is positive, whence

(18).

Finally, when P is further from the surface than both C^ and (72 ,
both ^

and /A2 are negative, and

Z7TZ

Now the actual effect being represented by the real part of the above

expressions, we see that on traversing a ray from a wave-surface the phase

changes suddenly by Tr/2 on passing through either of the centres of curva-

ture, and in calculating the retardation it thus becomes necessary to subtract

X/4 from the actual length of path on crossing either of the points*.

The points C1 and (72 are called the focal points of the ray and near them

the disturbance becomes very great. When the focal points coincide, the

retardation is obtained from the actual distance by subtracting \/2 on

traversing this common point.

63. In considering the application of Huygens' principle to the determi-

nation of the effect of a black screen of any form placed in the vicinity of a

luminous point, we excluded certain cases and to these we must now turn

our attention.

* For an experimental verification of this result see Gouy, Ann. de Ch. et de Phys. (6) xxiv.

197 (1891).

\
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Suppose that we have a luminous point G with a perfectly black screen

near it : round the screen draw a closed surface at all points infinitely near

that of the screen itself and divide this surface into two parts by the line of

contact of the surface with a tangent cone having its vertex at (7. Let us call

the part of the surface turned towards the luminous point S' and that turned

Fig. 20.

away from it S", and let us complete these surfaces by another surface S, in

such a way that C is entirely enclosed by the surfaces 8 + S' and S + S",

while the point at which the effect is to be determined is excluded.

Then if < denote any one of the components of the polarisation-vector or

an allied function satisfying the relation

.(20),

and < be the value of
</>

at the point 0, 3> the value that
<f>
would have at

any point, if the screen were removed, we have at all points of S and S'

(21),

and at all points of S"

dn
=

(22),

= _1
f

4>7rJ s+S

and taking S + 8" as the surface of resolution, Huygens' principle gives

= ^- ! fldS ....... ...(23),
4>7rJs

since the integral extended over S" vanishes, where

n = d_ <f>(t-r /a)) _ <f>n (t-r /a>)

dn r r

the normal being reckoned positive when it is directed on the side of S on

which the point is situated.
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This expression for O may be simplified, if the only part of the surface of

resolution, at which and d<j)/dn do not vanish, be plane*.

Write

4^ ? 5 [5-
- dS, y = cT~ I

-
dS,1 VTT / ntl f /v '/TT I wATI J (Jit I o 7T J T

so that 20 =
A/T + x-

Both
-fy-

and x satisfy the differential equation for and it is easy to

show that they also satisfy the surface conditions, if the surface be plane.

For writing
, 1 T3 0(0 7<YY1 = -

j as,
2-7T J dn r

then ^' is the potential of a double layer, the density being + (t)f27r : such

a potential shows a discontinuity at the surface equal to 20 (t). On the

other hand ty 'fy'
is continuous at the surface, as it remains finite when

r = 0, and hence ^ shows a discontinuity equal to 20 (t), whence if the

surface be plane i/r
takes at the surface the same value as and consequently

the same holds for x-
-

Again, let %'
= -

o

so that x is the potential due to a surface covered with an attracting mass,

of which the density is < n()/27r. Then % %' and its differential coefficients

are continuous at the surface, and since x' is continuous, x is so as well.

Also

-x')
,

8x'
'

and dx/dn is discontinuous and changes suddenly by 20,v (^) on crossing the

surface: hence since 9 (^ x)/dn is continuous, 3%/3n shows a discontinuity

at the surface equal to
2</>n (t), and therefore at the plane surface

Thus the differential coefficient of % at the surface is the same as that of 0,

and the same must hold for ty.

Hence both ty and ^ satisfy all the conditions, and taking the axis of z

in the direction of the normal, we have for the special case under considera-

tion

Let </>(*)
= -^-'-'- 5) ..............................(26);

ri

*
Schuster, Phil. Mag. (5) xxxvu. 543 (1894).
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then retaining those terms alone that contain K as a factor, we have

A 1 7)r C
U-^n+r.+a) rffl ................. (27),
jV,, dz

since r1} ?' ,9r /3^ vary but slowly over the part of the surface that contributes

sensibly to the value of the integral.

A point in the aperture or very near to it being taken as origin, let

^i 2/i >
z\ be the coordinates of the luminous point and XQ , y ,

z those of the

point at which the effect is considered : then, if

xx, + yy1 1
we have r, = p,

- - -^^ +
* PI

yy, 1 #2 +
ro
=

o

the dimensions of the aperture being supposed to be small, and writing
B + p + pl

= e we obtain

(28).

64. Let us first suppose that the terms involving the square of the

coordinates of a point of the aperture vanish : this will occur when

p
=

p1
= <x> or when p =

p^.

When pn
=

P!
= oo

, the source of light is at infinity and the waves incident

upon the aperture are plane : the secondary waves from the aperture are

parallel and interfere at an infinitely distant point. On account of the

optical equivalence of paths between the conjugate foci of a lens system,

this case may be realised with a spectrometer, in which both collimator

and telescope are focussed on infinity and the diffraction screen is placed

between them.

When p =
pl and pt is negative, the wave incident on the aperture is

spherical and concave to its direction of propagation, and the centre of the

sphere is on the screen of observation. This case is obtained upon a screen

by placing the aperture between the screen and a lens adjusted to give upon
it an image of the radiant point.

When p = p1 and pi is positive, the incident wave is spherical and

convex to its direction of propagation : the diffraction phenomena are virtual
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and apparently formed on a screen through the source of light. This is the

case of an aperture held in front of the eye or of the object-glass of a telescope

adjusted for distant vision of the source of light.

In these cases we have what are known as Fraunhofer's diffraction

phenomena.

When the term (#
2 + 2/

2
)(pr

1 + /o<r
1

)/2 is not zero, we have Fresnel's dif-

fraction phenomena : these occur near the limits of the geometrical shadow of

the screen, and in the main correspond to the case in which the line from the

radiant point to that at which the effect is required passes very nearly

through the edge of the screen. In the case of this kind of diffraction we
have often to deal with apertures that are very large, but as the only effective

part of the aperture is that near the point in which it is met by the line from

the radiant point to the pole, we may still employ the values of ^ and r ob-

tained above and may extend the limits of integration as far as we please

from the limiting line of the aperture, provided we go far enough.

65. The above results have been deduced from the formula

in which the integration is extended over the apertures in the diffraction

screen, but we might employ a formula, in which we have to integrate over

the opaque parts : for describing a small sphere cr round the luminous point,

Huygens' principle gives

= I fld8+t Qd8+f CldS,
Jo- J S' J S"

where the second and third integrals are extended over the parts of the

surface surrounding the screen, that are turned towards and away from the

radiant point respectively.

Now the introduction of the screen has only a very slight effect on the

values of
</>
and d(f>/dn on the sphere a, and since this surface is very small we

have

where <I> is the value of
</>

before the introduction of the screen
;
also since

</>
and d(f>jdn are zero at all points of S",

whence

47r< = 47T<E> + I O.dS.
J s 1

Suppose now that we have two cases, that only differ from one another by

w. 7
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the interchange of the opaque and transparent portions of the screen : then

in the one case we have

= fnds,

the integration being extended over the apertures and the normal to dS being
directed away from the radiant point : in the second case we have

f
tl'dS,

the integration being now taken over the opaque parts of the screen and the

normal to dS being directed towards the luminous point. But the opaque

parts in the second case being transparent parts of the first case, and the

normals in the two cases being oppositely directed, we have

whence
<

' = *<> <o

Now <I> is the value of < at the point under consideration when there is

no screen. In the case of Fraunhofer's diffraction phenomena this is zero,

except at the image of the radiant point, and therefore at all other points

<f>o'= <<>

Thus the intensity at all points, except at the image of the radiant point,

is the same in the two cases and the pattern has the same form when the

diffraction screen is generally transparent and studded over with opaque

discs, as when it is generally opaque and perforated with exactly correspond-

ing apertures*.

In the case of Fresnel's phenomena this is not so, for then 4> ^ and the

disturbances corresponding to 4> and < have different phases and give rise

to interference, that modifies the intensity and changes the character of the

pattern.

*
Babinet, C. B. iv. 638 (1837).



CHAPTER VII.

FRAUNHOFER'S DIFFRACTION PHENOMENA*.

66. THE formula relating to the case of Fraunhofer's diffraction phenomena

may be written in the form

A
(A = _ _ e^e^+wdxdy (1)X ptfo dz JJ

2?r 2?r 77
where ^ = T o

' 9 = To'A. po A, p

and t] being the coordinates of the point considered on the screen of

observation relatively to the image of the radiant point as origin.

Before proceeding to apply this formula to the diffraction patterns

produced by apertures of special form, let us first consider some general

properties of the solution f :

(a) If the wave-length vary, the aperture being given, the composition
of the integral is unaltered, provided and rj be taken inversely as X. Thus

a diminution of X leads to a simple proportional contraction of the diffraction

pattern, accompanied by an augmentation of brilliancy proportional to X~2
.

(6) If we write mx for x and ny for y, the wave-length remaining

unaltered, then writing %/m for and 77/71 for 17, <f> (t) becomes mn<f> (t) and

the intensity becomes m?ri*I : hence the linear dimensions of the diffraction

pattern are inversely as those of the aperture and the brilliancy at corre-

sponding points is as the square of the dimensions of the aperture.

Thus it is possible to deduce from the pattern due to any aperture, that

given by an aperture formed from it by an alteration of the abscissae and the

ordinates of its boundary in any given ratios: thus the pattern due to an

elliptic boundary may be obtained from that given by a circular hole.

The shrinkage of the diffraction pattern consequent on the increase in

the dimensions of the aperture has an important bearing on the theory of

optical instruments. According to geometrical optics, the images of two

*
Schwerd, Die Beugungserscheinungen, Mannheim, 1835.

t Lord Eayleigh, Encycl. Brit., Article " Wave Theory," Vol. xxiv. p. 430.

72
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radiant points are regarded as distinct, however close they may be : in other

words, the pattern due to each is supposed to be infinitely small, or which

is the same, the wave-length is assumed to be infinitesimal. The fact that

the wave-length is finite imposes a limit on the resolving or separating power
of an optical instrument.

In order that the image of a radiant point may be sharp, the illumination

must become insensible at points very near the geometrical focus, and this

can only be effected by discrepancies of phase among the secondary waves

from the elements of the aperture. Whatever may be the discrepancy of

phase that is required to cause a marked reduction in the illumination, it is

clear that the larger the aperture the less it is necessary to deviate from

the principal direction in order to obtain the specified discrepancy and

consequently the smaller will be the image*.

(c) If the wave-length and the scale of the aperture increase in the

same proportion, the size and form of the pattern remain unchanged.

(d) Suppose that there are n equal, similar and similarly situated

apertures in the diffraction screen, and let ah> bh (h = l, 2, ...n) be the

coordinates of corresponding points of the n apertures, and suppose moreover

that these apertures are covered with retarding plates, Bh being the

retardation of phase introduced by that covering the hth aperture. Then

..,...(2),

the integration being extended over a single aperture. Writing
n n

K = 2 cos (pah + qbh
- Sh ), 2 = 2 sin (pah + qbh

- 8h),
i i

rr rr
c = 1 1 cos (px + qy) dxdy, s = 1 1 sin (px + qy) dxdy,

J J J J

and the intensity is

we have < () = _^- L
.^? L (c + IS) (K + 4 ) &* ............... (3),

/ (4),

where 7 is the intensity due to a single aperture.

If the apertures be arranged so that their corresponding points are in

lines parallel to the axis of x and equidistant from one another, then

ah = (h-l)<r, bh =G,
and if in addition

8h =(h-l)8,
* Lord Rayleigh, loc, cit.
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= (e<(i>-)
_we have
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whence it follows that the intensity at the secondary maxima is in general
less than that at the principal maxima and the more so the greater the

number of apertures.

Thus on certain lines parallel to the axis of y the illumination will be

increased, while on others it will be annulled, and the pattern due to a single

aperture thus appears to be traversed by parallel dark lines, that are the

nearer together the greater the distance of the apertures from one another

and the greater their number.

When the apertures are very numerous and very close together, the

pattern of the single aperture may be very considerably modified, and in

this case the effect of the factor / in the expression for the intensity is

chiefly shown by a reduction in the intensity of the successive principal

maxima, some of which may actually disappear owing to the vanishing of / .

67. Having established these general results respecting Fraunhofer's

diffraction phenomena, we may now pass to the consideration of the patterns

produced by some of the more important form's of apertures.

In the first place let us suppose that we have a rectangular hole of width

2a in the direction of x and length 26 parallel to y, and that this has

properties such that a disturbance of unit amplitude incident at a distance x

from its central line becomes a disturbance of amplitude cos ax, where a is

a constant*.

Such an aperture may be called a simple grating, the length of a complete

period of which is a- = ZTT/Z, so that if there be N such periods in it, we have

= aa, N being necessarily even.

Then the origin being taken at the centre of the aperture

= - A :-A- fe #*t !
a

!
b

{Z \popi OZ J _a j _6\pop

A dp t 9 [sin (p + a)a sin (p
-

a) a\ 2 sin qb-

-vr- 6 . t \-
2 \p p! dz

( p + a. p a.} q

whence, remembering that ace is a multiple of 2?r

A dp 4>p sin qb iK<at

\p<>pi oz p
2 a2

q

&*, - xsin ( p + a) . ,

P ' 5^
(8),

}
qb

and the intensity is

Schuster, Phil. Mag. (5), xxxvu. 509 (1894).
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The last two factors of this expression have the form sin2

w/?t
2
, the minima

values of which occur when u-nnr (m = 1, 2, ...) and the maxima values, are

given by u = and the roots of the equation

u = tan u

which has already been discussed in 33.

Thus there are two diffraction patterns grouped about the points

given by
p + a = 0, q = 0,

or =
S
X

' *>
=

0,

and these are traversed by dark lines, of which the equations are

Within the rectangles contained by pairs of consecutive lines and not far

from their centres the brightness rises to a maximum, but the intensity at

these points falls considerably below that at the centres of the patterns.

If N be very great, the successive maxima along the axis of are very
close together, so that the whole light is concentrated near the lines

= M/ "-

68. In the case of a luminous line parallel to the sides of length 26 of

the rectangle, the intensity may be represented by

(10),

the integration being extended from a large negative to a large positive

value of 77, the largeness being estimated by comparison with Xp /b. Since

6 is supposed moderately large, the whole diffraction pattern would occupy
but a very small portion of the field in the direction of y, so that we may
without sensible error suppose the limits of 17 to be + oo . We have then for

the expression of the intensity

2 ^:/ -
sm

p a

the same law as for a luminous point when horizontal directions are alone

considered.

69. The formulae relating to a simple rectangular aperture are obtained

from (9) and (11) by writing a=0, N7r/a = a in these formulae. We see

then that in the case of a rectangular aperture the definition of the image of

a vertical line is independent of the vertical length of the aperture. The
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distribution of brightness* in the diffraction-pattern of the line is shown by
the curve ABC representing the values of w~2 sin2 w from w = to w = 27r;

the line OA is a line of symmetry, the part of the curve corresponding to

negative values of u being similar to ABC.

Fig. 21.

Suppose now that the subject of examination is a double line, the com-

ponents of which have equal brightness and are at such an angular interval

that the centre of the pattern due to the one falls on the first minimum of

intensity in the pattern of the other. The curve of illumination for the

second line will be OA'C' and that representing half the combined brightness

will be E'BE. At the point B midway between the central points of the

two patterns, the intensity is '8106 of that of the central points themselves,

and this is considered to be about the limit at which there would be any
decided appearance of resolution of the lines. But in the case considered

the angle subtended by the components of the double line at the aperture is

X/2a, 2a being the horizontal aperture : hence, in order that a double line

may be resolved, its components must subtend an angle exceeding that

subtended by the wave-length of light at a distance equal to the horizontal

aperture.

Let us consider the application of this result to the determination of the

resolving power of a prism f. Let A^B be a plane wave-surface of the light

before it falls upon the prism, AB the corresponding wave-surface of a

definite part of the spectrum after the light has passed through the prism.

The path of any ray from the wave-surface A B to A or B is determined

by the condition that the optical distance ipds is a minimum, and as AB is

* Lord Bayleigh, Enc. Brit. xxiv. 431
;
Phil. Mag. (5), vin. 261 (1879).

f Lord Eayleigh, loc. cit. p. 271.
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supposed to be a wave-surface, this distance is the same for both points.

Thus

(12).

Now when light of a neighbouring part of the spectrum is considered, we

may, though the path of the ray from A B is changed, neglect this altera-

tion in calculating the optical distance, since in virtue of the minimum

Fig. 22.

property it affects the result by quantities of the second order only in the

change of refrangibility. Hence the optical distance from A 9B to A is

+ B/JL) ds, the integration being along the path A ...A, that from A B

to B is given by l(/u, + &/JL) ds, the integration being along B .,.B. Thus

from (12) the difference in the optical distances is

f f
iSpds (along B ... B) \8fjids (along A ... A),

The new wave-surface is formed in such a position that the optical distance

is constant and hence the dispersion, or the angle through which the wave-

surface is turned in consequence of the change in the refrangibility, is the

ratio of the above difference to AB.

If there *be only one dispersive substance, iB^ds = Sp .s where s is the

thickness traversed by the ray: hence denoting by Sj and s2 the distances

within the prism traversed by the extreme rays, the dispersion is repre-

sented by

where a is the width of the emergent beam.

In general ^ is small and s2 is the aggregate thickness of the prisms at

their thick ends : calling this t, the dispersion 6 is given by

................................. (13).
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But the condition for the resolution of a double line, the components of

which subtend an angle 0, is that 6 exceed X/a. Hence in order that a

double line with components having indices p and fi+B/j, may be resolved,

it is necessary that t should exceed the value given by

This expresses that the relative retardation t8/ji of the extreme rays caused

by the change of refrangibility is the same, X, as that incurred on passing

from the principal direction to that of the first minimum of illumination,

when the refrangibility is unaltered.

If we assume Cauchy's formula p.
= A + B\~2

,
then

In the case of Chance's
" extra-dense flint

"
the indices for C and the D line

of lower period are

pc = 1-644866, /Ap
= T650388,

also Xc = 6-562 x 10~5

(cent.), \D = 5'89 x 10~5

(cent.);

.-. 5 = -984x 10-10

X4 1CPX4

~2SX~r968SX'

For the soda-lines SX = '006xlO~5 and thus the thickness necessary to

resolve these lines is

t = 1-02 (cent.).

The number of times the power of the spectroscope exceeds that required to

resolve the D lines may be taken as its practical measure : thus in the case

of an instrument with simple prisms of
" extra-dense

"
glass, the power is

expressed nearly by the number of centimetres of available thickness.

70. In order to increase the resolving power of a rectangular aperture, it

is necessary to reduce the width of the central band, and this may be effected

by the suppression of the secondary waves from the central part of the

aperture. At the same time, since this has the result of increasing the

brilliancy of the succeeding bright bands of the diffraction pattern, care must

be taken not to carry this suppression of the central waves too far*.

As an example of this result, let us take the case in which the aperture is

reduced to two narrow slits of width 2e at its edges: then if 2d be the

distance between the centres of the slits, so that d + e = a, the formula

obtained in 66 for a number of similar and similarly situated apertures

gives

T
644W /dp V /sinpe\* /sin qb\*1= . , , ^ r- cosz

pd ............(15),^8

/>oV \dzj \ pe J \ qb J

*
* Lord Bayleigh, loc. cit.
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or in the case of a luminous line parallel to the slits

107

pe J

Now d being large compared with e, the fluctuations of (smpey/(pe)
2 are

very slow compared with those of cos2

pd and consequently the centre of the

pattern consists of a number of equidistant fine bands of equal brightness, so

that the arrangement is useless for the purposes of resolution.

Michelson* has however shown that by making the distance between the

slits adjustable, the variation of the visibility of the bands affords a means of

measuring the angular magnitudes of small sources of light and of resolving

these sources when double.

If <(#i, ^) be the intensity of illumination at the point (a^, 7/a) of the

source, then at any point of the diffraction pattern the intensity will be

J=
J

I
I<f> (asj, , 2A

Now if the angular dimensions of the source be small compared with \/6f
and we confine our attention to the brightest part of the field, we may write

/sin pe\
a /sin qbV* _

\ pe J \ qb )

~

throughout the range of integration, arid we obtain

Fig. 23.

Suppose that we have two equal symmetrical sources of uniform illu-

mination with their centres at Ol and 2 in the line of separation of the

slits. Let

00! = O.B = DO, = 2# = r,

0x0, = 2, OP = ff,

*
Michelson, Phil. Mag. (5), xxx. 1 (1890); xxxi. 256 (1891).

t For a discussion of other cases see Hamy, Bull. Astron. x. 489 (1893), xi. 48 (1894); C. B.

cxxvn. 851 (1898). Filon, Phil. Mag. (5) XLVII. 441 (1899).
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then integrating from to B and from D to E
fi4^1 2 V2 /?in \ 2 CZr ( 4>T-rl IT v

JUT<xi u c ivpQ\ I / ., \ 1 1 .
*7TW / tCi "-"o=

2 , 2 [- M
/ /(#i

-
r) -U + cos , +

Wpfpi* \o*J [h {
A. \pi p

fad fx1 #- - + -
2s A, \Pi Po/

In the first integral put ^ r = w, and in the second x1 2s r = w, then

r,, . - ,

/(w)U+cos -- - + - + - )>dwU-/ I
X Vl Pi Po/j

f
r

^/ x f-i
47rc^ /w r + 2s # \) , 1

+ /(,) 1+cos- (- +
- -+- UW .........(18).

J -r I
A- \PI pi PO') J

Expanding the first of these integrals we obtain

f
r

ft \J 4nrd (r x \ [
r

,

f(w) aw + cos h / (w) cos
J -r A, V/3i po/J-r

. 7r /r a; \ f
r

... . . frrw 7sm + /(w) sm -- aw,

in which the first term is half the area of either constituent of the source

and the last term is zero, since f(w) is a symmetrical function. The same is

true of the second integral. Writing then

J -r J -r Xp!

we obtain

oY rn mo i
fad f r x \ fadfr + Zs

#<A)~|

dpV o f i
47rc^ 47rc^ fr + s x \]~\ n^l + Qcos cos -

( h ))- (20),

whence we have for the visibility of the fringes

n fadsV Qcos (21).

With a single source the visibility is Q.

Thus with two equal rectangles of height 2h, we have

f(w) = h, H = 4>hr,

/fadr\7
.

Q = - cos --- c?w = sm
rJo \P! Xpi // V X/BX

/

sin--

FApi=
: r- COS
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Again, with two elliptic discs, having axes or and a- parallel and perpen-
dicular respectively to the direction of separation of the slits,

f(w) = <rJl-V?lv*, ,

4>Trdw ,4 f
27

/-=- v 1
7TW J o

cos

T
'

V ,!
and V= 2 r -j^ cos

71. Before passing on to the consideration of a number of rectangular

apertures in the diffraction screen, let us take the case in which we have

only two, one of which is covered by a retarding plate bounded by parallel

faces.

Let us suppose that the apertures are parallel to one another with their

centres on a line perpendicular to their lengths : let 21 be the lengths, 2h

the width of the uncovered, 2k that of the covered aperture, and 1g the

opaque space between them. Then if 8 be the retardation of phase intro-

duced by the plate,

A 1 Bo ( f~o f
l ro+Mri

)

</>.() = -- --f e lKiat
\ &<**+&*dady+ 1 \ &<**+**-*> deedy\

\p pidz [J-<g+ix)J-i J ff
J -i

y
')

X popl dz q \ p p J
'

and the intensity is

/ = -
( ~] 2

-
f p- J [sin

2

j?A + sinz

pk

+ 2 sin ph sinpk cos {8
- p (2g + h + k)}] (22) ;

and when the object examined is a long luminous line parallel to the length

of the slits,

AH /9p \ 2
2Xp

1 sm2
f + sma

Xp Xp

, .
/s> ,

.. /OQ ,

+ 2sm ---sin- -cos-{o . -(2g + h + k)> \

......... (23).
Xp Xp ( \pQ JJ

As a first application of this expression, let us suppose that the breadths

of the interfering streams are equal and that the streams are contiguous ;

then k = h and g = 0, whence

_ ............

Xp J
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and the minima are given by
. 2-7rA . DOsm * =0 or = n\

,

A,p All

/8 ,a . . * o
and cos

(?
- i =0 or f = + (2n + 1)

- + A g ,

\^ Ap / (
4

)

ZiAi

where A is the retardation introduced by the plate, measured in length in air.

Thus the 2nd, 4th,... bands on each side of the central line occupy the

same position as if there were no retarding plate, while the 1st, 3rd, ... bands

on each side are displaced in the direction of the retarded stream. This

result we shall have occasion to employ later.

The chief interest of the expression (23) lies in its application to the

phenomenon of Talbot's bands. These are dark lines that are seen, when a

tolerably pure spectrum is viewed with the naked eye or a telescope, half of

the aperture being covered with a thin retarding plate. A peculiarity of

these bands is that they are only observed when the plate is held on the side

towards the blue end of the spectrum *.

Since the object examined is a line of white light, the constituents of

which have been separated so that the different colours occupy different

angular positions in the field of view, the aggregate illumination at any point

M is found by integrating the expression for the intensity so as to include all

the components that have their foci near enough to M to afford a sensible

contribution to the illumination. We may thus with convenience regard M as

origin, so that is the coordinate relatively to M of the focal point correspond-

ing to a component for which the retardation of phase is 8, and the required

result is obtained by integrating with respect to f between oo and + oo .

A different value of X and of 8 corresponds to each value of
;
but in the

integration the variation of A may be neglected, and regarding 8 as a function

of ,
we may put

S = SO + T

where 8 and or are the values of 8 and d8/d at the point M, or being positive

when the blue end of the spectrum is seen on the side on which the retarding

plate is held.

Let us write for shortness

^ = 27r/i/(\p ), A?!
=

27rfc/(Xp ), g1
= r - ZTT (20 + h + k)/(\p ),

the expression for the intensity becomes

AH /ap \
2
2\po fr sjn^f r sin-^f" + ~~

sin h. sin kg. cos (8 +g& .........(25).
-oo

Stokes, Phil. Trans, cxxxvni. 227 (1848) ;
Math, and Phys. Papers, ir. 14. Lord Kayleigh,

Enc. Brit. xxiv. 441. For the case of Talbct's lines with a circular aperture, see H. Struve,

Mem. de VAcad. des Sc. de St Petersbourg (7), xxxi. No. 1 (1883).
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The last term within the vinculum is equal to

/OO 7 c.

2 cos 8 I sin kg . sin fc^ . cosg.- = cos S . w (say).
./ -oo f

But 2 sin >h . sin kg . cosgg = sin2 AI + ^+^ + sin2 hl

and r
J -

in which in every case the positive value of the square root is to be taken
;

hence

w =

/Mi-fei+giY. Mi-fej-giVj
VI 2 ;, -V\ 2 yj

= if g1

2
>(h 1 + k1^,

= TT (^ +k - \V) if (Aa + ^)
2 > ^i

2 > (fci
- ^)

2
,

= 277^ or 277^, according as h: ^ klt if (^ - ^)
2

>5r!
2
.

Thus writing ^ = 27r#7

(26),
oj.

when
^r'

2 > (h + A;)
2

;

2

s8
}

............(27),

when g'
2 lies between (/<- + &)

2 and (h
~

k)
2

;

+2Acogg
\

(28),

or =
pop!

according as h or k is the smaller of the two, when g'
2 < (h

-
k)

2
.

Now g = vr\p /(27r) 2g h k, and it therefore follows that if w be

negative, there will he no bands, since in that case g' is negative, and numeri-

cally greater than h + k; but that if or be positive, g' may be made to assume

any value from (2g + h + k) to + oo by altering the thickness of the plate,

since the value of CT varies as this thickness, and so long as it lies within

certain limits, there will be bands visible in the spectrum.

Let T0t TI, Tz be the values of the thickness of the plate when g'
= 0,

-
(h

~
k), and (h + k) respectively ;

then if T be less than T2 or greater

than 2T - T2 ,
there are no bands

;
for values of T between T2 and ^ or
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between 22T

Tj and 2T T2 there will be bands with visibility given by

(h + k- S(j'
2

)/(h + k\ and for values of T between T, and 2T - Tlt there will

be bands with visibility 2/z,/(/t + k) or 2&/(/i + k) according as h < k.

Now in passing from one band to the next, 8 changes, by 2?r and by e,

where e is the distance between the bands, and for this small change of we

may regard the changes of 8 and as proportional : hence

e =

but when T=T
,
which is called by Stokes the best thickness,

so that in this case

e = Xp /(20 + h + k).

The bands are thus spaced in this case exactly as those due to the

interference of two streams of light of the colour considered, coming from

a luminous line seen in focus and entering the object-glass through two

very narrow slits parallel to the line and situated at the centres of the

covered and uncovered apertures.

72. In considering the general properties of Fraunhofer's diffraction

phenomena, the case of a number of equal, similar and similarly situated

apertures in the diffraction screen was discussed, and it was pointed out that,

when these are numerous and very close together, the pattern of a single

aperture may be very considerably departed from.

The most important instance of such a series of apertures is afforded by
an ordinary diffraction grating, formed by tracing a number of equidistant

parallel lines on a glass plate. These lines, by diffusive reflection of the

incident light, appear to act approximately as opaque intervals
; and the

transparent spaces being in this case rectangular, the intensity due to

a luminous line parallel to the cuts on the grating is proportional to

cos 2 8
I in t n -i- n. \ I I inn I

.(29),* / \ * /

2?r , . . . X= - (sm i + sin 6)
A.

a being the width of the transparent, d that of the opaque spaces, and i, o

the angles of incidence and diffraction.

If a be very small compared with d, the last factor in (29) varies very

slowly with 8 compared with the last but one, and this passes through

a large number of principal maxima before the last factor reaches its first
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minimum. The pattern then will practically consist of the lateral spectra

given by
sin i + sin 8 = m\/(a + d),

of which several will be visible.

The first minimum of the rath spectrum occurs in a direction given by

sin i + sin & = (ra + 1/n.) \/(a + d),

and in order that two lines of wave-lengths X and \ + 8\ should just be

resolved, the principal maximum for the latter must be in this direction.

Hence the condition for resolution* is given by

(m + l/n)\=m(\ + 8\),

or 8\/X = l/(mn) (30).

73. Closely allied in theory to the ordinary grating is Michelson's

Echelon grating-f-, which is built up of a number of equally thick plates

of glass arranged in a series of equal steps. Here there are no opaque
intervals in the case of normal incidence, but the stream traversing any

step is retarded in phase by an amount 2?r
(/j,

1 ) t/\ with respect to that

transmitted through the step below it, t denoting the thickness, //,
the

refractive index of the plates.

Fig. 24.

In this case, calling s the breadth of a step and assuming that the steps

descend on the side of positive x, the intensity in a direction 8 is by (5)

proportional to

n2 cos2 8

TT .
-

\
2

( fir \
'

sin n (s sin 8 + p 1 ) sin s sin 8
}

A, \A, /

7T
(31),

n sin - (s sin 8 + /j,
1 1)\ I s sin 8

A, / \ A,

and the principal maxima are in directions given by

+ (fj,-I)t = m\ ........................ (32).

* Lord Eayleigh, Phil. Mag. (4) XLVII. 199 (1874).

t Amer. Journ. Sci. (4) v. 215 (1898); Astrophys. Journ. vin. 37 (1898); J. de Phi/s. (3) vm.

305 (1899).

W. 8
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Now the last factor in (31) becomes almost insensible when sin 8 exceeds

X/s in absolute magnitude, and hence the light is concentrated in the two

spectra, for which m lies between (/* l)t/\ 1. If, however, the retarda-

tion introduced by a step be an exact multiple of X a result that may be

obtained by a slight inclination of the echelon there will be a single

spectrum situated at the centre of the field.

A serious disadvantage of the echelon grating is the overlapping of the

spectra of different orders, which renders it only suitable for use with light

that is initially nearly monochromatic. Suppose that the incident light has

wave-lengths between X + SX, then in order that there should be no over-

lapping, we must have

m (X + SX)
- (p +^ SX - 1

)
t = (in + 1 ) (X

-
SX)

-
(p.
-^ 8\ - l}t,

\ ftX / \ riX /

or

and writing for m its approximate value m =
(/JL 1) t/\, we obtain very

approximately

X

the factor /* 1 \d/j,fd\ for most kinds of glass varying between O'o and TO.

The first minimum of the ??ith spectrum is in a direction given by

s sin 8 = (m + I/n) \ (/j, I)t;

therefore if the lines X and X + B\ be just resolved,

m (X + SX)
- V + - SX - 1 = (m + I/n) X - (/*

-
1) t,

SX 1 _X_
X / dfi\ 'n{(p-l)-\du,ld\\t

............
V

n[m t]
\ d\ /

For the dispersion we have

t dS dp
s cos b -, + -~~- t = m,d\ d\

d8 (/JL 1 \daldX) t
whence -==-^ JE2 '

........................ (35).aX sK

74. Another method of treating the question of gratings, that is not

without its advantages, is to deduce the effect of the ruling from the result

of the theory of a "simple grating."* Any grating may be regarded as the

superposition of a simple aperture and of a number of simple gratings ;
for

whatever be the law of its ruling, its transmitting properties are expressed
*

Schuster, Phil. Mag. (5) xxxvn. 509 (1894).
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by writing the amplitude of the disturbance in the transmitted wave as

a periodic function of x, and this by Fourier's theorem may be obtained

as a series of terms, of which the first is constant and the others are

simply periodic.

In the case of an ordinary grating with transparent intervals of width a

separated by opaque spaces of width d, the transmitting property is a periodic

function of period a + d = a-, and starting from the centre of one of the bright

spaces, this function has a value unity from to a/2 and from a a/2 to <r,

and a value zero from a/2 to a- a/2. Expressing this function then as

a series of the form

6 /2 + &! cos irxja- + b cos ZTTX/O- + . . . ,

we have

2 f ,,

m = - f(z)
(TJ

J

m-n-z -. 2 v . m-rra
cos da- = -- (1 + cos mir) sin -^ ,

2o-

and the series is

a 2 _, 1 ultra
_ > _ cii"i_ r*r*c_T^ D1AA V*v7O

<7 TT i m <r <r

Thus considering- only directions perpendicular to the lines of the grating,

the amplitude of the disturbance in a direction 8 is proportional to

. m-rra . no- / _ 2ra7r\\

j ^ p sm - - sm [p + -

a sin pi 2 1
x

a- 2m \
r

a- )

I + - 2--^
--3

--- r ... (36),
<r vl TT i m 2m7r no- I _ 2m?r\

-t <n 4-_ - I 11 -L- I

1 ~ a 2m (
P ~

a- )

where 2 is the total length of the grating and p = 2?r (sin * + sin

Hence the positions of the lateral images are determined by

p = Zrmr/a- or sin i + sin 8 = m\/a- ;

that is they are formed in directions such that the retardation between the

secondary waves from the edges of the grating amounts to mn\.

On either side of these spectra the illumination is distributed according

to the same law as for the central image, vanishing for example when

cr (sin i + sin 8) = m\ k\fn k < m

or when the relative retardation amounts to (mn k) \.

If Bm denote the brightness of the wth lateral image, BQ that of the

central image and B that of the central image when the whole space of the

grating is transparent, we have, since

no-

52

sin .r- ,^ ,

2m y o- /

no- f _ 2?7i7T
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is very small except near the place p = 2ra7r/o-,

/ \ 2

/ CM r

Bm _ COS2 &m
B cos2

i

Bo

B

Hence under the most favourable circumstances, less than l/m
2
7r

2 of the

original light can be obtained in the mth spectrum.

The mth spectrum will vanish if sin (m-Tra/a-)
= or ma/<r = m'; whence

it follows that if the ratio of the widths of the transparent and opaque

spaces can be expressed as the ratio of two integers, the spectrum of the

order equal to the sum of these integers is wanting.

75. It is at once clear from the above method of investigation, that any

departure from regularity in the ruling of a grating, whether arising from

variations in the hardness of the surface ruled or from irregularities in the

screw with which the spacing is effected, will introduce other terms in the

series representing its transmitting properties and give rise to additional

spectra. These spectra are in general of less relative importance and are by
reason of their faintness known as "

ghosts."

So long as the defects in the ruling are very slight, their effect on the

spectra escapes notice, but when, as may easily happen, there is a periodic

variation in the spacing with each revolution of the screw, the ghosts may
become relatively important.

As an instance of such periodicity* let us suppose a case in which the

edges of the rth transparent interval are at distances from the centre of the

grating given by

sn r +
7

the width of the opaque spaces being <r (1 a). Then the function to be

expanded has a period 70- and is equal to unity when x lies between

and a- (% + 2/3 sin -} ,

\ 7/
or between

~
^ + 2# sin (r

~
*) r

and <r |r + | + 2/S sin (r

<r r + + 2/3 sin (r + i) ..................... (37),
(

z

"

[4 7)1 7
r a 2?rl

or between cr
-^7

- + 2/3 sin (7 ) and ya,
(

Z 7 J

and has otherwise the value zero.

*
Peirce, Amer. J. of Math. n. 330 (1879).
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Expressing this function by the series

6 /2 -f 26TO cos (w7r/(7o-)) (38),

2
we have 6 = x sum of transparent intervals

2=
(70- 7 (1 o) <r]

= 2a,
70-

l

"
I ft \ m7rZ

7
bm = f(z)cos . dz

70-

2 p^1
. mTrf ^a .27T

i i ~/I /
m\ ci vi i ** j-L -A- 1 .

^

(1 + cos nnr) 2 sin -- - -Ir + ~ + 28 sin (r + i) -^"l
7 (

2 7]

Now

and the ??th term of the series is

n+l

I
'

I "f I T

[w
s=i

\s
1 |n s + 1

if ?i be odd and

_
/CM r

=
2 n

2 (-I)
8- 1

,- {<,(*-,+*)
Xi + e-(

\n |_S=1
V

|g-l|TO-g+ 1 l

if ?? be even. Hence collecting the terms

W = ao n
sina;) i V /_ 1 \n

' ^ --

(-!)<*-**<] 2 (-l)
n
,-r- -,

,=i
J

=o
v

[ \n + s

and
S= oo

sin (a + 2/8 sin a;)
= A sin a + 2 A s {sin (a + s) + (!)* sin (a sx)} . . .(39),

=i

= oo O2TI+8

A,= 2 (-1)",-^- ........................... (40).v
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From this result it follows that

2 I

r=^- 1
. fa \rn7r

[CH. vn

mir [
r= ~ l

fa. \
2, A sin (- + r\
r=Q \* /

-_y-l r

2, sin (ma + 2s) = f- (
=o L *1

r=y-\ T

1)* S sin (ma 2s)
r=0

7T ~1

2s)-r
7 J

,-2s)-r
7

/, x-
(1 + cos mtr)

WITT

. (a 1 + 7) 7717Tv-sin
27

sin

. m?r
Sin

-rp-27

+ 2 -4, { sin

. (m + 2s) TT

sm

(m 2s) TT- -

- sn
. (m 2s) TT

Qi n>lil '
.~

Hence the series is

where

2 =
1

a 4- 2, - ^jm cos
TT =i m 70-

(41),

, . (a I)m7r
,

= * sin -
. sin 2m7r s^ . sin 2 (m + s) TT

"o + i " -
. vmr

sin

7
sm

(42),

-T -

^-
= unless y = ky when it becomes = 27 cos kir,

and A=
w=0

From this result it follows that the amplitude of the disturbance in the
direction 8 perpendicular to the lines of the grating is proportional to

cos

iivo- fsm -^- ( v +

m=\ m 2m?r
>

- _2W7T\

7<r ^m v 70- /
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11 being the length of the grating, which is here supposed to contain an
even number (n) of complete periods. The lateral images are determined by

sin i + sin 8 = m\l<ycr.

Now neglecting the cube and higher powers of the small quantity
we have

> , 9
-

\ 7 / 7 V 7 /

and -Bfcv-2
= 7^2 sin {& 2 (a

-
l)/7} TT,

#ifcY-i
= 7-4 1 sin [ka.

-
(a
-

l)/7} TT,

.Bfcy
= 7^. sin kcnr,

=-yA 1 sin (fca + (a
-

1)/7J TT,

= 7^2 sin {& + 2 (a
-

- = m' > 2.

Hence, whenever m = ky, that is in directions given by

sin i + sin 8 = k\/cr,

corresponding to the lateral images given by an ordinary grating of period cr

equal to the mean interval of the transparent spaces, we have bright spectra

and on either side of these a series of faint spectra or ghosts, that are the

less conspicuous the further they are from the principal spectra.

76. Another peculiarity exhibited by certain gratings is that of exercising

a converging or diverging influence on the spectra formed by them*. This

has been attributed by Cornu to a regular variation in the spacing of the

lines, and elementary reasoning shows that a gradual increase in the interval

of a plane grating has the effect of a convex lens as regards the spectra on

one side of the central image and acts as a concave lens with respect to the

lateral images on the other side.

Let us suppose that the surface on which the lines are traced is curved,

and that the lines are determined by the intersection of this surface with a

series of parallel planes, one of which is the normal plane at the centre of the

grating, and that the spacing is such that the distance of the &th plane from

the centre of the series is represented by

s = a-k + (r'k- + v'k3
........................... (45).

When the striated surface is irregular, the spectral images are defective,

but when it is approximately a surface of the second degree with a plane of

symmetry parallel to the lines, the images may be very distinct and the

*
Mascart, Ann. de VEc. Norm. Sup. i. 250 (1864). Merczyng, C. R. xcvu. 570 (1883).

Rydberg, Phil. Mag. (5) xxxv. 190 (1893). Cornu, Ass. Fran$. pour Vavancement des Sc. Nantes

(1875), p. 376; C. R. LXXX. 645 (1875); cxvi. 1215, 1421; cxvn. 1032 (1893); J. de Phys. (3) n.

385, 441 (1893); Seances de la Soc. Fran$. de Phys. (1893) 215, 223. Lord Rayleigh, Enc.

Brit. xxiv. 438.
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inevitable astigmatism, though considerable, is of little consequence. In

considering the focal properties of such gratings the curvature parallel to the

lines may be neglected and that normal to the lines has alone to be taken

into account. This is equivalent to assuming that the surface and the

incident wave are both cylindrical, the generating lines of these cylinders

being parallel to the ruling of the grating. The problem is thus reduced to

one of two dimensions.

Let QA, QP be two rays starting from a point Q and falling on the

concave side of the striated surface AP, the centre of curvature of

which is 0.

Let QA = p, OA = a, the angle QAO = a. and the angle AOP = a, then

AP = 2a sin /2 and the angle QAP = 7r/2 + a - tw/2. Hence

QP2 = p
2 + 4a2 sin2

o/2
-
4ap sin a>/2 sin (w/2

-
a)

=
(p + a sin a sin o>)

2 a2
sin'- a sin2

&> + 4a (a p cos a) sin2

&>/2.

Now as far as sin4
&>

4 sin2

&)/2
= sin2

&) + (1/4) sin4
&>

and to the same order

QP2 =
(p + a sin a sin &))

2 + a cos a (a cos a p) sin2
G> + a (a p cos a) sin4

&>

and QP = p + a sin a sin 60 + ^ cos a(- )a
2 sin2

G>

V p

1

sin-*

. sm a cos a /cos a 1\
t - a? su

p \ p aj

1
Jsin

2acosa/cosa 1\ 1/1 cosa\ Icos2 a/cosa 1\ 2
)

9l r~ )
+ r-\ n-a4 sm 4

ft) ...(46).2
( P \ P aj 4a2

\p a J 4 p \ p a
}
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Again let Q' be another point on the same side of the normal OA and let

Q'A = p, Q'AO = a'; then Q'P is obtained from QP by writing p for p and

a for a.

Suppose now that A is a point on the central line of the grating and

P a corresponding point on some other line, then Q' will be a focus of the

diffracted light if

QP Q'P = QA Q'A+m\ ..................... (47),

m being a positive or negative integer, and the upper or lower sign being

taken, according as the grating acts by reflection or transmission. Taking
the former case we have

1 /cos2 a cos2
a' cos a cos a'\ .

(smof + sma)asm&) + ^ H----.
--- a2 sm2

a>
2 \ a a J

sm j
&)

1 fsm a. cos a /cos a 1\ since cos a /cos a 1\)+ -
; }\ a3 sn

2
( p \ p aj p \ p a/J

1 (sin
2 a cos a /cos a 1\ 1 /I coseA 1 cos2 a /cos a IV

2 1 /o

2
V p

~
a) 4a2

\p a~/ 4 p \ p "a/
* o / /y /1\ "I/I /\ T O// / "I \ O^

SI Tl 1 OOS QE/C*OSG J_\ /J COS Ct \ I COS" Gt /COSCt J.\"l

= m\ ................................. . ..... (48).

Now if P be on the &th line

a sin &) = crk + <r'k
2 + <r"&

and writing b = o-
2

/o-',
c = tf'/ff",

the equation becomes

1 /cos2 a cos2
a' cos a + cos a! sin a + sin a'\ , 7 ,

(sin a + sin a ) a& + A- - H--?
--- - + -

JT-
o-

2 "

2 \ p p a bl
1 (2 /cos

2 a cos2
a' cos a + cos a'\ sin a /cos2 a cos a

\
j _ I_ _i__ __

j

__ I- __ -

Vp p < I P \ P a '

sin a! /cos2 a' cos cA sin a + sin a'
=n\ (49).

P' \ P a J c )

So long as cr
3k? is small, this equation will hold for all values of k, if

<r(sin a+ sina') = wX (50),

and

cos2 a cos a sin a 1
+ r-

cos2 a cos a sn a
'

We thus have two families of curves, called by Cornu "
focal curves

" and

by Baily "diffraction curves,"* that are conjugate to one another and have

Phil. Mag. (5) xv. 183 (1883).
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the property, that if the source be at any point on one of the curves, the

spectra lie on the conjugate curve. Writing

a/6 = tan
(< + ^), (a

-
d)/(a + d) = tan

</>
tan ty, K~2 = er2 + b~-

the equation to the curves may be put under the form

K_cos2
ot

P=Z 7^ \
-

7^
-

cos + < cos + ^

Among these curves there is one, the principal focal curve, that merits

special attention, as it passes through both the source and the spectra, when

the former is at any point upon it. This is the curve for which d = oc and

its equation is

cos a cos a sn a
- = - ---

T ........................... (o3),
p a b

or

where tan< =
a/6. This latter form of the equation leads to an elegant

geometrical construction of the curve*.

When the spacing is correct, b = x
,
and the principal focal curve becomes

p = a cos a (55) ;

a circle on the radius of curvature of the grating as diameter. This is the

arrangement usually adopted with curved gratings and it is clear from

(48) that in this case the outstanding aberration is of the fourth order

and equal to

Q (sin a tan a + sin a' tan a') sin
4

tuf.o

If the grating be curved with a very small systematic error in the ruling,

then < in (54) is very small and we have sensibly

p = a cos
<f>
cos (a <),

a circle of diameter a cos < inclined at the small angle $ to the normal to the

grating at its central point.

Finally when the grating is plane, a = oc and the principal focal curve is

p = b cot a cos a (56),

a cissoid of Diocles with its cusp at the centre of the grating and its

asymptote at right angles to the plane of the grating at a distance 6 on the

side on which the spacing increases.

77. We will now consider a case that is of primary importance in the

study of diffraction, on account of its application to the theory of optical

instruments, namely that in which the aperture is circular.

*
Cornu, J. de Phys. (3) n. 391 (1893).

t Bowland, Phil. Mag, (5) xvi. 197 (1883). Glazebrook, ibid. (5) xv. 414; xvi. 377 (1883).
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Let the centre of the aperture be taken as origin, its radius being R, and

let us write

x = p cos 6, y = p sin 6,

p = crcos0', q
so that

where r is the distance of the point of the pattern under consideration from

the image of the luminous point. Then

A
dp<> [

R r 2*

<T) (t) = 16 x
X/?i/3 dz Jo J e 1

ixiat
A dp [

R
T
2"

\pip dz J Jo
or if pa-

=
A 7)n i !-R<r

. / \
1*0)^ '-'PO

.(57),
io cr

and the intensity is

A*
(dPo- 47rjR " '" .............

Thus the illumination vanishes in accordance with the roots of Jj^^O,
and calling these i, 2̂ ,

... the radii of the dark rings in the diffraction

pattern are

The values of the first six roots of Jl (f)
= are

3-831706, 7-015587, 10173468, 13-323692, 16-470630, 19'615858.

For the maxima we have

and thus the maxima occur in correspondence with roots of J2 (^)
= 0, the

first six of which are

0, 5-135630, 8-147236, H'619857, 14-795938, 17-959820;

and since when has one of these values

the intensity of the maxima is

* For the properties of Bessel's and Struve's functions required in this and the succeeding

sections see Appendix I.
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The total illumination distributed over a circle of radius r is

2, I" Irdr -^ !
f

im =^ ()' -** fJo 2TrR*Jo pi\dz) Jo

since <7 (0) = 0, J 1 (0)
= l.

If r and consequently be infinite, J () and Jj () vanish, and thus the

proportion of the whole illumination that is without a circle of radius r is

Jo'- () + Jj
2

() and since for a dark ring J, () = 0, the fraction of the light

that is outside any dark ring is J 2

(). The values of this fraction for the

successive roots of J1 (f) = are '161, '090, '062, '047, ..., so that more than

fTjths of the whole light is inside the second dark ring*.

78. When the object under examination is a luminous line, the various

elements of which are to be regarded as independent sources, the intensity

may be determined by integrating the expression for the intensity due to a

luminous point. In this way Struvef has obtained by the aid of properties

of Bessel's functions an expression suitable for numerical calculation. Lord

RayleighJ has however shown that the problem may be solved more easily

by a method due to Stokes, in which the integration over the diffraction

aperture is postponed until that with respect to the direction of the luminous

line has been effected.

Since the intensity due to a luminous point is obtained by multiplying

</> (0 by the conjugate expression, we have

/ = (???
^Po'Pi

2
\02 /

and the intensity due to a luminous line parallel to the axis of y and of

breadth dxl is

J= dxAldy, = -^

In the present shape of the integral, the integration with respect to q

must be reserved to the end, but if we introduce the factor Exp(+ /3q), where

the sign or + is to be taken according as q is positive or negative, we shall

evidently arrive at the same result as before, provided that in the end we

* Lord Kayleigh, Phil. May. (51 xi. 414 (1881) ; Enc. Brit. xxiv. 433.

t Wied. Ann. xvn. 1008 (1882) Mem. de I'Acad. des Sc. de St Petersbourg (7) xxx. No. 8 (1882).

Enc. Brit. xxiv. p. 433.

Edin. Trans, xx. 317 (1853).
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suppose ft to vanish without limit, and when this factor is introduced we may
integrate with respect to q first. Thus

J=Uft, 2 tf&y&jjjjr
e^e^x

-*'^y-y'dxdydx'dy'dq

_ A*
/3g_y dp ffff 2/3

dxdvdx'dv'~
p* (dz ) 4**

ljt/Uo
J J J J /3

2 + (y
-

y')
2

Now Ltfl=0 I -= 7^ 7rT = 0, unless the range of integration for 11 include
J P + (y y)

the value y, in which case it is equal to 2vr and therefore

y
F>

where Y is the common part of the ranges of integration for y and y cor-

responding to any values of x and x, and since the aperture is symmetrical

with respect to the axis of y

p<

A 2 f7)n \ 2 dn CR I"**m*(&\SE.I Y(e** + e-^x}(e^
x '

+ e~^) dxdx
p

2 \dz / ITT J o J

A 2 /dp \2 dv [
R

[
R

= [-} 2 Fcos px cos px dxdx'.
p "\dzj 7T Jo Jo

Now Y is the smaller of the two quantities 2 Vj?2 x2
,
Z\lRz

x''
2 and

therefore

j = 4: ftp}*
dP 4 f f

n r VS^^i Cos px cos px'dxdx'
p -\dZJ 7T (Jo Jo

rR rR _
)

+ I vR1 x'~ cos px cospx dx dx'
{

J J .f )

Z a? cospx cos px'dxdx'
7T

/^-V.R2 - x- sin
7T

TT

IT

dp [* .
,

. m
-
f sifl (2J2 sm 6} cos2

_p J

where % = pR= -,!; being the abscissa of the point considered relatively
X p

to the image of the luminous line.
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The points of maximum and minimum illumination occur in accordance

with the roots of

a H, (20
a (SO1

or 3tfI (20 = 2fro (2O

which, when is very large, become approximately the roots of the equation

sin (2 7T/4)
=

2/VTT^.

Since ^ (20 is essentially positive, the intensity is nowhere zero.

79. Let us now examine the case, in which there are two parallel and

equally luminous linear sources, the components of which subtend an angle
at the aperture equal to that subtended by the wave-length of light at a

distance equal to the diameter of the aperture. Since

277-^ J | = ^_

the corresponding value of is TT. Writing

=
2 (20*

"
F73

~
F73~275

+ P732
. 5s

. 7
~~ '"

the intensity at the geometrical focus of either of the lines is proportional to

and that at the point midway between the geometrical images of the lines is

2Z(-7r/2).

Now i(0) = '3333, Z(7r/2) = -167l, Z(w) = '0164,

so that the ratio of the intensity of illumination midway between the images
to that at either image is

/2) -.955

But in order that the lines may be fairly resolved, this ratio should not,

as we have seen, exceed the value '8 approximately, and hence it follows that

for resolution the angular interval between the lines must exceed that sub-

tended by the wave-length of light at a distance equal to the diameter of the

circular aperture.

80. If we now integrate (59) from f to oo
,
we shall obtain the illumina-

tion due to an uniform luminous area bounded by a straight line parallel to

the axis of y, at a point situated at a distance from the geometrical image
of the edge. This point will be without or within the geometrical image of

the source according as f is positive or negative, and denoting the intensity

of illumination by / (), we have
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if the unit of intensity be such that the illumination due to an infinitely
extended plane area be unity.

Hence /(+) = C
j* -$j

with the condition that for = 0, /(+) = 1.

rH,^) If p sin (2 8in0)

Jo

'

and from this it results that C = 4/?r, and

2 7r'

using the ascending series for H^

For large values of the argument, it is more convenient to use the semi-

convergent series for H^ and this, retaining only the principal terms, gives

- 2 t\+

For very large values of f this reduces to

and thus at great distances from the geometrical image of the border of the

radiant area the illumination is inversely proportional to the distance f and

to the radius of the aperture.

81. The case of a diffraction aperture in the form of a sector of a circle

is interesting on account of its application to the heliometer objective*.

The fundamental formulae of the problem were first given by Struve, but the

case was first fully worked out by Brans in a manner substantially the same

as that given below.

Let 2/3 be the angle of the sector, then writing R<r = % we have

-A_
p? |L [*gdz f ^"-('-l M

\p p! 02 *
J o J -/3

*
Struve, Mem. de VAcad. des Sc. de St Petersburg (7) xxx. No. 8 (1882). Bruns, Astron.

Nachr. civ. 1 (1883). Straubel, Inaugural-Dissertation, Jena (1888).
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Now f eizcoa + d<4r = J (s) . ilr 4 22 - sin nty . Jn (2),
JO \ n

and sin n (/3
-

0') + sin n (ft + &) = 2 sin

whence

o A ^ z?2 r ( ^11
<f> (A = ie

lK<at - -
I \ &J (z) + 2 S sin n/3 cos

Xp /3i
82 -

J o ( i w

But

*=
71 + 2S + 1

therefore

+ 4 ^ , Sin^ cos
'

s

2

, .

__ f>I.KV>t

XpoPi

and the intensity of illumination is

2 7?

=oo

2

'

...(60),

(61).

The diffraction pattern is thus symmetrical with respect to lines parallel

and perpendicular to the bisector of the angle of the sector.

In the case of the heliometer objective, /3
=

Tr/2, and since

I cos (2s
-

1) & = sin 2n0'/(2 sin &\
i

we have

4^ 2 /a
/B.\JR*[V 4 f- 2n )H

7 =
Vp?^ IS J P [J

Jl (?) + sTn^' 1? (2n-l) (2n + l)

Sm 2^^
<P) J

......... (62).
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When 6' = or TT, the intensity may be simply expressed in terms of the

Bessel's and Struve's functions Jj and Hl : for in this case

A 9p 7T-R2
/* r TT= _ te

tK^ Ji
(j- tjy

X/Jopi 02 *
Jo

.hence / = v i^( + ^(r)) ............... (64).

When #' = 7T/2, the intensity is given by the simple expression

/.-^-.(^'^.^(O ..................... (65),
X-/3 -/>r V9-^ / T"

and when ^' = + ?r/4

w.



CHAPTER VIII.

FRESNEL'S DIFFRACTION PHENOMENA.

82. IN the more general case of Fresnel's diffraction phenomena, the

disturbance at the point (x , y ,
z ) due to a radiant point at (oclt yl5 z^ is

or writing

A. \po Pi/ po pi/ A,
/?o /

and remembering that

I TTZ
eLS = cos z + 1 sin z = A/ y {t/Lj (^) + t/i ()},

> (0 = - *r- l(Mrf+8)

Apo^j 0^

+ iJi(lx)}e-^dx .................. (1),

the integration being extended over the diffraction aperture*.

The expression for
</> (f) thus depends upon integrals of the form

YJ<!a)<r**'ilm ..................... (2),

Yv+l Jv (lv}e-^dx ..................... (3),

where v is real and assumes in the case considered the value 1/2.

Now by successive integration by parts, using the formula

we find yvJ^-{Uv (y,z)+tUv+l (y,z)}e-^ .................. (4),

* Lommel, Abh. der K. Bayer. Akad. der Wissen. xv. 233, 531 (1884-1886).
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where Uv
= 2(-l)' (y/zY^J^^) ........................(5),

o

y being written for ka? and z for Ix. In the same way from the formula

we obtain 7, = --{ ^-,+2 (y, *) + * F_,,+1 (y, *)} e~^ ............... (6),

where F.<y, *)
= 2(- I)

8

(^)~"~
M ^" (*) .................. (7).

o

Similarly from the formula

we find rr ir f j f +.IU.*^ 1 ............ (8),
V ^ty ' **/

and from the formula

\z~v^Jv (z) dz = - z-^J^ (z)

we obtain
Jl

where Uv (z
z

/y, z) and Vv (z*ly,z) are the series obtained from (5) and (7)

respectively by writing therein z2

/y for y.

Since (lx)
v+*Jv+s (Ix)

=

for x = 0, if v be positive, we have if I >

v^ (Ix) e~dx = ~{Uv (y, z) + iUv+l (y, z)} <T
1

2
...(10),

where y = kr- and z = lr; and again since

for a; = oo ,
if v be less than unity and ^ > 0,

J
(to)"/^^)^

4
* cte -^{F^^^ + tF.^Cy, ^Je-'i

and if i/ be not less than 1/2, these equations are also true when I = 0.

Hence if v be less than unity and not less than 1/2,

f _ *? 2"~~1

(IxyJ^ (Ix) e~
l

t dx = ^-[Uv (y, z)
- F_,+2 (y, *)

J o

+ * |^+1 (y, )- F_v+1 (y, *))]-! ......... (12).

Now consider the integral

f (^)"/_! (lot) e~
<a+^')a;2 ^.

J o

92
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Since

we have

I (laeyj^Uatie-to+ito*
Jo

72I/ 1+2*
V /_ 1 \s .

t -+

= s / iy
;

*T(s + l)r(i/ + )2(a+-
72v 1 1 / 72

! v/__iv- -i

(2a + A^)"

~
IP

6

where A- = 4a2 + A;
2

,
sin <

= kjK.

This equation holds for all positive values of v, so long as a is positive,

however small it may be : it also holds for a provided the integral on the

left still retains a meaning, which is the case if v ^ and < f . With this

condition we then have

Jo kv

"
I v )t /-, o \= = 0V22/ tJ (lo)

ff
v

Again, from (8) and (p)
7i-2i' r //2 \

IX^-
VJV (lx) e-^<- dx = TJ^ \U. (

7; ,

J
+ iUv

and if v > ^ and ^ 0,

whence

4/ 7/y\l V j ( J /y \ ^ ~ .<tCX t /Y/y ^ J I I I . I V \ \
- III A)" I V > gft?*"*1

I 1 *-
I

I vvU I t/ i/ \ l/w / (J W/w ~~"
, , 1 v V i v vf 1 T^ 6 v a/4-1 IT jv* /(^ \ J-*-'/\ / '\ / 7,1 |p I \ * / V/"1 /I

and

/O "'
"

(.
\ / N"^ /J

* For the properties of Lommel's functions Uv (y, z) and Vv (y, z) see Appendix II.
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83. Applying these formulae to different cases of diffraction, let us first

consider that in which the aperture is a rectangle of width 2a in the direction

of the axis of x and of length 26 in the direction of the axis of y.

Taking the origin at the centre of the rectangle, the limits of integration

for x are + a and for y are + b, and since for these limits the integrals <r^
are

zero, we have

x 26 {Pi(', !>') + t!7,(tt',

where

2-7T /I 1\ , 27T /I 1

po p

and the intensity is

2-7T /I 1\ , 27T /I 1\
M = - + - a2

,
w= - + -

\ Vo />i/
x Vo p^

v = 2^/^ +
M ^ fc/fc fe

A. \po pj X
V/^o PI

x
^f{Vf(', ')+,(', tO) .........(19).

Now in Fraunhofer's special case of diffraction, p^
1 + p^

1 = 0, so that we

obtain this case by writing u = u' = : but when u= 0,

and the expression for the intensity becomes that found in the last chapter,

namely,
A*

In the general expression (19) relating to Fresnel's phenomena, the last

two terms have the form

M=^{Uf(u,v) + Uf(u,v)} (20),

and we have to examine the character of this function.

For a given position of the screen of observation, that is for a given value

of u, M is a maximum or a minimum for values of v that make dMjdv = 0.

But
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PLATE I.*

\

\
\

\

\

\

\

The regions of the lines that give minima are indicated by heavy ruling : those that give

maxima by light ruling.

* Plates I. to IV. are, with the permission of the Eoyal Bavarian Academy of Sciences,

reduced from plates published with Lommel's papers.
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/2
hence M is a maximum or a minimum when either v*

./j (v)
= * / sin v = 0,V 7T

that is when v = mr (n = 0, 1, 2 . . .), or when u~$U% (u, v) = 0. Now
~\

,
and Z7 (M, w)

= - ^ (M, v),

and therefore the maximum and minimum values of M occur in corre-

spondence with either maximum or minimum values of
Z7j (u, v) or of

/~2
^i7_i(v) = A / cosv. The intensity at the minima is never zero, since

V 7T

f/j and C/| do not vanish simultaneously, as may be seen at once from their

expression in terms of Fresnel's integrals.

In order to distinguish between the values of v that give the maxima

and the minima, we must form the expression d2
M/dv": now

(22).

f
, T . ,dU% JT dW + ^

8,

Hence the roots of v^J^ (v)
= correspond to maxima or minima of M

according as v^J^U^ or cosv. 17% is positive or negative, and the roots of

ii~-U% = give the maxima or minima according as t^J|(v)CT| or smv.U% is

negative or positive.

If, however, J (v)
= and U$ (u, v)

= simultaneously, 32

Jf/9v
2 =

0, and in

this case

d*M v% v%~= *ir-.J-t.Ut= -torZj-iUi .................. (23),
dv3 u- u*-

which does not vanish unless v = 0, because for these values of v, v$ 7_j and

Ui have their maximum and minimum values.

Again d2

M/dv- = 0, if U$ (u, v)
= and U^ (u, v)

= 0, while d3

M/dv
3 does not

vanish, but is equal to

-irv t

-u-'*JiU'i
=

-'irvu-*JiJi ..................... (24).

Hence the roots of U$ (u, v)
=

0, other than v = 0, that satisfy either of

the equations J (v)
= 0, t/ (u, v) = correspond to neither a maximum nor

a minimum value of M.

Now when v = 0, that is at the centre of the pattern

and when U% (u, 0) = 0,

aw sV2^ JT , n .

-5-7-
= - - *7 (M, 0).4
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But vz^ <M ' 0) = l ~
\ * <" 0) = l - cos *tt (1

-
^2) dv>

and therefore 7* (i, 0) is positive and for these values of u,M is a minimum.

When, however, v = and Z7| (M, 0) ^= 0, then dM/dv = and

V27T ,

and JV/ is a maximum when it is between w2n and w2n+i> and a minimum
when it is between u2n+l and tt2n+2 (n = 0, 1, 2...) where w2n , t(2,m ... are the

successive roots of Z7j (it, 0) = 0.

The edge of the geometrical shadow of the screen is very approximately
at the point for which u = v, the shadow lying on the side for which u < v.

Now when u < v we have

.

>-![>, f
-"-^ ,

0}
+ F,{^ ,

o}]
sin .

hence for points within the shadow that satisfy the equation vJ% (v)
= 0, that

is for Avhich v = nir (n = 1, 2, . . .),

and

and this expression is essentially negative, so that within the shadow the

roots of
fl*i7j(fl)

= give the minima. Further it follows from (26) that the

equations v^J^(v) = Q and u~%U$(u, v) have no common roots when u<v,
and that only one root of the latter equation lies between two consecutive

roots of the former, so that the roots of u~% U$ (u, v)
=

give the maxima
within the shadow*.

84. When the diffraction is produced by an opaque rectangle of breadth

2a and length 26, we have to integrate for x from oo to a and from a to

oo
,
and for y from oo to b and from b to oo . Hence

^--g^^

* See Plate I. for a graphical representation of the equations Jj (v) = 0, f/j (w, v) =0.
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and the intensity is

x|? (V,= (',')+^ (',')! .-(28).

In this case, since the values of V(ii, 0) and V(u, 0) decrease continu-

ously as u increases, the intensity at the centre of the geometrical shadow

varies continuously as the screen of observation is moved towards or away
from the opaque obstacle without passing through maxima and minima.

The function that we have here to consider is

Now if u be constant

8^ = ?{ -
dv w dv

*
dv

M .........(29).

Hence for a given value of u, the expression is a maximum or a minimum

when, either

y~2- sin v = 0, or Fi (u, v)
= 0,

7T

8 /lr w9F
and since v*J).(v) = _ --(VJ^L (v)), Ki (it. v) = -~

ov v dv

the maxima and minima occur in correspondence with either maxima or

minima values of either 0*7"_j (v) or F3 (u, v).

To distinguish between the maxima ap'
1 minima we have

gy
' '

4 >^ .)." 4' -J " "-4 ' if ("W

whence it follows that to the roots of v*7j (v)
= correspond maxima or minima

values of 3f according as 7_jFj is positive or negative and that the roots of

V^(u, v) = determine maxima or minima according as JjF_j is negative or

positive.

At the centre of the pattern, where v = 0, we have

(31),
dv'

2 u
'

and since Fj (u, 0) is always positive, M is a maximum at this point.

When v^J^ (v) and Fj (M, v) vanish simultaneously, d'
2

M/dv* = ;
in this

case

(v)V*(u,v) (32)\/ m \ * / ^ /
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20

15

10

5 -

PLATE II.

J,=0

The regions of the lines that give minima are indicated by heavy ruling: those that give

maxima by light ruling.
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and this is not zero, since J_j (v) and V%(u,v} do not become zero at the same
time as J% (v) and Fj (, v). To such values of v therefore correspond neither

maxima nor minima of M.

These are the only exceptional cases, for a graphical representation

(Plate II) of the equation F^ (u, v)
= shows that at all points of this curve

dujdv is always positive : now

and since Fj does not vanish with Fj, F_i will not do so.

For points within the geometrical shadow u > v and

We have then when v = mr

v s \
l [v ((u-vf J

, TrF, (M, )
=

g [^ I -^ ,

0|
+ F,

| ^ ,

0|J
cos mr

and the expression J-V that determines the maxima and the minima has

the positive value

?17T.

Accordingly within the shadow the roots of v?J- (v)
=

give the maxima.

Further it follows from (34) that within the shadow, the equations v^J^ (v)
=

and Fj (u, v)
= have no common root and that only one root of the latter

occurs between two consecutive roots of the former equation, and accordingly

the minima ofM are given by the roots of Fi {u, v) = 0.

85. Let us now take the case of the diffraction caused by a train of

waves passing an infinite screen bounded by a straight line. Taking this line

as the axis of y, we have as the limits of integration and GO for x and oo

and + oo for y, and consequently from (13) and (16) we have
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and the intensity is

A 2

/dp \
2

TT TT
|"f (V_

a
' cos ~

or in terms of a new unit of intensity, that is practically the intensity at a

point on the screen due to the uninterrupted wave,

This formula holds for all points, whether within or without the geometri-
cal shadow of the screen, I being negative in the first case and positive in the

second case, but it is convenient to alter the expression so that in both cases

I is regarded as positive. Now, since

we have

and writing ^
2
/A;
=

u, the intensity at points outside the geometrical shadow

is given by

A = i cos - +W (, O) + i sin - + %U, (u, 0)

=
|
cos

(1
-
1)

+ *F^ <" 0)
}

2

+
|
sin

(1
-

1)
+^ (w ' 0)

}

2

- (3

while for points within the shadow we have

/, =
{i

cos
(I
-
1)

-
i [7, (W ,

O)}

2

+
|i

sn - -

= ini

(~.0) + iFi (M,0) ............................................. (39),

u in both cases being regarded as positive. At the edge of the shadow where

I = 0, the intensity as given by the above expressions is

Now Fj
2
(u, 0) and F|

2
(u, 0) both decrease continuously as u increases

and only vanish when u is infinitely great : hence on moving into the geo-
metrical shadow away from its edge we find a regular decrease of intensity.

Outside the shadow the illumination is never nil : for that to be the case, we
should require that

F
f (u, 0) = - 2 cos K -

1} , Fj (u, 0) = - 2 sin
(|
-

)
,

\A <*/ \Z */
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or Vf(u,0)+ Vf(u, 0) = 4,

and this is impossible, since Fj (u, 0) and F
3 (, 0) are both numerically less

than 1/V2.

In order to determine the maxima and minima in the space outside the

geometrical shadow, let us write

then
'

-ic

/~2
and since 7_i (z, 0) + f/" (, 0) = ir* [*^ ()]_ = A/

u

Hence

du ^u du 2V TTW

and the maxima and minima occur in accordance with the roots of

Now V\ {u, 0) is always negative and less than l/v2 in absolute value and

therefore this equation is only satisfied if cos
( -7 )

is positive and less than
\& 4y

1/V2J

1

in other words when u lies between (4?i + 1) TT and (4ft + 3/2) TT or be-

tween (4n + 7/2) TT and (4n + 4) TT, (w = 0, 1, 2 ...
).

Since ^F|(tt, 0) is small and approaches the value zero as u increases, the

roots of (42) are approximately the same as those of cos (~ j)
= which

\2 4y

gives
4OT

i q
W=^P 7T, (71

= 0,1,2,...) ..................(43),

a second approximation to their values being

4n + 3 T/ /4n + 3 _\
M = -

g
- 7T+COS717T F|l

-
^ 7T,

OJ
............... (44),

and since the intensity of the maxima and minima is
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it follows that the maxima occur when n is odd, and that the minima corre-

spond to the even values of n*.

The locus of a band in space is given by

2ir/0b arA'/l-
I T I I T

Mt \po pj \po pi

where u has the value corresponding to a maximum or a minimum. Since

Po=z ZQ> this ig approximately the hyperbola

*

Xw v^ + x,z,J
-

Pl (z
+

)

+ . = o,

having its vertices very nearly at the source of light and the edge of the

diffracting screen.

86. It has been pointed out in Chapter II. that in the cases of inter-

ference therein considered the phenomenon is considerably modified by the

effect of diffraction. As an instance of the disturbance thus produced, let us

consider the case of Fresnel's biprism*f*, the acute angles of which are equal,

and let us suppose that the source of light is a radiant point in the plane

through the edge of the prism perpendicular to its flat face. We have then

to deal with two correlated sources of light the virtual images of the lumin-

ous point produced by the two halves of the prism the streams from which

pass through the corresponding parts of the prism.

Let the coordinates of these two sources be (c, 0, z^) : then since it is

clear that the disturbance at the point (x , y ,
z ) due to the source ( c, 0, z^)

is the same as that at the point ( #
, y ,

z ) due to the source (c, 0, ^), we

have
A dP ^(rf+8) o . I l'S-l)

1

(t\ I
- -i- /* <>+ 9 . / _ ^

(I) i ^ c g& A/ Hn*5

XpoOj dz V 2k

ir

where

l-^(^. + ^\ Lcs^Y-'

~

p

j0
)
+ e^) l

~J_
(45))

(45);

po

The approximate value of u given by (44) only requires a small correction e determined by

the corresponding intensity is P2
(w + e), and

^^.giJS-^w^
t Struve, Wied. Ann. xv. 49 (1882). Weber, ibid. vin. 407 (1879)
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and writing ut
=

li*jk, v? = lfk and adopting a new scale of intensities, we
have as the intensity at the given point

M" 0) + si

To determine the maxima and minima of intensity we have to find the

value of 9//9# and since dui/dx
= a >^u1 ,

9zt2/9# = a \/-/ 2 where a is a con-

stant, we have

or / ftp gp \

z = 2 (P1 + P2) (a v! -x
x - a v 2 ^

2

9a? \ OMj dtij/

r.vw*-.v%*V--(xV f/7/ f/?/ /

where

=
lsin(|-^) +i

tr
} ( i(,0)

1

.(48),
X 1 /M 77

Q = 2
cos l2~4. \^ *

9P 3Q 1 f / 1 p|and since -=- =-W, ^-
5 = zT)A/ Pf ,

ou du 2 I V "TTU

we obtain

~ = (Pi + P2) (a V^Qj - a Vif2Q2) + (Q, + Q,) (a^ P, - a Vt^P

(49),

and the maxima and minima occur, when

.............................. (50).

Now within the part of the field common to the two streams, as deter-

mined by geometrical optics, h and L are both positive, while outside this

region ^ and lz have opposite signs, /2 being negative on the side of positive x

and positive on the side of negative x. Hence giving ^ and 12 their absolute

values we have to write for the field common to the streams

............ (51),



144 The Analytical Theory of Light

and for the outer portions of the complex field

[CH. VIII

. 2 7

P, =
2
sm -

.(52),

( 2 , 0)

the upper or the lower signs being taken according as the region in question
is on the side of positive or of negative x.

On the outer part of the screen therefore and on the side of positive x the

maxima and minima are determined by

COS ^r T-

7T
sm

2 4

and as in the space considered i^ has a very large value, we may write

approximately

F|! (M1 ,0) = and Fj(Mt ,0)=0,

so that the position of the maxima and minima is given by

: v^'n\ (53 )-

To the same approximation the intensity is

M, 7T
/ = ^cos

: -
j )

+ ^ Fj ( 8 , 0)1- + -jsm
( \* */

= 1 + FS (MS, 0) cos^ -
j)

+ Fi (MJ, 0) sin f"
1 -

^

(54),

and the maxima and minima illuminations are

/= {1 i

The further we recede from the edge of this part of the field, the smaller

Ff
2

(2> 0) and Fj
2
(w2 , 0) become and the more nearly the intensity ap-

proaches the constant value unity. The maxima and minima become closer

together and since V$(u, 0) decreases numerically with increasing w2 more

rapidly than does Fj(w2 , 0), their position is defined by

w, = (4n
-

1) 7T/2, (n = l,2, 3...)-
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Within the space directly illuminated by both streams

+ 2 cossin FaK, 0)+ Fj(u2 , 0)} ......(55),

and the condition for the maxima and minima is

COS - + * F* <" 0) Sin -

cosf-^ j)+iFf (MB, 0) sin
(^ -^J + F

} (w2 , 0)

+ i{FJ ( 1 , 0)+Ff (w2 , 0)}cos

-4{Ff (Wl,0)-Ff KO)}sm^

t.>, 0) Fj (w2 , 0)
- Ff (w1( 0) Fj (M!, 0) }

sii
2

<i, 0)
-

Fj
2

(M2 , 0)
-

FJ
S
(MI, 0) + Ff

2

(w2 , 0)} cos

, 0) F,(,, 0)- Vi(u2 , 0) F, K, 0)1 =0,,

and omitting the small term in the last vinculum, this gives the two

equations

3 ,0)}sin
Ml +

^"
7r

"""""-
(57),

(58),

. Wi U2 1 f T7- / rv\ ir / AM W] + W2 7T
sm -~ = f { Fj (ulf 0) Fj (w2 , 0)} cos

w. 10
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of which the first gives the minima, as is easily seen from the expression for

the intensity.

As a first approximation we may neglect the effect of diffraction, this

gives for the minima

ni
j_

ni

cos
1 2 = or u-i u.2

=
(4>n 2) TT, (n l, 2, ...)

T!

and for the maxima

- t It T?UX/0
and since Ui u.2 =

we have for the position of the minima

and for the position of the maxima

oc =(%n 2)
^

. . (60^

Let the right-hand side of (57) have the value An7r/2 when x is given by

(59) and let the right-hand side of (58) have the value -Bn?r/2 when # is

given by (60), then to a second approximation the positions of the minima

are given by

and those of the maxima by

X =
{(2n

-
2)
- COS ttTT . Bn ]

87. When the boundary of the diffracting aperture or screen is a circle,

it becomes more convenient to employ polar coordinates with the pole at the

centre of circle. In this case, supposing that the radiant point is on the axis

of the circle that limits the transparent portion of the screen, we have

<Bl
= yl

= Q, x = cr cos & , y = (r sin &, x = p cos 0, y = p sin 0,

27T/1 1\ 27T <T ,

and writing -I
=

fc,
-- =

1,X Vpo pJ X p

the disturbance is represented by

+e '

4l cos(-0-*?} j JQ
e

l *' pdpdQ
\popi\dzJ

= - t-A- f^-
oN

)
e'(-'+) fe~**

Vo/3! X^/ /
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the integration being from to r in the case of a circular aperture and

r to oo for an opaque circular disc, r being in each case the radius of the

circle.

Hence in the case of the aperture

(I?)\O3f/

where u = krs and v = Ir, and

A 2

fdpo\
z /2V

while in the case of the disc

88. Taking first the case of a circular aperture, the expression that we

have to discuss is

(66).

From this we obtain at once Fraunhofer's special case by writing u =
and this gives

the same expression as that already considered.

In Fresnel's general case, when v = 0, that is at the centre of the pattern

tt/4

This expression we have already discussed; the maxima occur in cor-

respondence with the roots of tan (w/4)
=

u/4s and the minima are given by
w = 4wt7T (m = l, 2, ...), the illumination then being zero. These minima,

that occur at the centre of the pattern for certain positions of the screen of

observation, and the minima in Fraunhofer's special case are the only ones

that are perfectly black; for Ul (u, v) and Uz (u, v) only vanish together
when u = 4nn7r, v = Q, and when u = 0, Jl (v)

= 0.

For a given value of u, the maxima and minima are given by

W\
~dv)~

,) = (67).

102
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PLATE III.

71= #2=0

\

\

\

\

\

\

\

The regions of the lines that give minima are indicated by heavy ruling :

those that give maxima by light ruling.
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Hence a maximum or a minimum of intensity occurs when either

--Jf.-0 or

and therefore the illumination is either a maximum or a minimum for values

of v that give a maximum or a minimum value to either J (v) or U1 (u, v).

To determine the values that represent tl}
maxima and the minima

respectively, we have

i-s
dv

and therefore the roots of ^^ = correspond to maxima or minima of

intensity according as J (v) U3 (u, v) is positive or negative, and the roots

of U2 (u, v) = give maxima or minima according as J (v) U3 (u, v) is

negative or positive. At the centre of the pattern where v = 0, we have

[J (v) U2 (u, fl)]v= = 2 sin2

(w/4) and thus the centre of the pattern is a

maximum of intensity, unless the position of the screen be such that

u = 4m7r, in which case, as we have seen, the illumination is zero and the

central point is a minimum of intensity.

The second differential coefficient ofM with respect to v is, however, zero,

when /! = and Uz
= simultaneously, while in that case

33 M" /9\2 On /9\ 2 9nV ML ~ A
\

V T / \ TT / \ O / ^\ '" y T / \ TT / \ //3A\W =
(u) -7

Jo(^ U3(u'^ = ~ 2
(uJ

-^(f)^i(w^) ......(69).

This does not vanish, except in the case already mentioned when u = 4m?r,

v = 0, and therefore at such points the illumination is neither a maximum

nor a minimum.

Again if U2 (u, v) = and Us (u, v}
=

0, we have d2

M/dv
2 = and

(70),

and therefore these values of v give neither maxima nor minima. These

exceptional cases are distinct from the former, since Ul (u, v)
= if both

J^v) and Us (u,v) are zero, and C/i, U2 only vanish simultaneously when

u = 4m-7r and v = 0.

Within the geometrical shadow, that is at points for which u<v,Jl (v)
=

and U2 (u, v)
= Q have no common roots; for a graphical representation
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PLATE IV.

7,=0 Fn=0

The regions of the lines that give minima are indicated by heavy ruling ;

those that give maxima by light ruling.
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(Plate III.) of the equation U2 (u, v) = shows that at such points the slope

of the curve is such that du/dv is negative. Now

= 2 - - 3̂

dv u TT.

and if Jl (v)
=

0, U3
= Uly wherefore

du v/u

dv 1 - (vjuf

which is positive so long as v>u. Hence at points within the shadow for

which Ji (v)
= 0, the sign of Jo (v) U2 (u, v) is the same as when u is very small,

but it is then negative and consequently the roots of Jl (v)
=

0, with the

exception of v = 0, give the minima. Further since U2 (u, v) continuously

approaches the value (u
2

/v
2
) J2 (v) as u decreases, and the roots of J2 (v)

=

separate those of Jj (v)
= 0, it follows that for points within the shadow only

one root of U2 (u, v) = Q lies between two consecutive roots of J, (v)
= and

hence the roots of Uz (u, v)
= Q give the maxima.

89. It now remains to consider the case in which the diffraction is due

to a stream of light passing the edge of an opaque circular disc. In this

case, as we have already seen, the illumination depends upon the expression

V*+V^ ...........................(71).

At the centre of the pattern, where v = 0, we have F =
1, V^ = and

J/o = (2/w)
2

; consequently at this point the illumination is practically the

same as it would be at the same point if the disc were removed.

For a given value of u we have

~~ - ' ~r\ I ' 1 ~0
dv \uj dv d

^o(F_1+ F,)
= - 2 V (u, v)J>(v) ...... (72).

Thus the maxima and minima of intensity occur in accordance with the

roots of Jj (v)
= and F (u, v)

= 0, or since Ji = dJ /dv, V =
(ujv) dVJdv

the values of v that give either a maximum or a minimum of intensity are

those that make J (v) and Fx (u, v) either a maximum or a minimum. Now

_ ,

O9 I "! ~0 T^ ' "o
dv2

\uj dv dv

.(73),

and we see that if 7i(0) = 0, the intensity is a maximum or a minimum

according as J V is positive or negative, and if FO (M, v)
= 0, maxima or

minima occur according as (v/u) J^V^ is negative or positive.
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When however both J (v)
= and F (u, v)

= 0, the value of d
2

M/dv
2

is

zero but not that of d3M/dv* ;
for in that case

Hence to such values of v neither maxima nor minima correspond. These

are the only exceptional cases, for F and F_j cannot simultaneously vanish.

That this is the case is at once clear from a graphical representation (Plate IV.)

of the equation F (u, v)
=

;
for it will be seen that the tangent to this

curve always makes an acute angle with the axis of v, but

du 2
(t>/tt) F_!

dv
~
Vl + (vfuf F_!

'

and since this is always positive, F_x cannot vanish.

Further none of the cases in which Jj (v)
= and F (u, v) = have

common roots occur at points in the geometrical shadow, where u > v
;
for if

/! (v)
= then F_x

= - V1 and

du _ Zv/u

dv~
~

1 -
v*/u

2 '

which is negative when u > v. Also as u increases F (u, v) continuously

approaches the value J (v) and since the roots of J (v)
= and J^ (v)

=
occur alternately, it follows that for points within the shadow, one and only

one root of F (u, v)
= occurs between two consecutive roots of Jj (v)

= 0.

But when v = the intensity is a maximum, and consequently within the

shadow the roots of Ji (v)
=

give the maxima and those of F (u, v) =
determine the minima of intensity.



CHAPTER IX.

MORE ACCUEATE INVESTIGATION OF THE PROBLEM
OF DIFFRACTION*.

90. THOUGH Huygens' principle is in itself exact, the method in which it

has been applied to the explanation of diffraction in the previous chapters is

open to serious objection. In order to obtain the expression for the polar-

isation-vector at any point, it is necessary to know the values of < (t) and

<f>n (t) at the different points of the diffracting screen, and it has been assumed

that on the illuminated side of a perfectly black screen these quantities have

the same value as when the screen is removed, while on the remaining portion

their value is zero. The surface conditions are thus obtained by neglecting
the effect of diffraction, or in other words it is first assumed that the wave-

length of light is infinitesimal in order to arrive at results that are afterwards

applied to the case in which it is finite, and this is done in spite of the fact

that the results are then inadmissible, as they involve discontinuities, which

are expressly excluded in the deduction of Huygens' principle.

That this faulty method of procedure leads to final formulae that agree

very closely with observed phenomena, at any rate as regards the positions

of the maxima and minima of intensity, may be attributed to the fact that

the measurements are made at distances from the diffracting screen that are

large compared with the wave-length, in which case the errors due to the

imperfection of the method are only a small fraction of the width of the

fringes.

91. An absolutely black body is defined as one that neither transmits

nor reflects the light incident upon it, and it is difficult to represent the

action of such a body by any ordinary surface conditions. There is however

a strong analogy between the effect of a thin, absolutely black screen and

that of a branch cut in a Riemann's multiple space, one part of which repre-

sents the physical space ;
for this branch cut acts, as it were, the part of an

*
Sommerfeld, Gott. Nachr. (1) 338 (1894), (1) 267 (1895); Math. Ann. XLVII. 317 (1896).

Poincar6, Acta Math. xvi. 297 (1892). Macdonald, Electric Waves, p. 386, Camb. 1902.
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open door, through which a stream of light can leave the physical space and

spread into another infinite region without any portion of it returning. It

seems probable then that an infinitely thin screen of absolute blackness may
be regarded at any rate approximately as a branch cut in a multiple space,

provided it be such that the light only passes out of the physical portion of

the space.

The problem is however still indefinite
;

for to determine completely a

Riemann's multiple space we require the form, position and order of its

branch curves, and while these curves are given by the edge of the infinitely

thin obstacle, their order remains arbitrary and depends upon the kind of

blackness that is to be attributed to the screen. In fact black bodies, though
alike in possessing the property of neither reflecting nor transmitting light,

may differ physically in the way in which they affect a stream of light in

their immediate vicinity.

While the multiple space is characterised by its branch curves, the form

of the cut bounded by them is arbitrary, and all cuts are equivalent from the

point of view of the problem of diffraction, provided they fulfil the condition

that the light passes always out of the physical space. Thus the possibility

is afforded of representing the diffraction due to a massive black body by

regarding it as the part of the physical space between two branch cuts

through the same branch curve. In this case a second arbitrary element is

introduced, namely the line on the surface of the body that is to be taken

as the branch curve, and to the various positions of this curve there correspond

black bodies that are to be regarded as physically different*.

92. It is however necessary to specialise the investigation by assuming
that the polarisation-vector is independent of one of the coordinates, say z :

the multiple space then becomes a Riemann's surface with a branch point,

where the branch curve cuts the plane of xy. This is equivalent to the

assumption that the screen is limited by a straight line and that the source

is a luminous line parallel to the edge of the screen.

The components of the polarisation-vector then satisfy three differential

equations of the form

which in the case of monochromatic light becomes

where K = 27T/X.

In the special case in which K = 0, the determination of the functions

required for the solution of the problem may be effected by the theory of

*
Voigt, Gott. Nachr. (1) 1 (1899).
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complex algebraical functions, but these methods cannot be directly transferred

to the present more general case. It is however possible to deduce from a
solution of V2w = with certain properties, a solution of equation (1) with

corresponding properties.

93. Starting from a function f(z) of the complex variable z, we refer

the -plane to a sphere of unit radius by stereographic projection. The
centre of the sphere is taken at the zero-point of the -plane and this plane

being the equatorial plane, the centre of projection is the south pole of the

sphere. Then if the centre of the sphere be the origin of a system of rectangular
coordinates

, 17, f, of which and 77 coincide with the real and the imaginary

axes of the 2-plane, we obtain the function/ (^
-

^ j
and from this the solid

spherical harmonic of degree

whence we may deduce spherical harmonics of different degrees by multiply-

ing by p~
l and differentiating m times with respect to any axis.

Thus taking the -axis as the axis of differentiation and introducing a

suitable numerical factor, we arrive at the spherical harmonic of degree
- (m + 1)

which by Cauchy's theorem may be written

wherein z denotes a complex variable, that is taken by a closed path round

the point z = in the plane of the variable z, so as to leave this point always

on the left hand.

This process however introduces a branch point p = 0, or z = i J%* + rf

that does not belong to the original function, but this may be removed by

adding to (3) a second integral

+ tr)\ 1 dz

obtained by the above process from stereographic projection of the reflection

of the 2-plane at its zero-point, the north pole of the sphere being now the

centre of projection.

In order to pass from these spherical harmonics to a solution of equation

(1) we write

= Kxjm, rj
=

icylm, %- -f if + t?
= 1,
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and regard x and y as finite quantities, while m is increased to infinity. To
facilitate this transformation, let us introduce polar coordinates by the

equations
r2 = or?- + <f, e^ = (a? + iy)/r.

The expression for then becomes

f = [\
- *

(of + t/
2

)/m
2

}*
= 1 - V/(2m

8
)

and writing
z = i ,/lf

2 + r]
z

. cos a = t/cr cos a/ra,
we have

/
/" T<U+-l ^ 7

p = /er sin a/m, z + p = e
T

^V, -=
tcfa,m p

"*" t7?
^>i(*a-jr/2) T 4- /V_ -A m-1 _ p i<crCOSa

,

e
>
" ^V */ >

and there results from the sum of (3) and (4)

. ......... (5).^ rf J

The closed path in the ^-plane becomes in the a-plane a path in which the

initial and final points may differ by 2?r, and if the path extend to infinity,

it must be so determined that the integral retains a meaning.

1/n
94. Writing now /= ^

, , ,. ,
where z' is a point on the unit circle,

1 (z/z )

we obtain

= _
51.J(__^ t

l
da

1

= ~-
|zmuj a

a
Sm ~

9 9
cos cos

if we write

As regards the path of integration it is to be remarked that in the

2-plane we only obtain a closed path if we pass round z= oo and p
= both

in the same direction, and that we must approach infinity by a path along
which the real part of IKT cos a is negative. The regions for which this is the

case on the a-plane are denoted by shading, and the path of integration has

to start at oo in strip I. and to end at oo in strip II., the points = + (< 9')

lying outside the region enclosed by the path.

When n = 1 we have a solution that is everywhere finite in the simple

plane and there results

1 f sin a
ucrcosa/7

27rtJ cos a - cos (9 9')
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2TT

Fig. 26.

Regarding cos a as the integrand, the corresponding path of integration is

closed and includes the point cos a = cos
(< ('), on which it may be con-

tracted, so that by Cauchy's theorem

^ _
giicrcos (#-<!>') == gt(a;cos<J>'+j/sm<')

/IT\

95. Returning to the general case, we have ~Liraaou = 0, provided we can

deform the path of integration, so that it entirely lies in the shaded strips,

since in these Exp (IKT cos a) becomes continually smaller as r increases.

Now this is always possible, provided that the discontinuity in the denomi-

nator = + (< <') does not lie between and IT, that is if
|

<
<f>' \

> TT : in

other cases we have to exclude the point of discontinuity by a loop, as

indicated by the dotted line in the figure, and then by Cauchy's theorem the

integral over the loop is Exp {tier
cos

(<f> -<')} =uo, and the remaining parts

vanish. Hence

Ltr=ao w = if > 7r
>

= u if |<- 7T.

Let us denote the value of u at the point (r, < + 2 (s 1) ?r), then

" 1
COS COS

n

s=n C

but cos a - cos
(<
-

</>')
= 2"-1 II ^

and taking the logarithmic differential of each side

n~1 ll -i cos cos
=1 (

a dot
sin -e^cosa .

n n

7T

sin a 1 a *

-r- = -sm- icos cos
cos a cos (9 </> ) n n s= i n

- d>' + 2 (s
-

1) TT

n

whence
27J-J

sin a

cos a cos (<f>

.(8).
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Hence the solution u has the following properties :

(a) it satisfies the differential equation (1), as do all functions derived

by the method that has been employed ;

(6) it is finite everywhere at a finite distance, since the path of

integration has been so determined that it is finite for all values of r and <
;

(c) it is single-valued on a Riemann's surface of n sheets with a

winding point of the (n l)th order at the zero-point ;

(d) denoting by the first sheet of this surface the assemblage of points
for which

| $ <'
|

< TT, the function is equal to UQ
= Exp {i/cr cos (<f> <')} at

infinity on the first sheet and vanishes at infinity on the remaining sheets
;

(e) the sum of the values of u at the points on the 1st, 2nd... nth

sheets that lie above one another is equal to u .

Thus we may take u to represent the disturbance due to plane waves of

light incident in the direction < =
</>'

on the branch cut of the Riemann's

surface of n sheets.

96. Let us now take the case of n = 2 and in order to follow the course

of the multiform solution and to obtain results suitable for numerical calcula-

tion, let us transform (6) into an integral with a real path of integration.

Writing (<
-

</>')
=^ and assuming provisionally that

| i/r j

< TT we have

u u = u = e tKT1COS *

;

f
e"rc

J cos a cos 2
sin -

da,

cos
,/ _ ,,, 9 f/>icr (cos a - cos >M ,~

../. ir **l "2 2 I C >c*j
and if X = - -- sin ^ da,u TTt J cos a cos Y 2

then = - coste-
2^ 008^

f e
2 2

! sin da.
2 J 2

Taking cos x as the integrand and deforming the path of integration in
Z

the a-plane so that it becomes the imaginary axis in the cos (a/2)-plane, we

have

f 2i(crcos2 - a j /27T i-
6 2 sm = da = A / e ,

J 2 V KT

fa=A/Y ?rr

- ^ _ 2t(rcoS2* 82
and ^ =A/ e 4cos-i-e

2 )S
2 =

3r Y ?rr 2 9r



95-97] Application to Diffraction 159

whence integrating between and r we obtain, since X = when r =

2 w FT ^X = -r-e
l
* e-^dr, <r = j2*rcos-k,VT J 2

and ^-w^-^e'
V 71

"

We may also write

and from these two equations the values of M! and u2 are obtained.

Removing now the restriction that
| i/r |

< TT, we have

, .......(9),V 7T J ae ^

which holds for both sheets, a- being positive in the first and negative in the

second sheet.

Now we have (Appendix II., equation 28)

2 r
00 9 /*"

^-e-
2

e--
2

dr+-f e"
2

e
V 73

"

^o VTT J

+ e-^{V^ (2o-
2

, 0) + t7j(2o-
2

, 0)}.

Hence for o- >

2
, 0)} ......(10),.

_oo

and for <r <

2
,0)} ......... (10').

97. The application of these results to the problem of diffraction follows

at once.

Suppose that plane waves of monochromatic light parallel to the axis

of z are incident on an infinitely thin black screen that occupies the positive

half of the plane of xz, the normals to the waves making an angle <f>'
with

the plane of the screen. If we confine our attention to the plane of xy and

assume that the action of the screen may be assimilated to that of a branch

cut in a Riemann's surface of two sheets, the polarisation-vector may be

represented by

e
l
{K<at+Krcoa <*-*'> +ff/4

f !" e-^dr ............(11),
J -00

u =
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wherein cr = ^2/er . cos
(</>

and A is a constant, <j> being measured from the branch cut and < < < 2-Tr

in the physical sheet, 2?r < </>< in the auxiliary sheet.

Now in the physical sheet we recognise two portions that are separated

by the line < = <' + TT, the edge of the geometrical shadow : in the first of

these regions, that is outside the shadow, <
</>'

<ir and consequently

while within the shadow
</>

<'
|

> TT, and hence

u = ---
{F|(2<r

2
, 0) + tFj(2o-

2
, 0)}e

t (*<0*-Kr+ 'r/4)
(12').

Since F (2cr
2
, 0) and Fj (2cr

2
, 0) vary but slowly in comparison with the

exponential e~ ilcr
,
we may say that the disturbance outside the shadow is

approximately the same as that which results from a superposition of the

incident waves and of cylindrical waves emanating from the edge of the

screen, while within the shadow the disturbance is that due to the latter

waves alone.

From the expressions (12), (12') we obtain for the intensity within the

geometrical shadow

and for the intensity outside the shadow

/ rrj-\ } 2~]

...(13'),

expressions that have the same form as those obtained for the values of the

intensity by the approximate method (Chap. VIII. (38), (39)).

In order to compare the results obtained by the two methods, let us

suppose that the incident waves are parallel to the screen, then in the

formulae of Chapter VIII., we have to write

k = K/r, I = K sin 6,

where 6 is the angle that the direction considered makes with the edge of

the geometrical shadow, and the approximate method has

l*/k
= KT sin2

0,

in the place of

2t7
2 = 4:Kr cos2 = 4<Kr sin2

^ ,'

given by the present investigation. Near the edge of the shadow, the

expressions become identical, for as far as terms of the fourth order they

both become
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98. The above investigation may also be applied to the case, in which

the diffracting screen, instead of being absolutely black, is perfectly reflecting.

Such a screen may be approximately realised by the employment of a

highly polished silver sheet.

Taking again the case in which plane waves of light are incident on the

screen, we may reduce the general problem of diffraction in which the

polarisation-vector has any direction with respect to the plane of incidence

into the two simpler cases, in which the vector is respectively perpendicular

and parallel to this plane.

Now when two homogeneous media are separated by the plane of yz the

general surface conditions are, as we shall see in the next chapter, that

tfv, co
2
w, 73-2 and -sr3 are continuous across the interface. The plane of

incidence being that of xy and the polarisation-vector being parallel to the

axis of z, we have in the case of monochromatic light in the first medium

, 2

5-i + K w ~
dy*

and in the second medium

but if i be the angle of incidence d*w/dy*
= K" sin2

i . w and in the first

medium
d2w
^ + /c

2 cos2
1 . w = 0,

9#2

while in the second medium

(fatf

-5-5-
=

(
2 sin2

i - '2
) w = /9V (say),

(j3C

which gives w' =f(y) e^x +/i (y) e~&x.

Suppose that the second medium is on the side of negative x\ then since

w' does not become infinite with x, we must have /i (y)
= 0, if ft be chosen so

that its real part is positive : hence

w' =f(y} e fix and < = - /2

|^
= -/3a/

2<
and since r2 and eo

2w are continuous across the interface, we must have in

the first medium just outside the interface

BT2
= ftfoPW,

and since when the reflecting power is very great, K' and consequently ft is

very great, we have in the case of perfect reflection w = 0.

When the polarisation-vector is in the plane of incidence, the auxiliary

w. 11



162 The Analytical Theory of Light [OH. ix

or light-vector r is parallel to the axis of z and we obtain as in the former

case

But -573 is continuous and d^3/dx
=

dv/dt; 9<5j 3/9# is therefore discontinuous

and its values at two points close to the interface in the first and second

medium respectively are as &>'
2

: o>
2 or as /c

2
: /c'

2
. Hence in the first medium

at the interface

and in the case of perfect reflection this reduced to 9or3/9#
= 0*.

Thus when the polarisation-vector is perpendicular to the plane of

incidence, we have

JT-T + -^o + K?W 0> and w = when as = 0. x > 0.
oaf cy*

and when the polarisation-vector is in the plane of incidence

**; +*+*CT3= 0, and ?^ = when * = 0, * >0.
Cta? dy* dfc

Supposing again that the direction of incidence of the waves is defined by

</>
=

</>',
and denoting the function u in 97 by u (<') in order to indicate its

dependence upon the angle <j>,
we obtain the solutions of the two problems

by writing

w=A\u (<') u(-

since from symmetry we then have for = 0, w = and 9r3/3<
= 0.

The diffraction phenomena may therefore be regarded as due to the

action of waves incident in the direction
</>'

in the physical sheet together
with waves incident in the direction

</>'
in the auxiliary sheet of a Riemann's

surface of two sheets.

Now in the physical sheet of the surface we recognise three distinct

regions, separated by the lines for which
<f>

7r
<f>'

and < = TT + tf>' ;
in the

first of these, extending from
<j>
= to

<f>
= TT

<f>,
we have

<j> <f>'<7r and

<f>
+ (f)'

<TT and consequently from (10)

w
1*3

+ |[F3 (2^, 0)+ 7,(2o-1 , 0)-M{F,(2<r
2

, 0)+

where o-
2 = 2r . cos2

(<j>
-

$')/%, a-^
= 2r . cot*

(<j> + <')/2 ;

*
Poincar6, loc. cit.
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the second region extends from
<f>
= TT

</>'
to

^>
= TT + <' and therein

<
<f>'
< TT, < + <' > TT, whence from (10) and (10')

while in the third region occupying the remainder of the physical sheet,

<f> <p > TT, <p -\- <p > TT and

'}
4{F| (2<r

2
, 0) + F| (2^2

, 0) + i
{ Fj (2o-

2
, 0) + Fj (2<r1 , 0)}] e (rf--+/4).

We may thus represent the effect of the screen approximately by a train

of waves emanating from its edge, which we may call waves of diffraction :

in the first region the disturbance is due to the interference of the incident

and reflected waves and the waves of diffraction
;
in the second region we

have the superposition of the incident waves and the waves of diffraction
;

while in the third region the waves of diffraction alone are operative.

For the intensity in the three regions we have

/, = A-
["{iF, (2a

2
, 0) + cos

(a*
-

)

I + {*F, (2^, 0) + cos (^
-
\

Li \ *'; l \

+ A- [{in (2<r
2
, 0) + sin

(a-
-

)}
+ \\V (2^, 0) + sin

(v?
-
^l]

2

,

LI v */J ( \ * / ;J

7, = A- F^F, (2<7
2
, 0) + cos

(o-

2 -
f)

i^i (2^i
2
,

0)]'

2
, 0) + sin a- -

J3
=

[{ F, (2(7
2
, 0) + F, (20-,, O)}

2 + { Fj (2o-
2
, 0) + Ft (2^, O)}

2

],

the upper and lower signs referring to the cases in which the polarisation-

vector is perpendicular and parallel to the plane of incidence respectively.
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CHAPTER X.

REFLECTION AND REFRACTION AT THE SURFACE OF
ISOTROPIC MEDIA.

99. WE have seen that the characteristic equations of the polarisation-

vector d are for free space

d= curl w, CT = curie ........................ (1),

where is- is an auxiliary vector, that we may call the light-vector to dis-

tinguish it from the polarisation-vector d, and the vector e is defined by its

components

These equations were deduced from the principle of interference combined

with the assumption that a train of waves is propagated with a speed that is

independent of the intensity of the light and of the direction of the waves.

We may therefore, when dispersion is neglected, extend their application to

the case of any transparent isotropic medium, provided we regard <w no longer

as an universal constant, but as a function of the period of the waves under

consideration.

The interfacial conditions that must be satisfied at the passage from one

isotropic medium to another follow at once from the above differential

equations, if we assume that the transiti6n takes place by a rapid, but con-

tinuous change of the properties of the one medium into those of the other

and that the differential equations still hold within the region where the

variation occurs. For taking the interface as the plane of yz, the equations

give that 9ra-2/3#, 3-nrs/9a?, 9e2/9#, 9e3/9# remain finite, and that consequently
cr2 , -53-3, e-t, e3 must be continuous across the interface a; = 0. To these we may
add two further conditions : for since the curl of a vector has no divergence

anywhere, div d= 0, and div CT = 0, and hence u and ty^ must also be continuous.

These last two conditions are not however independent of the four former.

100. These boundary conditions lead at once to the geometrical laws of

reflection and refraction
;
for since they hold for all values of t, y, and z, and

these variables occur in the expressions for the polarisation-vectors of the
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incident, reflected and refracted waves only in the combinations of the form

Ix + my + nz + st, it follows that s, m, and n must have the same value for

each of the streams, m and n being in general complex quantities in the case

of unhomogeneous waves.

We see then that the periodicity is the same for the three streams, and

when the waves are homogeneous, taking the axis of y perpendicular to the

plane of incidence, m = for all the waves, and

sin i/\
= sin i^\ = sin r/\',

where i, ilt r are the angles of incidence, reflection and refraction, and X, X'

are the wave-lengths of the light in the two media.

Hence the reflected and refracted wave-normals are in the plane of in-

cidence
;
the angle of reflection is equal to the angle of incidence ; and the

sine of the angle of incidence bears a constant ratio to the sine of the angle

of refraction, this being the ratio of the wave-lengths of the incident and the

refracted light.

101. Since the vectors d, w and e are connected by purely geometrical

relations, we may in discussing the problem of reflection and refraction employ
which we please as representative of the streams of light, and as the cal-

culations are rather simpler with the light-vector GT, we shall in this chapter

adopt this vector in our investigations.

Let the plane of incidence be that of xz and let the normal to the planes
of constant amplitude of the incident waves be in this plane : then we may
represent the light-vector -ar by the expression

-or = A exp {i (Ix + nz + st)} ........................ (3),

defined by the direction-cosines a, ft, 7, bars ( ) being placed over the letters

to denote that the corresponding quantities are in the general case complex.

Since div -or = we have al + ^n = 0, and the axial components of the

vector may be written

(OTI, r2 , -53-3)
=

(n, k, Z).Dexp [L (lx + nz + st)} ............ (4),

where, < being a complex angle defining the vector with respect to the plane

of incidence and v being the coefficient of extinction,

k = 2-n- tan < vT^^/X, D = X cos # Z/(27r Vl - z/
2
) ......... (5).

Hence if F, G be the components of the complex amplitude perpendicular

and parallel to the plane of incidence

F=kD, U = 27T.D V(l-i^)/X = D l
2 + n2

............ (6).

Substituting the values (4) in the equations (1), we obtain
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which determines I when s and n are given. There are then two values + I

corresponding to waves of given period, the traces of which on the interface

move at a given rate : one of these is a wave approaching the surface and the

other is a wave leaving it.

Similarly if accented letters refer to the second medium, we have

but as in the present investigation there is no question of an incident wave in

this medium, we require only one of the two values of + I' thus determined,

and this will be the one with the positive sign, if we regard the value + 1 as

referring to the incident wave in the first medium.

We have then the following expressions for the system of waves :

Incident wave

(OT! ,
r2 > 1*3)

=
(n, k,

- l)D exp {i (Ix + nz + st)}.

t Reflected wave

(BJI, or2 ,
r3)
=

(n, k1} I) Dl exp {i ( lac + nz + st)}.

Refracted wave

(ra ,
G72 , j,)

=
(n, k',

-
I') D' exp {t (I'x + n2 + st)}.

Introducing now the boundary conditions, the continuity of CT2 or of u,

when cc = 0, gives W + k1D1
= k'D' .............................. (7);

the continuity of es requires that

tfl&D-hDJ^aH'KD' ........................(8);

the continuity of nrs leads to the relation

l(D-Dd = l'B' ..............................(9);

and from the continuity of BTI or of 2 we have

D +D^D' .............................. (10).

Introducing the components parallel and perpendicular to the plane of

incidence these equations become

! + n2

) } (F - F,) = {l'l(l'
2 + n2

)} F
f

)

{l/(l
2 + ri

2

)*} (G
- GJ = {l'l(l'' + n2

)*} G',

(n/(J
2 + n2

)*} (G + G,) = (n/(I'
2 + n2

)*} G',

or if i, r be the complex angles of incidence and refraction defined by

n = 2?r sin i Vl - vz

/\ = 2?r sin r Vl -v'*/\',
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we have F+Fl
= F'

(7'),

(F F^ sin i cos i = F' sin r cos r (8'),

(G - #0 cos ~i = G' cos r (9'),

(0 + G,) sin i = G' sin r (10');

F F, F'
whence - = = = = = -=

(11),
sin (i + r) cos (i r) cos (i + r) sin (i r) sin 2i

~ (12).
sin (i + r) sin (i r) sin 2i

These equations determine completely the specification of the reflected and

the refracted streams.

102. When the incident waves are of constant amplitude and the second

medium is the more highly refracting, i and r are in all cases real, and the

reflected and the refracted waves are also of constant amplitude. Writing

G/F = (GIF) e^, G./F, = (GJFJ e^\ G'/F' = (G'/F*) e^',

-,,. G , . . GI , . , G'
we obtain -= cos (i r) = -=- cos (i + r) = ,

A = A! = A'.

From these equations the elliptic constants of the reflected and the

refracted streams may be obtained in terms of those of the incident stream,

and we see that reflection and refraction introduces no new difference of

phase between the components parallel and perpendicular to the plane of

incidence, other than that of + IT implied by a change in the sign of the

amplitude of the vibrations.

If the ratio G/F be real, the incident, reflected and refracted streams are

all plane polarised, and the azimuths
</>, <f>l) </>'

of the light-vectors with respect

to the plane of incidence are connected by

cot <' = cot 0! . cos (i + r) = cot . cos (i r).

In interpreting this result, it must be noticed that; in accordance with the

specification of the three streams adopted above, the vectors are regarded as

positive, when in each case the components in and perpendicular to the plane
of incidence are related to one another and to the direction from which the

stream travels in the same way as the axes of 'a, y and z. Thus positive

values of FJF and F'/F mean that the directions of the incident, reflected

and refracted light-vectors are the same : on the other hand a positive value

of G!/G signifies at normal incidence that the directions of the reflected and

the incident light-vectors are opposite, at grazing incidence that they are

identical.
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103. When the incident stream consists of common light, we may in

accordance with what has been shown in Chapter II, represent it by two

components of equal intensity, that are polarised in planes parallel and per-

pendicular respectively to the plane of incidence, and from the results obtained

in 101, as also from considerations of symmetry, the reflection and refraction

of these components may be treated separately.

Let us represent these components by

2Fn exp {i (lnx + nnz + sn t + an)}
or 2Gn exp {i (l noc + nnz + sn t + bn)},

according as the vector OT is perpendicular or parallel to the plane of incidence

with the condition 2^= 26rn
2 = L, 2L being the intensity of the light.

Then in the reflected stream the components become

VP tan(i-rn)

/
\ji

f / 7 \ 1

exP l
fc (~ k" + nny + sn t + On)},

sin i ? ~" v i

and - 2 n .

)
. ~{ exp {i (- lnx + nny + sn t + &)},sin

\ji -p Tn)

and in the refracted stream

SI Tl 2?

and S(rn .

sin (i + ^w;

If now the incident light be practically monochromatic, we may neglect

the change in the values of rn in passing from one constituent of the streams

to another and we see that in general the reflected light is partially plane

polarised, having a polarised part with its light-vector OT parallel to the plane
of incidence and of intensity

sin2
(i r) ( cos2

(i + r)\
,

sin2

(i + r) \ cos2
(i r))

'

and a part consisting of common light of intensity

2
tan2

(i -r) L
tan2

(i + r)

Similarly the refracted light may be regarded as made up of a stream of

common light and a stream of polarised light with its light-vector perpen-

dicular to the plane of incidence, the intensities of these streams being in

terms of a new unit

sin2 2t sin2 2i
L and

At the particular angle of incidence given by i + r = Tr/2, the intensity of

the common light in the reflected stream is zero, and the whole of the
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reflected light is plane polarised with the light-vector & in the plane of

incidence. Now this phenomenon was first observed by Malus* in 1808,

when viewing the light reflected from the windows of the Luxembourg
palace through a doubly refracting prism. The angle of incidence at which

this occurs, Malus called the polarising angle and he stated, as a definition of

the plane of polarisation, that the reflected light is then polarised in the

plane of incidence. It follows then, in accordance with what we have

assumed, that the light-vector cr is in, and the polarisation-vector d is per-

pendicular to, the plane of polarisation f.

Since the polarising angle / is determined by the condition I + R = Tr/2,

we have by Snell's law that / = tan"1

//,,
a result that was found experimentally

by Brewster in 1815J.

104. Returning now to the case in which the incident stream is plane

polarised, let 6, 1} 6' be the azimuths of the planes of polarisation of the

incident, reflected and refracted streams respectively, measured from the

plane of incidence. Then writing for shortness

/= tan (i r)/tan (i + r), f = sin 2t'/{sin (i + r) cos (i r)},

g = sin (i r)/sin (i + r), g'
= sin 2t'/sm (i + r),

we have A : sin 1 =fA sin 6, A' sin ff =f'A sin 6,

A! cos #! =gA cos 0, A cos & = g'A cos 0,

1 1 fcos
2 ^ siiM) 1 1 fcos

2 0' sin2 0'
whence -j

= -r- ^- -f

A*\ f / I' A'- A>\ g'* f'*

Also tan 1
=

(fig) tan 0, tan & = (fig') tan ;

* Mem. de la Soc. d'Arceuil, n. 149 (1809).

+ The question of the direction of the vibrations in polarised light has been much discussed

both theoretically and experimentally. It must be remembered that in all cases we have to deal

with two vectors, one parallel and the other perpendicular to the plane of polarisation, and in

considering experimental determinations of the direction of vibrations we have first to decide

with which of these vectors the phenomenon, that we observe, is connected. Cf. Babinet, C. R.

xxix. 514 (1849) : Pogg. Ann. LXXVIII. 580 (1849). Haidinger, Wien. Ber. vra. 52 (1852) ; xn. 685

(1854) ; xv. 6. 86 (1855). Angstrom, Pogg. Ann. xc. 582 (1853). Stokes, Camb. Phil. Trans, ix.

35 (1856): Phil. Mag. (4) xin. 159 (1857) ;
xvm. 426 (1859). Holtzmann, Pogg. Ann. xcix. 446

(1856). Eisenlohr, Pogg. Ann. civ. 337 (1858). Lorenz, Pogg. Ann. cxi. 315 (1860) ; cxiv. 238

(1861). Fizeau, Ann. de Ch. et de Phys.fi) LVII. 385 (1859). Quincke, Berl. Monatsber. (1862)

714: Pogg. Ann. cxvm. 445 (1863). Lord Kayleigh, Phil. Mag. (4) XLI. 107, 447 (1871) ; XLII. 81

(1871). Kowland, Phil. Mag. (5) xvn. 413 (1884). Carvallo, These; Ann. de I'Ecole Norm,

supplement pour 1890 : J. de Phys. (2) ix. 257 (1890) : C. R. cxii. 431 (1891). Wiener, Wied. Ann.

XL. 203 (1890): Ann. de Ch. et de Phys. (6) xxin. 387 (1891). Drude, Wied. Ann. XLI. 154

(1890) ;
XLIII. 177 (1891) ;

XLVIII. 119 (1893). Lommel, Wied. Ann. XLIV. 311 (1891). Cornu, C. E.

cxn. 186, 365 (1891). Poincare, C. R. cxn. 325, 456 (1891). Berthelot, G. R. cxn. 329 (1891).

Potier, C. R. cxn. 383 (1891) : J. de Phys. (2) x. 101 (1891). Drude and Nernst, Gott. Nachr.

(1891) 346 : Wied. Ann. XLV. 460 (1892).

J Phil. Trans, cv. 125 (1815).
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hence when is varied, the angle of incidence remaining constant, we have

sec2
0jd01

=
(fig} sec2

Odd, sec2 ffdff = (fig'} sec2
Odd,

or A?d6i

Thus if the intensity of the incident light and the angle of incidence remain

unaltered, while the polarisation of the incident stream varies, the amplitudes
of the vibrations of the vectors of the reflected and the refracted streams may
each be represented by the radius-vector of an ellipse, and the area described

by this radius-vector is in a constant ratio to the area described by a vector

representing the amplitude of the vibrations of the vector of the incident

stream *.

Now 1 is always numerically less than 6, and the rotation Rl of the plane

of polarisation, measured from the primitive plane towards the plane of

incidence, is for the reflected stream given by

cos
(*'
-

r} + cos (i + r}
tan Rl

= tan (6 0,)
= tan 9

cos (i r} cos (i + r) tan2 6

sin 20

cos 20 + tan i tan r
'

When the angle of incidence remains constant, this rotation increases with

the azimuth 6 of the primitive plane of polarisation : while if 6 be constant,

it is a maximum and equal to 20 at normal incidence.

On the other hand 0' is greater than and the rotation R' of the plane
of polarisation of the refracted stream away from the plane of incidence is

given by

tanR = tan (ff
-

0) = tan
1

cos

the angle of incidence remaining constant, this is a maximum when

tan2 = cos (i r},

and the rotation thea is

(l-cos(i-r))tan"1

\ i\ .

(2 vcos(i r))

When is constant, the rotation continuously increases from zero at normal

incidence to the value

at grazing incidence, /* being the relative refractive index of the second

medium.

*
Cornu, Ann. de Ch. et de Phys. (4) xi. 326 (1867).
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105. Among the methods that are employed for producing polarised

light, we may mention that of transmitting a stream of common light through
a pile of plates, and though the polarisation of the emergent light is by no

means perfect, polarimeters in former years were frequently made with this

form of polariser. The employment of a pile of plates as a polariser is now
somewhat unusual, but it is a problem of considerable interest to determine

how the degree of polarisation of the transmitted light is related to the

number of plates, and what are the intensities of the reflected and the trans-

mitted streams*.

Let us suppose that the plates are all of the same material and thickness

and are placed parallel to one another, the plates themselves and the inter-

posed layers of air being sufficiently thick to prevent the colours of thin

plates.

There will then be no regular interference, and as we have seen in 40

we have only to deal with intensities : whence taking the intensity of the

incident light as unity, the intensities of the streams reflected from and

transmitted through a single plate are

(l- P)*pg* (l- P)*g
(jKl

~ pH l- P*g*
' l~l- P*g*

............... ( )j

where p is the intensity of the light reflected at the first surface of the plate,

and 1 to g the proportion in which the intensity of the light is reduced by

absorption in a single transit through the plate.

Denoting by Rp and Tp the intensities of the reflected and the transmitted

streams in the case of a pile of p plates, let us now determine in terms of

Rp ,
Tp , Ri, Tlt the values of Bp+1 and Tp+1 in the case of (p + 1) plates.

This pile may be considered as made up of a group ofp plates to which a new

plate has been added, and from this mode of regarding the pile, it follows that

the reflected light will consist of that reflected from the group of p plates,

together with that which has traversed the group and has been reflected

once, twice, ... from the single plate. Hence since there is supposed to be

no regular interference between the streams,

P
2 +...)=RP + ...(14).

In the same way

Tp+l = T,TP (1 + R, Rp + RfRj + ...)
= .........(15).

But we may regard the pile from another point of view and suppose that the

single plate is placed before instead of behind the group of p plates. Hence

*
Stokes, Proc. E. S. xi. 545 (1862) : Phil. Hag. (4) xxiv. 480 (1862). Kirchhoff, Varies, iiber

Hath. Optik, p. 166.
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RP+I and Tp+1 must remain unchanged in value when the suffixes (1) and (p)

are interchanged, so that

T 2R T-R
Ri + _

lP
............(16),

whence multiplying by (1 RiRpJKRiRp), we obtain the relation

1 T 2 1 T 2

then since R1 and T are essentially positive

7? T 1

(19).sin /3 sin a sin (a +
Now from (16)

1 T 2 R 2

RpRp+i D~ -^P+I ^--o -^

let Rp^Sp+./Sp

T% _ 7? 2 i

-j

tnen 2 +" =- l S

=

-sinacos/S a sin2 a
or flU, + 2 .

^
. 8P+1 + -^^^sm /3 sm2

/8

the solution of which is

Bill

where M and JV are constants. Hence

T-,
sin a IT cos (p

'

sin $
' M cos J9/3 + ^V" sin p{3 sn

but jR = 0, R! = sin yS/sia (a + j3), whence M = sin a, N= cos a, and

Also from (17)

p sin (a

and hence ^p_ = = ^
sm pp sin a sin (a + pp)

the constants being determined from (18).

106. This method fails, if a =
;
we then have

(l-Rtf-TS^O, or (l-JK1
-
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and since R^ and T^ are proper fractions, this relation gives

which expresses the fact that the plates are perfectly transparent.

In this case we may proceed as follows : the complete transparency of the

plates gives that Rp + Tp = 1, and therefore

rp
m mmm J-i'-p J-i-t-p

This equation gives

1
_!_ R,

rn
"""

rn
rji

>

and hence - = G +p ^

,

J-P A
holding for all values of p. Writing then p = l, we find that 0=1, and
therefore

Tm *.l

and ^.i-r,-

or introducing the values of R^ and 2\ from (13) and writing g=l,

T -
l ~ p R~

'
"-

When the number of plates is infinite, the intensity of the reflected light is

unity, which explains the brilliantly white appearance in reflected light of a

finely divided substance, that is transparent in mass.

. 107. Supposing still that the plates of the pile are perfectly transparent,

we may now determine the degree of polarisation of the transmitted light,

when common light is incident upon it.

Replacing the incident stream by two components of intensity L polarised

in planes parallel and perpendicular to the plane of incidence, the intensities

of the corresponding transmitted streams will be

where f= tan (i r)/tan (i + r), g = sin (i r)/sin (i + r).

Let i r = p, i + r a-, then since sin i =
yu.

sin r

di dr dp da- j / \;= -= = ;
= cos i cos rdw (say),

tan i tan r tan % tan r tan i + tan r

whence dp = smpdco, d<r = sino-dco (22).
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, tan2

p cos2
a-

Also / 2 = - = a2 -
tan2

o-
y cos2

p

,
z _ tan2

o- tan 2
p _ sin2

cr sin2

p _ 1 g
2

^ tan2
cr sin2

cr cos2
p cos2

p
'

'

rzy*
=r^2

cos2 " = H 2 cos
*/ *7

and
1 + ZpH*

'

I + 2pH 2 cos2 a
'

The intensity of the transmitted light is then

(1 .+ 2pH*) (1 + 2^#
2 cos2

cr)

'

that of the polarised part is

rr/2 _ rr/s = r ?g 2 sin2 (7

(1 + 2j# 2

) (1 + 2j9jH"
2 cos2

o-)

'

and the measure of the polarisation is

1 cosec2 a + p (2 cosec2
cr 1)

<n

(23),cosec2

p + (2p 1) cosec2
a- p"

I a2 cosec2
p

since H~z = -^ = - - 1.

#
2 cosec2

cr

Hence % will be a maximum, if cosec2
p + (2p 1) cosec2

a- p is a

minimum which gives by (22)

cosec2

p cos p + (2p 1) cosec2 a cos cr = 0,

sin2
cr cos p tan cr sin cr 1

whence 2pl = r
-*- = . -^ = -^ ,

cos cr sin2

p tan p sin p /#

from which we see that cos cr is negative, so that i + r > 7r/2 or i is greater
than the polarising angle. Substituting for p in (23), we find

V
%

(1 + /i
2

) sin
2
i

When p = oo
,
i + r = ?r/2 or i = I, and since sin2 / =

yu,

2

/(l + yu.

2

), % = 1
;

hence as the number of plates is indefinitely increased, the angle of

incidence, at which the maximum polarisation occurs, approaches indefinitely

to the polarising angle and the polarisation tends to become more and more

perfect.

108. We have seen that when the incident waves are homogeneous, the

coefficients of reflection and refraction are real for all angles of incidence,
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provided the second medium is more highly refracting than the first
;
but

this is no longer the case if the first medium refract more powerfully, for

then the law of refraction for homogeneous waves ceases to be true, when
the angle of incidence exceeds the critical angle sin"1

/j,, p, being as before

the relative refractive index of the second medium.

Now since we have in general

T/ *'R /^
- ?T , ,-..

I = r V 1 v2
. cos r = r (cos r + iv cos R),

A, A,

_ ,
2?r /^

---
. _ "TT . . r>\n = - v 1 v2

. sin r = 7 (sm r + iv sin R),
A. A,

where cos r cos R + sin r sin R = 0,

and since in the case under consideration n' is real, because the incident

waves are homogeneous, it follows that sin R = 0, cos R = 1 and therefore

cos r = 0, sin r 1, a negative value of sin r being clearly foreign to the case.

Hence sin f = 1/Jl v2
, cos r = iv/Jl v*,

the negative value of cos R being taken, because the second medium being
on the side of negative x the positive value would correspond to a stream

increasing indefinitely in intensity with the distance from the surface.

To determine v, we have from the equality of the values of n for the two

media, the generalised law of refraction

sin i/\
= Vl-i>2

. sin f/X'
= 1/V,

whence if ft' be the propagational speed of the unhomogeneous waves of given

period

sin i/a>
=

I/ft'
= I/O' Vl -

v*),

giving Vl i/
2 =

&>/(&>' sin i)
=

/A/sin i,

where fi is the relative refractive index for homogeneous waves of the same

frequency. Hence

v = Vl /A
2

/sin
2

i, sin r = sin i/p, cosr = i Vsin2
i

fj?jfi. . .(24).

Substituting these values in the expressions for the coefficients of

reflection, we find that

sin (i r)_ cos i + t Vsin2
i p* _O = ---. ~r~, ~r ; , 6 ......... ( ^O ).sm (* + r) cos i -i Vsm2

t-/i
2

tan ^'- 2 cos^+t Vsin2 i-

tan(i + r) ^ cos i - 1 Vsin2 i - /*
2

6 1 a 1 Vsin2
1

IJL

Z
/O(_ Nwhere tan s = ,tan s = . (27).

2 t
2 2 u,

2 cos i
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Thus the amplitudes of the vibrations of the vectors for the streams

polarised in planes parallel and perpendicular to the plane of incidence are

unaltered by reflection, while the phases of the vibrations are accelerated by
a and b respectively.

Hence if the incident light be polarised in any azimuth with respect to

the plane of incidence, the reflected stream will be in general elliptically

polarised and of the same intensity as the incident stream, the component

polarised in a plane perpendicular to the plane of incidence being accelerated

in phase relatively to that polarised in the plane of incidence by an amount A,

given by

(1 it
2
) tan -= . , . .

--

A b-a v 2 cos i VsmH - u?

which is zero, when i = 7T/2 and when i = sin"1

//,,
that is at grazing incidence

and at the critical angle. Further since

A ,
_-

tan = cot i v 1
yu,

2

p? cot2
i,

25

tan (A/2) is a maximum, when cot2
i = (1

-
/i

2

)/(2yu,
2

) or sin2
i = 2/i

2

/(l + fj?}

and its value then is (1 /i
2

)/(2/i) or cot (2 tan"1

//,),
whence A = TT 4 tan"1

p.

Let us now determine the refractive index required to give a prescribed
difference of phase. Solving (28) for sin 2

i we obtain

A A / A
2 sin2

i = (fj? + 1) cos2 - cos
^ ^/ (p? + I)

2 cos2- -
4/i

2
.

Now the expression under the radical is

2
A/ 7T-AW 77--AW 77- -AW

,
-n--A\

cos2 -
/* tan it+ tan At cot a + cot -

,2V 4 / V 4 / V 4 / V 4 /

and hence for sin2
i to be real, the value of

//,
must not lie between

tan {(TT A)/4} and cot {(TT A)/4} and since cot {(TT A)/4] is greater than

unity, the maximum value of /* is tan {(TT A)/4}.

Thus A increases from to TT 4 tan"1

//,,
as i increases from sin"1

//,
to

sin"1

{V2 . p/Vl + ft
2

}
and then decreases to as i increases to ?r/2, and

for a given value of A to be possible, /u,
must not exceed the value

tan {(TT
-

A)/4}.

Thus if A=7r/2, /i must be less than tan(?r/8) or V2 1, and taking air

as the second medium, the index of the substance must exceed V2 + 1 or

2-414, that is the substance must be at least as highly refracting as a

diamond.
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If A = 7T/4, yu, must be less than tan (37T/16), or the index of the substance

must be greater than cot (37r/16) = 1 '4966. When this is the case, it is

possible, as with Fresnel's rhomb, to convert by two reflections a stream

polarised at 45 to the plane of incidence into a circularly polarised stream.

Turning now to the coefficients of refraction we have

(29),

.e*12 (30)sm (i + r) cos (z
-

r) V^4 cos2
i + sin2

i - p?

Thus when the light-vector of the incident stream is perpendicular to the

plane of incidence, that of the refracted stream is in the same direction and is

represented symbolically by

,
2a2 COS i 2ir 2ir

nr2 j^g ~x
vx

Q
L
\' (<o't+z+6/2) (31V

v/t
4 cos2

i + sin 2
i -^

on the other hand when the light-vector is in the plane of incidence, that of

the refracted stream is

defined by the complex direction-cosines sin r, 0, cos r, so that its axial

components are

= 2 sin i cos i

and the extremity of the vector describes a small ellipse lying in the plane of

incidence with its axes along the axes of x and z, the direction of revolution

being the same as that in which the incident wave must revolve in order to

decrease the angle of incidence.

109. A difficulty here arises in connection with these results for the

refracted stream, as they apparently contradict those previously obtained for

the reflected light, according to which the whole of the intensity of the

incident stream is to be found in the reflected train of waves. What then is

the source from which the energy of the refracted stream is derived ?

Now if we multiply the second triplet of equations (1) by ix^dT, -sr2dT,

ix3dT respectively, where dT is an element of volume, and integrate the

sum of these products over a region T, we have

A ^T^ I I ""2 \ r\ O /'MO O,
s.9y dz/ \oz oxl \ox dy t

w. 12
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whence integrating the terms of the right-hand side by parts, we find by the

aid of the first triplet of equations (1)

v* +O +W + v? + v*} dT

= &>
2

I {(-ZBYW OTsW) cos nx + (nr3u vf-iW) cos ny
J

+ (uriv -05-2%) cos nz}dS ....... (33),

where dS is an element of the bounding surface of T and n is the normal to

dS directed outwards. If now we extend the region of integration so far

that the polarisation-vector vanishes on its bounding surface, this formula

expresses that the integral on the left side does not alter its value with the

time, and we may regard it as expressing to a factor independent of the time

the whole of the energy of the luminous disturbance in the region in question.

The right-hand side then expresses, the energy that crosses the boundary of

T, when the polarisation-vector does not vanish on its surface.

Let us then determine the energy that enters per period into the second

medium through the interface of the media. By (33) since cos ny = cos nz = 0,

this is represented by

<'2
I dt I(iff2'w' BT3V) dS.

Now the actual values of -ar/, -cr2', -573' being the real parts of their symbolical

expressions ;
we see that in the case of total reflection, each term of the integral

has the form

I
dS

I
2A sin ( + 8

]
cos [ + $} dt

J Jo \ T V T /

= (dS [A sin
f + 28^ (ft = 0.

J Jo \ T /

Thus on the whole no energy passes across the interface into the second

medium, the flow of energy changing its direction four times during each

period.

110. It has been assumed in the above investigation that the second

medium extends so far from the surface at which reflection occurs, that the

light-vector becomes insensibly small at its second limiting surface. When
however this medium is an extremely thin plate, the superficial undulation

within it gives rise to an homogeneous refracted wave at its second surface

and the reflection ceases to be total.

To investigate this case, let us take the faces of the plate as the planes

# = and x = d and suppose it to be bounded by media having different

optical properties. Then assuming for the sake of generality that the

incident waves are unhomogeneous, the complete specification of the systems

of waves will be as follows :



109, 110] Reflection from a Thin Plate 179

In the first medium,

incident wave

(OTU nr2 , -83-3)
=

(n, k, I) D exp {i(lac + nz + st)} (34),

reflected wave

(nrly -BT2 , CTS)
=

(n, k1} I) D l exp [i ( Ix + nz -\- st)} (35)-

In the second medium,

wave incident on the second surface of the plate

wave reflected at the second surface of the plate

(OTJ, -S72J OTs) (w, ki, V)D\ exp [L ( I'x + nz + st)\ (37)-

In the third medium,

emergent wave

(!, r
a ,

rs)
=

(n, F, -
I") 5" exp {i (l"x + nz + st)} (38).

The boundary conditions are the continuity of

cr2 (orofw), o>
2
w, r3 , tsj-j (or of w2

v) (39),

when # = and x = d. Hence introducing the components of the light-

vectors parallel and perpendicular to the plane of incidence, we have as in

101,

F + F1
= F' + FI, (F - FT) sin i cos i = (F' - F^) sin r cos r

(G - GO cos i = (G'
-

G/) cos r, (G + GO sin ~i
=

(G' + G/) sin r

(40),

and

q'F' + q'^Fi =
q"F", (q'F'

-
q'~

l

F^} sin r cos r = q"F" sin i" cos *"
)

(q'G' q'~
l

G\) cos r = q"G" cos i", (q'G' + q~
l

Gi) sin r = q"G" sin i"
j

(41),

where q'
= exp ( il'd), q" = exp ( il"d),

and i, r, i" are the complex angles of incidence, refraction and emergence.

The last set of equations gives

q'f
''

sin (r + i") cos (f
-

i") cos (f + i") sin (r
-

i")
sin 2r

r (4"^).
//>/ rj\n i r,"'r<"

q (J- q (T! q (r

sin (r + i,")
- sin (f

-
t")

sin

L/ (43),v ,ow

tact,

red;
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where /" = tan (i"
-

r)/tan (i" + r), g" = - sin (i"
-

r)/sin (i" + r) . . .(43).

Substituting for F', JY, 6r', (r/ from these equations in (40) we obtain

sn smr -

^ cos r , , ,_. sin
-Cfc- =(3

* + ?
cos i sin r 1

V
whence

sin (i + r) cos (i r) g'"
1 - cos (i + r) sin (i r) qf"

F\ q"F'

cos (i + r) sin (i r) q'~
l sin (i + r) cos (i r) qf" sin 2i (1 /")

and ^ =
sin (i + r) q

~l + sin (i r) q g sin (i
-

r) q
J sin (i + r) q'g"

or

sin 2i sin r (1 g")/sm 1"

F F, q"F"

G G, q"G"

where /= tan(i r)/tan(i + r), # = sin (i
-

r)/sin (i -f r} (45).

111. Let us now apply these general formulae to the case, in which,

the first and third media being identical and more highly refracting than

the plate, homogeneous waves are incident at an angle exceeding the critical

angle*.

In this case q is real and equal to exp {
27rd V/*

2 sin2
i 1/\} where A,

is the wave-length of homogeneous waves of the same frequency in the plate

and
fj,

is the refractive index of the surrounding medium relatively to the

plate : also g = g" = exp (to),f = f" = exp (ib], where

b a a V/i
2 sin2

i 1
tan - = p? tan -= =

cos i

g (1
- g'V* (1

-
q'*) (#>

- qe-)
$ i-qW l-2g'

2 cos2a + ?'
4 P

'
tan^ =

;j-iJ tan a ........(48).-- 2
--

2 ..-,
inci (1 g

2

)
2 + 4^

2 sm2 a

of wa
Stokes, Trans. Camb. Phil. Soc. vin. 642 (1849) ;

Mat h. and Phys. Papers, n. 56.
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If p be taken positive, -fy
must be chosen so that cos

i|r and cos a have
the same sign : therefore sin

i/r
must be positive, since sin a is positive

because a lies between and IT. Thus of the two angles lying between TT

and + TT that satisfy (48), we require that which lies between and TT.

To obtain the value of P^jF, we have merely to write 6 for a in the above

equations.

Considering now the transmitted light, we have q" = exp {
i 2ird cos i/\'\,

V being the wave-length of the given light in the media bounding the plate,

and

G" _g(l- e*} % dcosi _ Zuf sin a (
- g^-*) *

-
' / '

(49),

If we take p positive, T/T'
must be chosen so that cos ty' is positive, that

is, of the two angles between TT and TT that satisfy (51), we must take that

which lies between ?r/2 and ?r/2. Now from (48) and (51), ty'
=

-ty*
+ 7r/2 + rwr

and we therefore must take
i/r'
=

-^ 7r/2.

The value of F"/F is obtained by writing b for a in the above equations.

Since p* + p'
2 =

1, it follows that the sum of the intensities of the reflected

and the transmitted light is equal to that of the incident light and it is

therefore necessary to discuss the expression for the reflected stream alone.

Let us suppose that the plate is a thin film of air contained between the

flat face of a prism and the convex surface of a lens, upon which the prism

rests, the curvature of the lens being so small that the defect of parallelism

of the surfaces of the film may be neglected.

At the point of contact itself, d = and therefore q'
= 1, p

= or there is

absolute blackness : as d increases, q' decreases, but this decrease is at first

extremely slow, for d oc y
2
,
where y is the distance from the point of contact,

and in consequence the intensity varies ultimately as y*. There is apparently

then perfect blackness for some distance round the point of contact. Further

on q' decreases rapidly and finally becomes insensible : hence the intensity at

first increases rapidly and afterwards more slowly until it attains its final

value equal to that of the incident light.

Next as regards change of intensity as dependent upon colour, we have

that a and 6 depend upon X, but their changes are so small that they may
be left out of account

;
the quantity that has to be considered is q'.

Now
the smaller X is, the more rapidly q' changes on leaving the point of contact,

and the central spot must therefore be smaller for blue light than for red
;
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that is beyond the edge of its central portion there is a preponderance of the

colours of the blue end of the spectrum.

Finally the effect of the polarisation on the size of the spot has to be

considered. Let s1} s2 be the ratio of the intensity of the transmitted light

to that of the reflected light according as the incident stream is polarised in

a plane parallel or perpendicular to the plane of incidence : then

S!/s2
= sin2

a/sin
2 b = {(p? + 1) sin2

i - 1
}

2
.

Now according as Sj (or s2) is greater or less, the spot is more or less

conspicuous as regards extent and intensity at some distance from the point
of contact. Very near the critical angle, we have s2 = ^i and therefore the

distinctness of the spot is the greater for light polarised perpendicularly to

the plane of incidence. As i increases, the spots seen in the two cases

become more and more nearly equal in size, and they become exactly of the

same magnitude when sin2 i= 2/(l +/*
2

),
that is when the difference of phase

between the oppositely polarised streams, arising from reflection at the

surface of the film, attains its maximum value. When i exceeds this value,

the order of magnitude is reversed, and the spots become more and more

unequal as i increases. When i = Tr/2, s^/jts^ so that the inequality becomes

again relatively large.

112. The above investigation of the problem of reflection and refraction

has been based upon the hypothesis that the transition from the one medium
into the other takes place so rapidly, that the region within which the

optical properties are variable may be regarded as vanishingly small.

One of the consequences of this assumption is that a stream of light plane

polarised in any azimuth with respect to the plane of incidence gives rise,

in the case of ordinary reflection, to a reflected stream that is in all cases

also plane polarised, and in particular that at an angle of incidence tan"1

ft,

the plane of polarisation of the reflected light coincides with the plane of

incidence, and consequently at this angle light polarised in the perpendicular

plane ceases to be reflected.

This is however by no means always the case and it was found by
Brewster* and by Biotf. that with certain highly refracting substances

there is no angle of complete polarisation, while AiryJ confirmed this result

from observations of the behaviour of Newton's rings in polarised light and

made the further deduction that the phase of the component stream polarised

perpendicularly to the plane of incidence undergoes a continuous variation

as the angle of incidence passes through the polarising angle, instead of

changing abruptly as the theory requires.

*
Phil. Trans, civ. 230 (1814); cv. 152 (1815).

t Traitg de Phys. iv. 288 (1816).

t Camb. Phil. Trans, iv. 279 (1831).
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This question has been carefully investigated by Jamin* by direct

measurement of the difference of phase and of the ratio of the amplitudes
of the vibrations in the component reflected streams polarised in the principal

azimuths, and he found that with few exceptions a stream of light polarised
in any azimuth with respect to the plane of incidence except and 90

occasions by reflection an elliptically polarised stream, its elliptic character

however being only strongly marked at angles of incidence near the polarising

angle. At the principal incidence itself the axes of the elliptic vibration of

the polarisation-vector are in the principal azimuths, so that the components
of the reflected light polarised in these azimuths have a phase-difference
Of 7T/2.

Jamin further recognised that transparent bodies may be arranged in

three classes with respect to their action upon the light reflected from them.

In the case of some substances, the phase of the component polarised in the

plane of incidence is by reflection at the principal incidence retarded by 7r/2

relatively to that of the component polarised in the other principal azimuth :

with others, it is accelerated by this amount
;
while intermediate to these

classes there is a third, characterised by the property that the reflected light

remains plane polarised. Substances belonging to these three classes he

termed media of positive, negative and neutral reflection respectively, and he

stated as a general rule that they are included in the first or second class

according as their refractive index is greater or less than T46. Later investi-

gations have however considerably modified this result.

The elliptic polarisation produced by reflection at the surface of trans-

parent media has also been investigated by Quinckef, Wernicke|, Cornu

and others ||.

The ellipticity of the polarisation of the reflected light is found to be to

a great extent dependent upon the means employed to polish the reflecting

surface and upon the time that has elapsed since the surface was made, and

it is scarcely perceptible in the case of clean freshly formed surfaces, such as

a clean surface of waterll or a crystalline surface newly made by cleavage**.

This fact indicates that the defect in the former investigation of the problem
of reflection arises from the neglect of the thickness of the transition-layer,

and that we must regard two homogeneous media as separated by a region

of small but sensible thickness, within which the optical properties vary.

113. As we are ignorant of the nature and properties of this surface-

layer, we must content ourselves with an approximate solution of the problem
* Ann. de Ch. et de Phys. (3) xxix. 263 (1850); xxxi. 165 (1851).

t Pogg. Ann. cxxvm. 355 (1866). J Wied. Ann. xxv. 203 (1885).

G. R. cvin. 917, 1211 (1889).

||
Cf. Winkelmann, Handb. der Phys. H. 761771.

II Lord Rayleigh, Phil. Mag. (5) xxx. 400 (1890); xxxni. 1 (1892).
**

Drude, Wied. Ann. xxxvi. 532 (1889) ;
xxxvm. 265 (1889).
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of reflection. This we shall base on the method employed above, assuming
that the ratio of the thickness of the layer to the wave-length of light is so

small that its square may be neglected and that for all quantities that occur

with this ratio as a factor we may substitute the values that are obtained by

neglecting the thickness of the layer*.

Let us suppose that the medium, in which the incident light travels, is

homogeneous from oo to x = 0, that the transition-layer occupies the space

from # = to x = d and that from this lower plane to a; = oo the pro-

perties of the second medium are unvaried
;
and let us further assume that

the characteristic equations within the surface-layer have the form (1) and

(2) in which &> is regarded as a function of x.

Taking the plane of incidence as the plane xz, we obtain by multiplying
the last two of each pair of triplets (1) by dx and integrating from to d

r-d
C~

d dw [~
d

I vdx = I -- -

1
dx + r3

'

ra-g, I wdx = -BT./ 4- -sr2 .

Jo Jo oz J

r-d f~d de C~ d

ir.tdx = I ^ dx es
' + es , I sfydx = e.' e2 ,

Jo J $ oz Jo

where the accents denote the values of quantities at the plane x = d.

Now we have seen in 99 that if the thickness of the layer be insensibly

small, the quantities STI ,
sr2 > ^s, V, #2= &>X es = a>

2w are continuous across the

interface : we may then, in accordance with the assumption made above,

place these quantities outside the sign of integration, assigning to them their

values at the plane x = d. Then writing, for shortness,

f a>x*diK = - Qa>'
2
d, I c0x-*dx=-Pco'-2d ............... (52),

Jo Jo

where P and Q are simple numerics, we obtain the system of equations

|>]-o= l^ + Pdv+^d] ........................(53),
L y? _\x=-d

- d .................................... (54),

[O ~~\

e3 -*td+^Qd .........................(55),
OZ ] x=-d

[ea]*-o
= Ou + Aad]* d ....................................... (56).

Let us take as the specification of the system of waves, the expressions

given in 101, omitting the bars over the letters, as we shall only apply the

*
Drude, Wied. Ann. xxxvi. 532, 865 (1889) ; XLIII. 126 (1891) : Lehrbuch der Optik, p. 266.

Voigt, Komp. der Theor. Phys. n. 700. Of. also Zech, Pogg. Ann. cix. 60 (1860). Van Kyn van

Alkemade, Wied. Ann. xx. 22 (1883). Von der Miihll, Math. Ann. v. 505 (1872).
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results to the case of homogeneous waves. Then neglecting terms involving
d? and remembering that s2 = <u

2
(I

2 + ri>), equations (53) (56) give

(kD + &JDO = e~d
'd

(k'~D
f + ik'l'

= k'D' l

I (D - A) = er** {I'D' + i (I'* + n2

) dPD' -

whence introducing the components perpendicular and parallel to the plane
of incidence and the angles of incidence and refraction

, ...(57).

f 2?r
(F F!) sin i cos i = ^Msin r cos r i r sin3 r (Q 1) d

- cost

=(?'sisnr

Hence

F
,7T

sin (i + r) cos (i r) + i, d {(P 1) sin i cos i cos r (Q 1) sin3

r}

o
sin (i r) cos (t + r) + t, T d {(P 1) sin i cos i cos r + (Q 1) sin3 r}

F'

sn .(58),

sin (i + r) + t -^ sin t (P 1) d sin (i r) i, sin i (P 1) d
A. A,

Q'

sin 2t
.(59),
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and omitting as before terms involving d?,

F, tan(i-r)f. 2-n- , (P- 1) cos2 r + (Q- 1) sin2 r
)

-& = r r=
-

( 1 1 + * TT d . ,. r -t-r. x . ,. -\
-

r-
-

\ sm 2l sm r rF tan (t + r) (
X sm (t + r) cos (t + r) sin (i r) cos (i r) }
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So long as the plane of polarisation of the incident light is not in one of

the principal azimuths, a plane polarised stream will at any incidence give

rise to a reflected stream of elliptically polarised light, the difference of phase
between the components polarised in the principal azimuths being given by

2 sin i tan i
tan 8 = 4e

Vl

since however e is small, the ellipticity is only marked at incidences near

the principal incidence. The ratio of the amplitudes of the vibrations is

except at principal incidence approximately the same as that given by
the simple theory, viz. :

cos (i + r) F
cos (i r)G'

In the case of bodies of positive reflection it is possible to assign an

inferior limit to the thickness of the surface-layer : for the value of e being

given d will be a minimum, when p,x is constant and of such a value that

(^2 p/) (/A/ l)lfj,y?
is a maximum, that is when p,J = /*. This gives

d_ e^
/* + ! 1

X TT
/j,

1
V/i

2 + 1

Thus for heavy flint glass /A
= 1'75, e = '03, whence d/\ = 0'0175.



CHAPTER XL

DOUBLE REFRACTION.

114. IT was discovered by Erasmus Bartholinus that a stream of light

on entering a crystal of Iceland spar is in general divided into two refracted

streams. By a careful series of experiments he found that the direction of

one of these streams was determined by the ordinary law of refraction given

by Snell, while the other stream was bent according to a different law, that

had not been previously recognised.

An account of these observations was published in Copenhagen in 1669,

and their publication led Huygens to investigate whether the new refraction

could be accounted for by the principles that he had already successfully

applied to the explanation of ordinary refraction, and for this purpose he

proceeded to determine with accuracy the experimental laws of this new

phenomenon.

According to Huygens' principle the existence of two refracted streams

shows that an elementary disturbance at a point on the surface of the crystal

occasions two disturbances spreading out into the medium at different rates,

so that the wave-surface that determines the direction of the refracted

streams must be a double surface or a surface of two sheets. As one of the

streams follows the ordinary law of refraction, the corresponding wave-surface

must, as in the case of isotropic media, be a sphere, and since it appeared
that the law determining the refraction of the other stream, though less

simple, was not much more complicated, Huygens assumed that for it the

form of the wave-surface was a spheroid. Now from the measures that he

made, it appeared that the radius of the spherical wave-surface was practi-

cally equal to the polar semi-axis of the spheroid, whence he inferred that

the two surfaces touch in the axis, and finally observing that a rhombo-

hedral crystal of spar behaved in precisely the same way whichever pair of

faces the light passed through, he concluded that the polar axis of the

spheroid must be symmetrically placed with respect to each of the planes

of the rhombohedron and must therefore coincide with the direction of the

axis of the crystal.
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Huygens also discovered that each of the two refracted streams had

acquired new properties with respect to their transmission through a second

rhomb of spar. To this phenomenon, which has already been described in

12, Malus afterwards gave the name of polarisation, and he found that the

properties of a stream of light completely polarised by reflection are the

same with reference to the plane of reflection, as are those of the ordinary
stream with respect to the principal plane of the crystal and those of the

extraordinary stream with respect to the perpendicular plane. Thus accord-

ing to Malus' definition the ordinary stream is polarised in the principal

plane, the extraordinary stream in the plane perpendicular to the principal

plane of the crystal.

The correctness of Huygens' measures and deductions remained unrecog-

nised for over a century, and little, if any, progress was made in the quanti-

tative determination of the laws of double refraction, until Wollaston* in

1802 undertook at the suggestion of Young an experimental investigation of

the subject. Wollaston's measures confirmed the accuracy of Huygens' law

for the case of Iceland spar, and the evidence in its favour was further

strengthened in 1810 by the publication of a memoir by Malusf, that gained

the prize offered by the French Academy for an essay on the question of

double refraction.

115. It was at first assumed that Huygens' law applied to all crystals

that exhibited the phenomenon of double refraction, but Brewsterj in 1818,

while examining the rings surrounding the optic axis of a crystal in polarised

light, discovered a number of crystals possessing two optic axes. He deter-

mined moreover that though these directions must not be regarded as the

fundamental axes of the medium, they are connected with them by simple

relations, the fundamental axes in fact being the internal and external

bisectors of the angle between the optic axes and a direction perpendicular

to their plane.

Brewster also succeeded in establishing a connection between the optical

properties of crystals and their crystallographic form. Crystals are referred

to six systems based upon their grade or type of symmetry and these

systems are further grouped into three classes that correspond to the

arrangement of crystals into divisions determined by their optical charac-

teristics.

In the isometric class, containing the cubic system alone, there are three

principal planes of symmetry at right-angles to one another and six secondary

planes of symmetry that bisect the angles between the principal planes.

Optically, crystals of this class are isotropic and the wave-surface for them is

* Phil. Trans, xcn. 381 (1802).

t Mem. des Sav. Etrang. n. 303 (1810).

{ Phil. Trans, cvm. 199 (1818).



190 The Analytical Theory of Light [OH. xi

in general a sphere, but there are a few cubic crystals possessing hemihedral

or tetartohedral merosymmetry that exhibit rotary properties and for these

the wave-surface consists of two concentric spheres. Such crystals though
still isotropic show weak double refraction.

The isodimetric class comprises all forms that have a single principal

plane of symmetry. In this class there are two crystal systems:

(a) the tetragonal system, having four secondary planes of symmetry
all at right-angles to the principal plane and inclined to one another at

angles of mr/4i ;

(6) the hexagonal system with six secondary planes of symmetry inter-

secting the principal plane at right-angles and each other at angles of mr/Q.

Crystals of this class are optically uniaxal, the optic axis coinciding with

the principal axis of symmetry for all wave-lengths and temperatures, and

the wave-surface is Huygens' system of a sphere and a spheroid touching one

another in the axis. There are however some crystals having merosymmetry,
that show rotary properties, and in these cases the sheets of the wave-surface

no longer have a common tangent plane.

In the anisometric class there is no principal plane of symmetry and this

is characteristic of three crystal systems :

(a) the prismatic system, that has three secondary planes of symmetry
at right-angles to one another;

(b) the monoclinic system having one secondary plane of symmetry ;

(c) the anorthic system with no plane of symmetry.

Such crystals are optically biaxal, and in their case the wave-surface is a

surface of the fourth degree with a centre of symmetry and three rectangular

planes of symmetry determining by their intersections three axes of optical

symmetry.

In the prismatic system, the axes of optical symmetry coincide with the

crystallographic axes for all wave-lengths and temperatures.' In the mono-

clinic system, one of the axes of the wave-surface coincides with the crystallo-

graphic axis in all cases, while the positions of the other two change with

the wave-length and temperature. In the anorthic system, the orientation

of all the three axes of optical symmetry is dependent upon the wave-length
and the temperature.

Uniaxal Crystals.

116. Referred to a rectangular system of axes, of which the 2-axis

coincides with the optic axis of the medium, Huygens' wave-surface con-

sists of

the sphere a? + y
z + zz = a2

}

-

and the spheroid + - = 1
c
2 a2
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where a and c are the principal wave-velocities, or if cr be the ray- velocity in

a direction making an angle -fy
with the optic axis, the equations of the

sheets of the wave-surface may be written

whence we obtain
2
=
(l i)

sin2
'*l
r

(3)>

or the difference of the squares of the reciprocals of the ray-velocities in any
direction is proportional to the square of the sine of the angle that this

direction makes with the optic axis.

117. Since the wave-surface is a surface of revolution, it follows from

symmetry that the extraordinary ray and the normal to the corresponding

plane wave lie in a plane through the optic axis. Taking this plane as that

of xz, let (x, z) be the coordinates of the extremity of an .extraordinary

ray OS: the corresponding plane wave W is perpendicular to the plane xz

and cuts it in the line

xx' zz' _

touching the ellipse -I-
= 1

C CL

at the point (x', z).

But if o> be the wave-velocity and ^ be the angle between the normal to

the wave and the optic axis

x sin y + z cos Y = &),/V A* *

whence x'/c
2 =

sin')(/o), //a
2 =

cos^/&> (4).

Substituting these values of #', / in the equation of the ellipse, we obtain

w2 = c
2 sin2 % + a2 cos2

%.

Thus in polar coordinates the surface of wave-quickness consists of

the sphere to = a

and the ovaloid &>
2 = c

2 sin2

^ + a2 cos2

and in Cartesian coordinates the equations of these surfaces are

(a:
2 + y

2 + *2

)
2 = c

2O2 + y
2
)

22

118. A comparison of equations (2) and (5) shows that we pass from the

one to the other by changing

a, c, a-, -v/r
into a"1

, c"1
,
co~l

, %

respectively, and accordingly to each proposition referring to rays there
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corresponds a similar proposition relating to waves. Thus we have in corre-

spondence with (3)

or the difference of the squares of the wave-velocities in any given direction

is proportional to the square of the sine of the angle that the direction makes

with the optic axis.

From equations (4) we have

(8),

thus the tangents of the angles between the optic axis and the ordinary and

the extraordinary rays, corresponding to waves that have the same direction,

are in a constant ratio, and the angle between these rays is given by

(a
2 c2

) tan y (a
2

c2
) sin y cos y

toatf-tenfa-*)-^^.*- -V* * .........(9);

this angle is the greatest when

tan
y,
=

afc, or tan ty
= + c/a,

that is when the sum of the angles y and
i/r

is a right-angle ;
its value then

is tan-1

{+ (a
2 - c

2

)/(2ac)}.

119. We see from equation (8) that y < ty or the ordinary ray is

farther from or nearer to the optic axis than the extraordinary ray of a wave

in the same direction, according as a < c, that is according as the spherical

sheet is without or within the spheroidal sheet of the wave-surface, the

spheroid being in the first case prolate and in the second oblate.

There are then two classes of uniaxal crystals and these Biot*, to whom
their discovery is due, denominated attractive and repulsive respectively,

ascribing the existence of the extraordinary ray in the theory of emission to

attractive or repulsive forces emanating from the optic axis. These classes

of crystals are now called positive and negative.

120. The surface of wave-slowness in an uniaxal crystal, being the

inverse of the surface of wave-quickness, consists of a sphere of radius a"1

and an ellipsoid of revolution about the optic axis, the polar and equatorial

semi-axes of which are a-1 and c"1

respectively.

Let Q be any point on the spheroid, QM the perpendicular from Q on the

equatorial plane, the centre of the surface, then

c
2 M2 + a?QM2 = 1 or c2OQ 2 + (a

2 - c2) QM* = 1
;

but if lt #2, $s> be the angles that the optic axis makes with the axes of

a;, y and z respectively, the equation of the equatorial plane is

x cos 0i + y cos #2 + z cos $3 = 0,

* Mem. de laprem. classe de I'Inst. xin. (2) 19 (1814).
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and hence the surface of wave-slowness consists of

the sphere x2 + y* + z2 = a~2
\

and the spheroid .(10)

c2 (a? + ?/
2 + 2

) + (a
2 - c

2
) (as cos ^ + y cos 2 + s cos 3)

2 = 1 I

Suppose now that a plane wave is incident at an angle i on a plane surface

bounding an uniaxal crystal, and let the plane of incidence be taken as the

plane of xz and the surface of the crystal as that of xy, the positive quadrant
xz containing the direction in which the light travels*.

Since the ordinary wave within the crystal follows the ordinary law of

refraction, its normal makes an angle r with the normal to the surface

given by
sin r = a sin i/fl ( 1 1 ^

ft being the propagational speed in the outer medium, and the ordinary ray
coincides with the wave-normal. The plane of polarisation is the plane

containing the wave-normal and the optic axis, and hence if
, ftQ , y be the

direction cosines of its normal

a cos 1 + #o cos 2 + 7 cos Bs 0,

sin r + 70 cos r = 0,

whence the equation of the plane of polarisation of the ordinary wave is

cos r cos 2 x + (sin r cos 3 cos r cos X) y sin r cos 2 z = 0. ..(12).

As regards the extraordinary wave, if re be the angle that its normal

makes with the axis of z, re is determined by writing

x = sin
z'/ft, y

=
0, z = sin i cot re/ft

in the equation of the spheroidal sheet of the surface of wave-slowness.

This gives

c
2

(1 4- cot
2 rt) + (a

2 - c
2

) (cos 6, + cos 0, cot rej = fl2

/sin
2
i,

or

[{c
2 + (a

2 - c
2
) cos

2

0j} sin2
i - ft2

] tan
2 re + 2 (a

2 - c
2

) cos a cos 3 sin
2
i tan re

+ {c
2 + (a?

- c
2
) cos

2
3 }

sin2
i =

(13).

If the propagational speed in the outer medium be greater than the

greatest principal velocity in the crystal, this equation gives two real roots

of opposite sign for tan re ,
of which the positive one is that required, as from

the nature of the problem re is positive and less than tr/2. Hence re is

determined and the velocity of the wave is given by

a) = H sin re/sin i.

The corresponding ray is in the direction of the perpendicular from the

*
Beer, Einleitung in die hohere Optik, 2nd ed. p. 273.

w. 13
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centre on the tangent plane to the surface of wave-slowness at the point in

which the normal to the wave meets it and is therefore parallel to the normal

to the surface at this point. Whence we obtain for its equations

c2 sin re + (a
2

c
2

) cos < e cos 6 (a
2 c2) cos < e cos 2

z
_ im (14)

c
2 cos re + (a

2
c
a

) cos </>e
cos #3

' '

where
</>e

is the angle between the wave-normal and the optic axis, so that

cos
(j)e
= sin re cos 6l + cos re cos 3 .

The plane of polarisation of the extraordinary wave is perpendicular to

the wave and to the plane containing the wave-normal and the optic axis :

hence if af , {3e , ye be the direction-cosines of its normal

ae cos 2 cos re + j3e (cos 3 sin re cos 6 cos re) je cos 2 sin re
= 0,

ae sin re + ye cos re
= 0,

and the equation of the plane of polarisation is

cos
x ; ^ -.

'

r y t&n.re z= (15).
cos re (cos 3 sin re cos 1 cos re)

*

The angle between the planes of polarisation of the two refracted waves is ,

where

cos = a cte + /3o/3e + 7,/ye

= cos #2 cosec < cot < sin
(r,,,

r ) (16),

where
^> , ^>e are the angles between the refracted wave-normals and the

optic axis.

The extraordinary ray is in the plane of incidence, only when

cos d>e
= Q or cos $2

= 0,

that is when the optic axis is either parallel to the refracted wave, or in the

plane of incidence : in the latter case the plane of polarisation becomes

indeterminate when

cos tfj/sin re
= cos 3/cos re ,

which expresses that the optic axis is in the direction of the wave-normal.

The planes of polarisation of the two refracted waves are at right-angles,

only when

cos #2 = 0, cos < e
= 0, sin (re r )

= 0,

that is when the optic axis is either in the plane of incidence or parallel to

the extraordinary wave, and when the two refracted waves have the same

direction, that is in the case of normal incidence.
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Biaxal Crystals,

121. The first attempt to extend Huygens' construction to biaxal crystals
was made by Young*, who suggested a sphere combined with an ellipsoid

having three unequal axes as the form of the wave-surface in such media.

It is readily seen however that this form of wave-surface is inconsistent with

the biaxal character of the crystals, and in addition Fresnel discovered that'

any form with a spherical sheet must be rejected, since in biaxal crystals
there is no ordinary refraction in all cases, as was at first supposed to be
the case.

Fresnel arrived at this conclusion by the following considerations.

Starting from the idea that light consists in transverse vibrations of the

particles of the ether, he was led by the symmetry of uniaxal crystals about

their axis to assume that vibrations perpendicular to this direction are

propagated with the same speed in all directions f, and he pointed out that

this explains the existence of an ordinary wave and the relation between its

velocity and that of the extraordinary wave, provided the vibrations in

a stream of polarised light are perpendicular to the plane of polarisation : for

in that case, light polarised in the principal plane will travel with the same

speed in all directions, as the vibrations are in all cases perpendicular to the

optic axis
;
on the other hand light polarised in a plane perpendicular to the

principal plane will have a speed dependent upon the direction of propagation,
as the vibrations are in general oblique to the optic axis. As however the

direction of propagation approaches that of the axis, the vibrations will

become more and more nearly at right-angles to it and the speed will

approximate to that of the ordinary waves.

It soon became obvious to Fresnel that this explanation could not be

applied to the case of biaxal crystals, and that there was no reason to expect
an ordinary wave in such media, since the existence of two optic axes

indicates that they possess no single direction round which their optical

properties are symmetrical. In order to test this inference, Fresnel took

two prisms of topaz, cut in different directions with respect to the crystallo-

graphic axes and carefully worked so as to have the same angle, and of these

he formed a single prism by attaching them together with their edges in the

same straight line. After partially achromatising the system by prisms of

crown glass, he observed through the combination a luminous line parallel to

the edge of the prism and at once perceived that the image, hitherto regarded
as due to ordinary refraction, was discontinuous, proving that the deviations

produced by the two halves of the prism did not follow the same law*.

* Miscellaneous Works, i. 317, 322.

t (Euvres completes, i. No. xxn. 14, p. 636. For an account of the sequence of Fresnel's

ideas on Double Refraction, see the introduction to Fresnel's work by Verdet, pp. Ixv Ixxxv,

reprinted in Verdet's works, Vol. i. pp. 360 376. .

J (Euvres completes, n. No. xxxvin. 12, p. 271.

132



196 The Analytical Theory of Light [CH. xi

If then the laws of double refraction in biaxal crystals were to be deduced

by Huygens' method, it would become necessary to look for a surface, having
two sheets and probably of the fourth degree, that would reduce in the case

of uniaxal crystals to Huygens' system of a sphere and a spheroid, and

recognising the difficulties inherent in this method of procedure, Fresnel

was led to consider the possibility of representing the phenomena by the aid

of a simpler surface. Now he perceived that in the case of uniaxal crystals

it was possible for this purpose to replace Huygens' wave-surface by a single

spheroid, of which the polar and equatorial semi-axes are respectively the

equatorial and polar axes of Huygens' spheroid, as the velocities of the two

rays in any direction are given by the semi-axes of the section of this

spheroid by a diametral plane perpendicular to the ray, and the plane of

polarisation of either ray is perpendicular to the semi-axis that gives the

ray-velocity*. It therefore suggested itself to Fresnel that the properties

of biaxal crystals could be expressed by similar relations with respect to an

ellipsoid with three unequal axes, and the results thus deduced he found to

be in accordance with all the facts known about such crystals f.

This surface is called, for reasons that will appear later,
" the reciprocal

ellipsoid," and the wave-surface is the locus of points obtained by taking on

the radii-vectores through its centre lengths equal to the semi-axes of the

diametral sections perpendicular to their directions.

122. Turning now to the consideration of waves, it is clear that the

speeds and polarisations of waves in an uniaxal crystal may be determined by
the aid of a spheroid, of which the semi-axes are the reciprocals of those of

the reciprocal spheroid, the wave-velocities in any direction being the reci-

procals of the semi-axes of the diametral section parallel to the plane of the

waves, and the plane of polarisation of each wave being perpendicular to the

axis determining its speed. Hence it is natural, as in the case of rays, to

extend this construction to biaxal crystals by the employment of an ellipsoid

with three unequal axes. This ellipsoid is called
" the polarisation ellipsoid."

Let the equation of the ellipsoid of polarisation, referred to its principal

axes, be

a2
a;

2 + 6y + c^2 = l (17);

then to determine the speeds and the polarisations of the waves propagated
in the direction, of which the direction-cosines are I, m, n, we have to find the

axes of the section of this ellipsoid by the plane

Ix + my + nz = (18).

Let 1/w be the length, a, {3, 7 the direction-cosines of any radius-vector

* Fresnel supposed that the vibrations were perpendicular to the ray ((Euvres, n. No. xxxvm.

22, p. 281), an assumption that he rejected afterwards,

t (Euvres completes, n. Nos. xxxvm., xxxix., XL.
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ON of the section
;
then if x, y, z be the coordinates of its extremity N,

we have

x = cija}, y = ft/to, z = 7/o>,

and from the equation of the ellipsoid

aV + 62/3
2 + cy = a>

2
........................... (19),

also a, yS, 7 are connected by the. relations

l ................................. (20),

771
= .................................(21),

the latter equation expressing that the radius-vector is in the plane of

section.

If now ON be one of the semi-axes of the section, &>
2 must be either

a maximum or a minimum subject to the conditions (20), (21); whence

differentiating with respect to a, /3, 7,

a?ada + b*/3d0 + c*ydy
= Q\

fa+
40+<y<iy.-o|

..................... (22),

Ida. + mdfi + ndy = J

and using indeterminate multipliers, we have

Multiplying these equations by a, /3, 7 respectively and adding, we find

E =
a)*,

whence

(a?-a)
2

)a = Fl, (b*-a>*)0 = Fm, (c
2 - w 2

) 7 = Fn ......... (23),

from which by eliminating a, ft, 7 we obtain

/2 AyjS /ij2
'

the roots of which give the two propagational speeds in the direction (I, m, n).

Again multiplying (23) by I, m, n respectively and adding, we get

and also from (23) since a2 + /3
2 + j

2 = 1

which gives the value of F corresponding to either of the two waves, and then

the direction-cosines of the corresponding polarisation-vector are obtained

from (23).

On the other hand, if it be the plane of polarisation or a, fi, 7, that we
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know, the propagational speed is determined by (19), and squaring and adding

equations (23), we have

(27),

which gives F and the direction-cosines of the wave-normal are by (23)

given by

,
n = (c

2 - 2

) y/F.

123. Let &>! be the speed of the quicker, <02 that of the slower wave

propagated in the direction (I, m, n), then since a>1} o>2 are the roots of

equation (24), the equation

- 62

) (
2 - c

2

) +m2
(

2 - c2) (
2 - a2

) + n2

(
2 - a2

) (
2 - b2

)

is identically true for all the values of . Hence writing in turn a, b, c for ,

we obtain

_
'

(a
2 -62

)(a
2 -c2

)

^-Q^-O2222
(c

2 -a2

)(c
2 -62

)

whence we find

^.---^ - 6,2
-

2
-

2

Wl
2 -a,2

2 -' 2̂
=

^-a,,2 9) '

relations that we shall require later.

Now assuming, as we shall do in what follows, that a2 > 62 > c
2
,
the second

of equations (28) shows that (&>!
2 b2

) (ft
2

o>2
2

) is always positive and then

the first and last of these equations give that w
l
and &>2 are both less than a

and greater than c, so that a > wl > b > &>2 > c.

We see then that if &>! and &>2 become equal, this can only occur by their

both being equal to b; but if one of the speeds be 6, we must have m = 0, that

is the wave-normal lies in the plane of xz and if the second speed be also b,

we have
2 _ 7)2 7,2 _ r2

72 _ _? 2 = 1_
~a2 -c2 ' a'-c2

'

At the same time the expressions for the direction-cosines of the polarisation-

vector become indeterminate and hence in the directions given by

lip _ />2

/ U
- D /OA\

V o2^? ............(3

all waves are propagated with the same speed, whatever may be their

polarisation. Since these directions have the same property as the optic
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axis of an uniaxal crystal, they are called the optic axes of the medium, and

they are obviously the normals to the circular sections of the ellipsoid of

polarisation.

Calling OA the optic axis in the quadrant xz, OB that in the quadrant
xz, and 2H the angle A OB, then

=

124. The quantities I, m, n given by equations (28) may be regarded as

the coordinates of a point on a sphere of unit radius with the origin as centre.

If &>2 be kept constant, while wl varies, the point will describe a spherical

ellipse, determined by the cone

m*

a? o>2
2 62

a>2
2

c
2

&)2
2

the centre and foci of the ellipse being the points in which OZ, OA ,
and OB

meet the sphere*.

Similarly if <o2 vary, while ft^ is constant, the point will describe a

spherical ellipse given by the cone

with its centre and foci at the points in which OX, OA and OB' (the

prolongation of BO) meet the sphere.

Taking the spherical ellipse wl
= const., we have

, a2 -
cof b2 - 2

-

whence if c^, &, 7X be the direction-cosines of the normal to the plane of

polarisation of the wave a>n we have

otjcW + fi^m + Vidn == 0,

or the plane of polarisation of the wave o^ cuts the sphere in a tangent to the

spherical ellipse CDJ
= const.

Similarly the plane of polarisation of the wave o>2 cuts the sphere along
a tangent to the ellipse ft>2

= const.

But the tangent to a sphero-conic makes equal angles with the radii-

vectores from the foci to the point of contact: hence, the planes of polari-

sation of the two waves propagated in any given direction bisect the angles

between the planes drawn through this direction and the optic axes.

*
Clebsch, Prinzipien der math. Optik, Augsburg (1887), p. 38.
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Again let N be a point on the spherical ellipse &>2
= const., and let the

angles NA and NB be ^ and ^' respectively; then (% + %')/2 is the major
serai-axis of the ellipse, that is the angle between the axis of z and the

Fig. 27.

generating line of the cone (32) lying in the plane of xz. But writing
ra = 0, we have for this line

*
=0

a - w2 c - &>

whence *f^' = tan*
& c

Next regarding N as a point on the ellipse o^ = const, we obtain by

interchanging a and c and writing TT %' for ^',

a2 + c2 a2 -c2
/

i
2

=-^ +

and from (34) and (35)

WjS
- ^ = (a

2 - c
2

) sin % sin x
7

..................... (36),

or the difference of the squares of the speeds of two waves propagated in a

given direction is proportional to the product of the sines of the angles between

that direction and the optic axes.

We have further

a2 -
&)j

2 = (a
2 - c

2

) sin
2 X ~ X-

, c
2 -

o)/ = - (a
2 - c

2
) cos

2

^-^- ,

62 -< = -
(a

2 - c
2
) (sin

2 H - sin2

^^*- )
= -?I-J?

{cos (x - %')
- cos 20} ;

\ z / z
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but if i be the angle ANB

cos 2ft = cos % cos
-%' + sin ^ sin ^' cos i,

<i

. . 62
Wj

2 = (a
2

c
2

) sin ^ sin ^' sin2

^ .

Hence ^= J (a
2 -c2

)sin(^-x')sin| (37),

and in the same way we find

')COB* . ...(38).

125. Considering now the transition from biaxal to uniaxal crystals, let

us first suppose that the mean axis of the ellipsoid of polarisation gradually
diminishes until it becomes equal to the least axis 2/a. The medium then

becomes ultimately an uniaxal crystal with its optic axis in the direction of

the axis of z. Since in the limit % and ^' become equal, we see that the

quicker wave then has a constant speed and is polarised in the principal

plane, while the slower wave has a speed dependent upon the direction of

propagation and is polarised in a plane perpendicular to the principal plane.

Hence when the acute angle between the optic axes is bisected by the

greatest axis of the ellipsoid of polarisation, the biaxal crystal has a certain

resemblance to a positive uniaxal crystal and the more acute the angle

between the optic axes, the greater is the similarity.

Again by increasing the mean axis of the ellipsoid of polarisation until

it becomes equal to the greatest axis 2/c, we see that, when the acute angle

between the optic axes of a biaxal crystal is bisected by the least axis of the

ellipsoid of polarisation, the crystal to a certain extent resembles a negative
uniaxal crystal with its axis in the direction of the axis of x,

The bisector of the acute angle between the optic axes is called
" the first

mean line," the bisector of the obtuse angle is termed "
the second mean

line." Thus a biaxal crystal is said to be positive or negative, according as

the first or the second mean line coincides with the greatest axis of the

ellipsoid of polarisation.

Calling 2ft the angle between the optic axes that is bisected by the axis

of z, we have

cos 2ft = (26
2 - a2 - c

2

)/(a
2 - c

2

),

and from what precedes, the crystal is positive or negative according as

2ft $ 7T/2, that is according as 262
< a2 + c

2
.

'

126. The surface of wave-quickness is the locus of points obtained by

taking on lines through the centre of the ellipsoid of polarisation lengths
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representing the reciprocals of the semi-axes of the central sections of the

ellipsoid perpendicular to the lines. Its equation in polar coordinates is

I
9 m3 w2

a2
a>

2 bz - w2 c2
a)

2
~~

and in Cartesian coordinates

i

c
2 -

The sections of this surface by the planes of symmetry are a circle and an

oval, of which the equations are given in the following scheme :

Plane Circle Oval

yz y* + zz = a2

(y* + z^J
-

c*y* + bW,

zx z* +a?=b* 2 + a? 2 = aV + CV,

xy x2 + y*
= c

2 2 + 2/

22 =

Since the surface of wave-quickness is the pedal of the wave-surface, the

circle in each plane of symmetry is common to these surfaces.

In the plane of xz the circle and oval intersect, and the radii-vectores to

the points of intersection give the optic axes. We are thus afforded another

method of determining these directions.

The equation of a plane wave propagated with speed to in the direction

given by the cosines I, m, n is

Ix + my + nz = co,

I, m, n, co being connected by (39). Taking as coordinates of the plane the

negative reciprocals of the intercepts made by it on the axes, or writing

L = 1/6), M =
m/co, N n/co

the equation of the plane becomes

Lx + My + Nz + l = 0,

where L, M, N are connected by the relations

& ^_ ^ - 1

a? - co* b* - co* c* - a>* (

a2 = (L
2 +M2 +N2

)-
1

Eliminating co between these equations, we obtain

(Z
262

c
2 + JlfW + -AW)(Z2 +M2 +^2

)

-
{L* ( + c

2
) +M 2

(c
2 + a2

) + # 2

(a
2 + 62

)} + 1 = 0.. .(40),

which is the tangential equation of the envelope of the wave, that is of the

wave-surface*.

*
Pliicker, Crelle's J. xix. 13 (1838).
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127. The surface of wave-slowness is the reciprocal of the wave-surface

with respect to a concentric sphere of unit radius : its Cartesian equation is

thus obtained from the tangential equation of the wave-surface by changing

tangential into Cartesian coordinates. Hence we obtain

It is also the inverse of the surface of wave-quickness, and hence its polar

equation is

o o T~ ** T~n o T~~ i" o -t~
~~ ^ tlj?)

Since it is the locus of points obtained by taking, on the normals to the

diametral sections of the ellipsoid of polarisation drawn through its centre,

lengths equal to the axes of the sections, the outer sheet of the surface of

wave-slowness corresponds to the inner sheet of the surface of wave-quickness
and vice versd.

The section of the surface by each plane of symmetry consists of a circle

and an ellipse, of which the equations are given in the following table :

Plane Circle Ellipse

yz 2/

2 + 22 = a~2 cy + &2s2 = 1,

xy a? + y
2 = or2 6*#2 + ay = 1.

In the plane of xz the circle and the ellipse intersect, the points of intersection

being on the optic axes.

In order to determine the refracted waves corresponding to a plane wave

incident in an isotropic medium on a plane surface of a biaxal crystal *, let us

take new axes
, 77, such that the surface is the plane of 77

and the plane

of incidence that of
,
the positive direction of the new axes being so chosen

that the positive quadrant | contains the direction of propagation of the

light, and that on regarding the plane of from the positive direction of the

axis of 77, the positive axis of is made to coincide with that of f by a rota-

tion in the direction of the hands of a watch. Let the new axes be given

with reference to those of x, y, z by the scheme

77 ^21 ^22 ^23

C31 C32 Cyg.

Liebisch, N. Jahrb.fur Min. (1885) n. 181; Phys. Kryst. p. 353.
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Then to obtain the equation of the surface of wave-slowness referred to the

new system of coordinates, we must write

= Cnf + ctfi + CnSi y = GI + c^n + c^,

and the directions of the refracted waves, and of those produced by them on

reflection at a second surface parallel to the first, are found by writing in the

equation thus obtained

| = sin i/fl, 77
= 0, f= sin i/(fl tan r).

Making these substitutions we obtain an equation

a tan4 r + 4oa tan
3 r + 6a2 tan

2 r + 4>a3 tan r + a4
= ........(43),

where

Sllj4 ,j

+ a262
c13

2

)

+ c2

) cn
2 + (c

2 + a2

) c12
2 + (a

2 + 62
) c13

2

}
+ 1,

= 2 - -
(6

2
c
2cn c31 + c

2a2
cr

si n^ 7- 2 - {(&
2 + c

2
) Cll c31 + (c

2 + a2

) C12c32 + (a
2

Cll
2 + c31

2

) + c2a2

(c12
2 + c^) + a?b* (c1

l^ ?

02 IV / 31 ' \ ' /

SI T"l^ *?

4a3
= 2 -

hr (6
2
c
2
cn c31 + C2a2

c12 c32 + a262
c13 c33),

4 n

-
(6

2
c
2
c31

2 + C
2a2

c3

In general this equation can only be solved by a method of approximation
but in certain cases it assumes simple forms that give complete solutions of

the problem. Thus, suppose that the surface of the crystal is parallel to

one of the axes of symmetry, say the axis of z, and let the angle (#) be
yu,
and

let the angle between the planes and xy be 8. Then

cu = sin
fj,
cos 8, c12 = cos /* cos 8, cl3

= sin 8,

C31
= cos

fjb, 032
= sin

fjL,
C33 = 0,

and

SIH^ %
a =

-^- (6
2
c
2 sin2 ^ cos2 8 + c2a? cos2

/* cos
2 8 + a?b2 sin2 8)

~ - K&2 + 2
) sin2 A1 cos2 5 + (c

2 + a2
) cos

2
fj,
cos2 8 + (a

2+ 62
) sin

2

8} + 1,
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/Q-j-t-^2
n \ O"IY"2 n

4^ = 2
l-^r

c
2 - 1

J -^- (6
2 - a2

) sin /i cos ^ cos S,

gl J-\4
n

6a2
=

-^- (6
2
c
2

(1
- sin2

/* sin
2
8) + c2a2

(1
- cos2

/* sin
2

8) + a262 sin2 8}

,

(c
2 + a2 sin2

/A + 62 cos2

/i),

gl J-\4
n

2
c
2 1 - sn2

/* sn

sin2
i

c-ii-|4

4a3
= 2 c

2

(6
2 a2

) sin /* cos p, cos 8,

a4
=

n4

sin4 i

If the plane of incidence be parallel to the plane of xy, we have 8 = and

(43) becomes

,. /sin2 i \ sin 2
i nwhere f(r) = I c

2 1 1 tan2 r + c2
,

</> (r)
= A tan2 r + 2^ tan r -f A.2 ,

with J-o = Q2~ ^
2
s^n2

/"- + a2 cos2 A4) 1

J.! = n (6
2 a2

) sin //,
cos /A,

sin
A 2

=
~^ (6

2 cos2

p + a2 sin2
/&).

If on the other hand the plane of incidence pass through the axis of z

j= 7T/2 and (43) reduces to

a tan4 r + 6a2 tan
2 r + at

= 0,

/snt
where a = -- a2 -

2 + cW sin2

sin^ T*--
p (c

2 + a2 sin2

/* + 62 cos2

/A),
11

oirj4 n

a4
= ^- c2

(a
2 sin2

/* + 62 cos2

/*).
d2>

Further if /*
=

Tr/2 we have the case in which the surface of the crystal is

parallel to the plane of symmetry xz and tan r is determined from

a tan4 r + 6a2 tan
2 r + 4

=
0,
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where a =(^ 62 -
l){^ (c

2 cos2 8 + a? sin2
8)
- 1

j ,

\ " / (
1Z

J

mn^ 9 mn^ 7

6a2
= -*

(c
2a2 + 62

c2 cos2 8 + a262 sin2
8)
---

(c
2 + a2

),

sin* i a

4
=
-Tyr c2a2

,

and this breaks into two factors when 8 = or ?r/2.- The equation also takes

a simpler form when the plane of incidence passes through one of the optic

axes, as then

8 = + (7T/2
-

fl) and c
2 cos2 8 + a2 sin2 8 = c

2 sin2 fl + a2 cos2 O = b2
.

128. We have seen in 121 that the wave-surface may be found at once

from the reciprocal ellipsoid by a process similar to that by which the

surface of wave-quickness is obtained from the ellipsoid of polarisation and it

was thus in fact that Fresnel himself arrived at its equation*. It will how-

ever be convenient to proceed by a more direct method and to determine the

wave-surface by its property of being the envelope of a system of plane waves,

that have passed simultaneously through a given point and have travelled

thence in different directions for unit time. This method was also given by

Fresnelf, but he did not effect the elimination of the variable parameters :

this was first done by Ampere J by a somewhat laborious process and after-

wards in a far simpler fashion by Archibald Smith .

The equation of a plane wave is

Ix + my + nz = w (44),

wherein the parameters are connected by the relations

l
2 + m2 + n*=l (45),

I
2 m2 n2

a2
a)

2 62 to
2

c
2

G)
2

In virtue of these relations only two of the parameters are entirely inde-

pendent in their variations
;
but by multiplying equations (45) and (46) by

the indeterminate quantities G and H respectively and adding them to (45),

we obtain the equation

Ix + my + nz + G (I
2 + m* + n*) + H (-

- + , -H J
1

J = o> + G,
\a G) o to c to /

* (Euvres completes, n. No. XLVII. 37, p. 561.

t Ibid. 3236, pp. 552561.

J Ann. de Ch. et de Phys. (2) xxxix. 113 (1828).

Camb. Phil. Trans, vi. 85 (1835); Phil. Mag. xn. 335 (1836).
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in which all the parameters I, m, n, co may be regarded as independent

variables. Hence differentiating with respect to each in turn, we have

a -co o 6>

where F is given by (26).

Multiplying the first three of these equations by I, m, n respectively and

adding we find 20 = co, whence

ETj 7

X = IcO
a2 - co'

am

(47),

z = nco
ft) C

2 -
ft)

2

which equations give the coordinates of the point of the wave-surface, at

which it is touched by the wave (44).

Squaring and adding equations (47), we obtain

2+ 2 si = tf
F*

f
/ l

y / m
co

2

(la
2

ft)
2
/ U2

<

F*= <* + -* (48),

whence, writing a? + y- + zz = a2
, equations (47) become

x col y com z con . .

"^2 2> 2 Z,2~~"A2 2
"~

2 ^ = ~
^ 2 "('*")>

o-
2 -a2

and multiplying these equations by equations (47) respectively and adding
we have finally

;- tft i?"* / /-' /*/-a v * /(/. in
I f

I _^ . __ f.\"

^ co*/ \b< co*/ \c
2

= 1 (50),

the equation of the wave-surface.

129. Let X, ^ v be the direction-cosines of the ray cr, then

x = X<7, y = /ACT, z = vcr,
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and introducing the direction-cosines of the polarisation-vector from (23),

equations (47) become
X<r = lea

........................... (51).

va = na> F<y/o) )

Eliminating cr, w, F between these equations we have

X, I
,

a.
! = 0,

M, m, /3

v , n, 7

which expresses that the ray, the wave-normal and the corresponding polari-

sation-vector are in one plane.

Consider now the normal to the ellipsoid of polarisation at the point in

which the polarisation-vector meets it. This line is called " the reciprocal

line
"
and if e, f, g be its direction-cosines

.L-ll * -J_ ,J- (52)-
/-- -- ...... I O I.

a?ct 62
/3 c

2
v/a

' *

Hence using the suffixes (1), (2) to distinguish between the two waves

propagated in a given direction

ei*2 +/i& + #172
= 0, e^ +fd3i + #27!

=
0,

or the reciprocal line is in the same plane as the ray and the wave-normal.

Also from (51) and (52) we have

e\ +ffjL + gv = (a?al + b*0m + c*y)/<r
a -

(a
2a2 + &" + c

2
7

2

) F/(o-
2
<w

2
)

=

from (19) and (25) ;
thus the reciprocal line is perpendicular to the ray.

We may therefore extend the proposition respecting the ellipsoid of

polarisation as follows* :

The propagational speed of a plane wave in a crystal is given by the

reciprocal of one of the semi-axes of the diametral section of the ellipsoid

made by a plane parallel to that of the wave : the polarisation-vector of the

wave is in the direction of that axis : the corresponding ray is parallel to the

line of intersection of the tangent plane at the extremity of the axis and the

plane containing the polarisation-vector and the wave-normal.

130. The angle between the ray and the wave-normal is given by

tan (NS) = \/<r
2 - o)

2

/
= F/a

2
.

Hence we have from (37), (38) in the case of the quicker wave

tan (NSJ = ^~ sin (x - %0 sin
^

..................(53),

*
Beer, Hohere Optik, 2nd ed. p. 319. Von Lang, Wien. Ber. XLIII. (2) 627 (1861).
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and for the slower wave

209

tan (NS,) = sin (X + *') cos .(54),

where %, ^' are the angles between the normal and the optic axes, and i is

the angle between the planes through the normal and the optic axes.

In order to interpret these results, let a sphere be described round the

origin as centre, and let the axes of symmetry of the crystal meet its surface

in the points X, Y, Z and let the optic axes and the wave-normal intersect it

in the points A, B and N. Then by 124, the polarisation-vector of the

quicker wave lies in the central plane bisecting the exterior angle between

AN and BN and by 129 the corresponding ray is in the same plane: the

polarisation-vector and the ray of the slower wave are in the plane of the

great circle bisecting the interior angle between these arcs.

Considering now the cases in which the normal is in one of the planes of

symmetry, we see that when it is in the plane of YZ, Si coincides with N and $2

is between N and Z
;
when it is in the plane of XY, S1 is between N and F

and $2 coincides with N; finally in the case of the plane of XZ, when the

normal is within the angle A OB, Si is between N and Z and S2 and N are

coincident, but when the normal is without this angle, Si and N coincide, and

$2 is between N and Z.

Collecting these results on the surface of the sphere, we see from con-

tinuity that $2 must be within the angle ANB and Si must lie without the

angle ANB', B' being the point on the sphere diametrically opposite to B*.

Neumann, VorL iiber theor. Optik, p. 193.

W. 14
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131. The above method of determining the ray that corresponds to a

given wave fails, when the wave-normal is in the direction of one of the optic

axes, for the angle ANB loses its meaning when N coincides with A or B.

Suppose now that the point N, starting from some position other than A
or B, moves along the great circle NA, till it comes to A

;
then in the limit

when it reaches A, we have &>j
= ft>2

= &, % = 0, ^' = 2H and i is the angle

BAN', so that the formulae (53) and (54) become

tanASl
= V(a

2 -62
)(6

2 -c2
)

tan AS? =
- c2

)

Sm
2'

cos

$ being on the great circle bisecting the angle N'AX and outside this angle
and $2 being on the great circle bisecting the angle N'AZ and within the

angle. Hence calling K the angle ZAS, we may include these formulae in the

single expression

\/(a
2 -&2

)(&
2 -c2

)- i cos* .....................(55).
)crta,n.AS=

But this result is independent of the particular path along which we have

supposed N to travel and the same reasoning applies to all great circles

through A and it hence follows that to the single wave-normal OA there

correspond an infinite number of rays forming the generating lines of a cone.

Now in 128 we have found that the coordinates of the extremity of a



131] Rays corresponding to an Optic Axis 211

ray are connected with the speed of the corresponding wave and with the

direction-cosines of its normal by the relations

so lea y may z nco

<r
a -62

=
<u

2 -62 '

o-
2 -a2 ,2>

0.2 _

Fig. 30.

Writing the second of these relations in the form

y =
>

(
i
z rf

- 62 ra \a
2 - &>

2
C2 - 2/ '

we see at once that the expression becomes indeterminate when the wave-

normal coincides with the optic axis, since ra and Z
2

/(a
2

<w
2
) 4- w2

/(c
2

&>
2
)

then vanish independently of one another. Consequently in this case the

coordinates of the extremity of the ray have only to satisfy the two conditions

x I b b

o-2-a2 62 -

2 n b

V(a
2 -62

)(a
2 -c2

)'

6

0-2 _

and thus the extremities of the rays corresponding to the plane wave perpen-

dicular to the optic axis lie on the intersection of the spheres

.(56),

and .(57),

and the wave touches the wave-surface along a circle in the plane

a2 -62

(58).

142
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The equation of the cone of rays is found by combining (58) with (56) or

(57) so as to form an homogeneous equation of the second degree, and we

thus obtain

Va2 -
tf + y* + z* +

j
'a? x + V&2 - c2 z) x

a2
/ /a

2 - 62

1-2 ( \l 2 2
*"

or a2
(6

2 - c
2
) a? + 62

(a
2- c

2

) y
2 + c2 (a

2 - 62
) ^

=
(a

2 + c
2
) \/(a

2 - 62

)(6
2 - c

2

)
a* (59).

The cone is symmetrical with respect to the plane of xz and its angular

opening 8 is found by writing K = in (55), which gives

tan 8 = V(a
2 - 62

)(6
2 - c

2

)/6
2

(60).

132. The fact that a plane perpendicular to the optic axis at its

extremity touches the wave-surface in an infinite number of points consti-

tuting a circle, so that corresponding to a single wave-direction there are an

infinite number of rays lying on a cone, occasions what is known as internal

conical refraction.

In order to investigate the characteristics of this phenomenon, let us con-

sider the simple case, in which a cylindrical pencil of rays, of small radius r,

is incident normally on a plate of a biaxal crystal cut perpendicularly to one

of the optic axes of the crystal.

Fig. 31.

Round the point in which the axis of the pencil meets the plate,

describe the wave-surface within the plate and draw a tangent plane to it

parallel to the faces of the plate : this will touch the wave-surface along a
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circle and the lines joining with the points of this circle will be the axes of

refracted cylinders of light, that are determined by the illuminated portion
of the first surface of the plate. The incident pencil is thus divided into an

infinite number of diverging streams, the axes of which meet the second

surface of the plate in a circle ASC, passing through the point in which the

normal OA meets the surface and having its centre Q in the plane of the

optic axes. On emergence these streams resume their primitive direction,

and apart from loss of light due to refraction, the appearance on a screen

parallel to the plate will be the same as on the second surface of the plate

itself.

If AC be the diameter of the circle ASC, the angle AOC is given by

tan A OC = V(a
2 - 62

)(6
2 - c2)^,

and if D be the thickness of the plate, the radius of the circle is

R = (D/2) tan A OC = D V(a
2 - 62

)(6
2 - c

2
)/(26

2

).

If R > r we have on the second face of the plate a ring of light bounded by
concentric circles of radii R + r and R r; if R = r the central dark patch

just vanishes
;
if R < r, there is a luminous circle, the inner portion of which

of radius r R is due to the overlapping of the refracted streams.

Suppose that the incident light is plane polarised, and let us determine

the intensity and the polarisation at a point on the second face of the plate.

Let tt be the direction of the polarisation-vector of the incident stream

and let a be the amplitude of its vibrations. Draw As perpendicular to tt,

meeting the circle ASC in the point s and dx being an element of an arc of

unit radius, divide the circumference of the circle into elementary arcs ss',

s's", ..., corresponding to dx.

Now the incident stream may be regarded as the superposition of ir/dx

identical elementary streams, and these may be replaced by 2,7r/dx streams

with their polarisation-vectors in the directions As, As' ... and the per-

pendicular directions A a, Aa' .... On entry into the plate each of these

components will assume a direction corresponding to that of its polarisation-

vector : thus the stream with its polarisation-vector parallel to Ab will meet

the second face in a circle with its centre at b, and the amplitude of the

vibrations in this stream is

(adx/7r) cos bit = (adx/ir) sin (S/2) (61),

where 8 is the angle sQb.

Consider a point p on the illuminated portion of the face : the light at p
is due to a ray of each of the streams, the axes of which intersect the arc SiS2 ,

where s1 and s2 are the points in which ASC is cut by a circle described round

p as centre with radius r.
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Let Qp cut ASC in the point n and let pQs^ =pQs2
=

<j>, sQn = 8. Divide

the angle <p into elements of magnitude dx, then the azimuths of the cor-

responding points of the arc s2$i measured from sQ are

o + 9> o + (p
~~

dx, .
,

o 9 + dx, o 9,

and hence from (61) the amplitudes of the vibrations in the streams that

contribute to the illumination of p are

adx . 8 + 9 adx . 8 + <j>
dx adx . 8

(f>
+ dx adx . 8

and the azimuths of the corresponding polarisation-vectors measured from

As are

o + 9 o + (b dx o ~~ 9 + dx o <p

2 ' 2 > " *
i o ' 2

Hence regarding the illumination at p as the effect of two streams with

their polarisation-vectors parallel to As and A a- respectively, we have for the

amplitude of the vibrations of the first

,, a f* . 8+x 8 + x, a
, * //jovY= I sin cos ^ dx = - sin <p sin o (62),

TT J -4,
Z & IT

and for the amplitude of the vibrations of the second

.p, a[ <t> .8 +x.8 + x, a ,, .
<.\ /\X =

I sin ^ sin dx = (d> sin 9 cos o) . . .(63).
7T J -4,

Z Z 7T

Whence the intensity at the point p is

/= Z2 + F2 = -
2 (9

2-29 sin 9 cos 8 + sina 9) (64),
7T

and the polarisation-vector at the point is inclined at an angle i/r
to that of

the initial stream of light, where

sin 9 sin 8
tanilr = - ^ s (65).

sin cos 8

Calling p the distance Qp, the angle is given by

In interpreting these results, it is necessary to consider separately the

three cases mentioned above.

(1) If M > r, so that there is a ring of light with a dark centre, the value

of
(j>,

which remains constant over each circle concentric with the ring,

is equal to zero at the edges of the ring, to which correspond the radii Rr,
and attains its maximum value on the circle of radius V.R2 r2

.

Along one and the same radius 8 is constant, and the intensity changes
in the same manner as <p : the polarisation-vector is at first inclined at an
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angle ?r/2 S/2 to that of the incident light ;
this angle increases to a maxi-

mum as we pass outwards and then decreases to its former value at the outer

edge of the ring.

On one and the same circle < is constant and the intensity increases from

the minimum value a2

(</>
sin 0)

2

/?r
2 at points on the radius Qs to the maxi-

mum value a2
(< + sin 0)

2
/7r

2 at the diametrically opposite points : the

polarisation-vector has the same direction as that of the incident stream

at points on the diameter sQ<r, and as we move round a given circle from one

of these points, its deviation from this direction increases to a maximum and

then decreases again, the deviations being equal and opposite at two points

on the circle equidistant from the point in which Qs cuts it.

(2) When R = r, the central dark patch disappears and the centre is the

intersection of the edges of all the elementary circles of light. At this point

(fr
=

TT, and on passing along a radius
<f> suddenly changes to Tr/2 and then

decreases gradually to the value zero at the limit of the spot. Hence at the

centre the intensity and the polarisation are the same as those of the incident

light: they then change suddenly and thence alter gradually until at the

outer edge the intensity becomes zero and the plane of polarisation is

inclined at an angle 7r/2 8/2 to its primitive position.

(3) If R < r, the elementary circles overlap on a circle of radius i R.

For all points within this circle < =
TT, and on passing outwards

<j>
decreases

gradually to the value zero at the limit of the spot. Thus the changes in

the intensity and the polarisation are the same as in the former case, except

that on crossing the edge of the central circle there is no sudden variation.

Taking now the case in which the primitive stream is unpolarised, we

may regard the incident light as resulting from the superposition of two

independent streams of equal intensity with their polarisation-vectors parallel

and perpendicular respectively to AC. If I be the intensity of the un-

polarised stream, then 1/2 is the intensity of each of the polarised streams,

and that with its polarisation-vector parallel to AC will give at the pointy
a stream of intensity / sin2 sin 2

S/(27r
2
), where S is the angle AQp, with its

polarisation-vector perpendicular to AC, together with a stream of intensity

/(< sin
<j>

cos S)
2

/(2-7T
2
) with its polarisation-vector parallel to AC, On the

other hand the second component of the incident light gives at the same

point streams of intensities I((f> + sin < cos S)
2

/(27r
2
) and 7 sin2

<f>
sin2

S/^Tr
2
)

with their polarisation-vectors perpendicular and parallel to AC respectively.

Hence the combined effect at p is a stream of intensity

<r 2 (<
2+ sin2

<f>
+ 20 sin $ cos 8)

=
-^ \

(<f>
- sin <)

2 + 40 sin cos2 J ,

with its polarisation- vector perpendicular to AC, and a stream of intensity

2 (0
2 + sin2 - 20 sin

<f>
cos 8)

= =-
2 j(0

- sin 0)
2 + 40 sin sin2

^
!
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with its polarisation-vector parallel to AC. These are equivalent to a stream

of common light of intensity / ($ sin ffi/Tr
3

together with a stream of

polarised light of intensity 2/< sin </7r
2 with its polarisation-vector inclined

at an angle of ?r/2 S/2 to the direction AC. The total intensity is

and the measure of the polarisation is

sn < _ / <> sn~
</>

2 + sin2

Applying these results to the three cases already considered, we have

(1) When R>r, the same intensity at all points on a circle concentric

with the ring : on the edges the intensity is zero and it attains its maximum
on a circle lying within the circle ASC. The light is partially plane polarised ;

the polarisation is the same for all points on a given radius, becoming more

complete as the edges of the ring are approached, and the polarisation-vector

is parallel to the line joining A to the point in which the radius cuts the

circle ASC.

(2) When R=r, the inner limit of the ring contracts to a point, at

which the light is unpolarised and the intensity that of the incident light.

Passing outwards from the centre along a radius, there is a sudden change in

intensity and the light becomes partially polarised and thence the intensity

decreases and the measure of the polarisation increases as the edge of the

spot is approached.

(3) When R < r, there is a circle of common light of radius r R, over

which the intensity is that of the incident light, and on moving thence to the

edge of the spot the intensity gradually decreases and the measure of the

polarisation increases*.

133. Returning to equations (49), we have

\<r la) mar ma) vcr nco

o-2_ a2 a2-w2 ' a*-b* 62 -w2 '

a2 - c2 c
2 -a>2

and from (23) and (52)

I a. a-o) m ad) n &&

e,f, g being the direction-cosines of the reciprocal line, and we thus obtain

l 1\ v

H being written for

*
Beer, Pogg. Ann. LXXXV. 67 (1852) ; Hohere Optik, 2nd ed. p. 346.
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These equations connecting the ray-slowness and the directions of the ray
and of the reciprocal line are of precisely the same form as equations (23)

connecting the wave-velocity with the directions of the wave-normal and of

the polarisation-vector, and we pass from the one set of equations to the other

by writing
a~\ b~l

, cr1
; X, /*, v

;
H~l a-1

; e, f, g,

for a, 6, c
; I, m, n

;
F

;
&>

; a, /3, 7,

and (e,f, g) stand in exactly the same relation to (A,, /*, v) as do (a, ft, 7) to

{I, m, n) 129
;
whence it follows that all the propositions deduced from (23)

may be extended by this change of letters. In this extension

the direction of the wave-normal becomes the direction of the ray,

the wave-velocity 'becomes the ray-slowness,

the polarisation-vector becomes the reciprocal line,

the polarisation ellipsoid becomes the reciprocal ellipsoid,

of which the equation is

x2
7/

2 z*--h -I-- =1
a2+ 62

c
2 '

with the following properties :

The propagational speed along a ray in a given direction is equal to one

of the semi-axes of the diametral section of the ellipsoid perpendicular to the

ray ;
the plane through this axis and the ray is the corresponding plane of

the polarisation-vector ;
the line of intersection of this plane and the tangent

plane to the ellipsoid at the end of the said axis is parallel to the correspond-

ing wave-normal*.

134. Corresponding to the optic axes or directions of single wave-velocity,

we have two directions of single ray-velocity or ray-axes, the direction-cosines

of which are

a2 -62

The ray-axes are thus in the plane of optical symmetry xz and in the

directions of the radii-vectores to the points of intersection of the ellipse and

circle, that are the section of the wave-surface made by this plane.

Also we obtain at once that the planes of polarisation of the waves cor-

responding to the two rays in a given direction bisect the angles between the

planes through this direction and the ray-axes, and that, if
ty, i/r'

be the

angles that the direction makes with the ray-axes, the two ray-velocities are

given by
<rr

2 = i (-2 + c-2

) + (a-
2 - c-2

) cos (^ - ^')
j

0-2
-2 =

(a
-2 + C-2) -f (a

~2 _ C-2) cog (^ + ^') ]

'

*
Beer, Hohere Optik, 2nd ed. p. 319. Von Lang, loc. cit.
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whence

Further
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or2 - o-2

~2 = (or
2 - (T2

) sin -^ sin
i|r'

.....

r1 = i (a~
2 - or2

) sin
(A/T

-
T/T')

sin

[CH. XI

..(71).

(72),

1 = sn 4- cos

where j is the angle between the planes through the ray and the ray-axes in

which the axis of z lies.

135. The angle between the ray and the wave-normal is given by

tan (SN) = Fjtf = -
<r^H,

\Jv
~~

C/ / , /\

whence tan (SNJ =

tan (SN2)
=

1-2 _ /.-a
.(73),

sin ( + cos

where, if 0/3 be the angle between the ray-axes 0, 0/3 in which the axis of

z lies, -ZV2 is the plane bisecting the angle cc$/3 and without this angle, while

NI is the plane bisecting the angle a$/3' (0/3' being the prolongation of ySO)

and within the angle.

Thus the wave-normals corresponding to a given direction of a ray are

completely determined.

136. This method, as in the case of the converse proposition of 130,

becomes indeterminate, when the ray coincides in direction with either of the

ray-axes, so that the angle ctS/3, on which it depends, is without meaning.

Fig. 32.
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Proceeding as in the analogous case of 131, it is seen at once that in

this case to the single ray in the direction of the ray-axis there correspond an
infinite number of wave-normals forming a cone, the equation of which may
be written

02 _ a 2

tan (aN) = .
2

sin 22 . cos K,

where 22 is the angle aOfi and * is the angle that the plane aON makes
with the plane of xz.

The section of this cone by a plane perpendicular to the ray-axis is a

circle, for if aNy be its section by the said plane, 7 lying in the plane of xz,

we have

ay/b = tan (ay)
=

~
sin 22,

_
and aNjb = tan (odV) = sin 22 . cos K

;

.'. aN/ay = cos K,

whenee the angle aNy is a right-angle, and the locus of N is a circle.

Now the coordinates f, 77, of the foot of the perpendicular from the

centre on the tangent plane to the wave-surface at the point in which it is

met by the ray cr with the direction-cosines \, /*, v satisfy the conditions

Xcr 77 /ACT f vcr

w2 - a2
=

o-
2 - a2 '

a>
2 - 62

=
o-

2 - 62 '

o>
2 - c

2
=

<7
2 - c

2 '

and writing the second of these relations in the form

77 ,
/ a2X2 cV \

o-
2 - cV

'

we see that it becomes indeterminate when the given ray coincides with the

ray-axis, as
/u,

and a2X2

/(o-
2 a2

) + cV/(o-
2 c2

) then vanish independently.

Hence in this case
, 77, have only to satisfy the two equations

t- -\ r. * .. k

and
<8_aa 62 -a2 2 -c2 62 -c2 '

and thus the feet of the perpendiculars from the centre on the tangent planes

to the wave-surface at the extremity of the ray-axis lie on the spheres

.(75),

a

and thus their locus is a circle in the plane

- c2
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and this is the plane perpendicular to the plane of the ray-axes through the

tangent at the end of the ray-axis to the elliptic section of the wave-surface

made by the plane of xz.

Combining equation (76) with one of the equations (75) so as to form an

homogeneous equation of the second degree, we obtain as the equation of the

cone of wave-normals

F(l 77,
= (& - c

2

) f
2 + (a

2 - c
2

) Tf + (a
2 - 62

) ?

- -

c2

V(a
3 - 62) (6

2 - c2)
= (77).

Q/C

We may now obtain the equation of the tangent cone at the singular

point of the wave-surface, for its generating lines pass through the extremity

of the ray-axis, the coordinates of which are

x = c V(a
2- 62

)/(a
2- c

2

) , y = 0, z = a V(6
2 - c

2

)/(a
2 - c2),

and are perpendicular to the tangent planes of the cone of wave-normals.

Thus the equations of any one of them are

x ~ x = y _ *_-_*> _ 1 (8av)
3F/d dF/dy

~
dF/dt;

~
p

^ y>

whence

2 (6
2 - c

2

)
- ^^

\/(a
2 -62

)(6
2 -c2

)
=

etc

2(a
2 -c2

)r,
=

^j2 I y2

etc

which give

a2 - 62

)(6
2 - c

2

)^ + 2 (a
2 - 62

) ?=

ac v/a2 - 62
{2ac Va

2 - 62
(a?
-

) -I- (a
2 + c___

(a
2 - 62

) (6
2 - c

2

) (c
2 - a2

) y/2_______
ac V62 - c2 {(a

2 + c
2

) Va2 - 6s
(a?
- # ) + 2ac V62 - c2

(^
- 2

)}

'

Substituting these values of
, jy, f in (77) we obtain on reduction

a2c
2
(a

2 - 62) (a?
- # )

2 + J (6
s - c

2

) (c
2 - a2

) (a
2 - 62

) y* + a2c2

(6
2 - c

2

) (z
-

ztf

+ ac (a
2 + c

2

) V(a
2 - 62

) (6
2 - c2) (x

- x ) (z
- * )

= ...... (78),

which is the equation of the tangent cone.

137. The existence of a conoidal cusp on the wave-surface at each of the

four points, in which it is cut by the ray-axes, occasions the phenomena
known as external conical refraction

;
for since at these points there are an
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infinite number of tangent planes, forming a tangent cone of the second

degree, it follows at once from Huygens' construction that a single ray within

a biaxal crystal in the direction of one of the ray-axes will, on emergence into

an isotropic medium, be divided into an infinite number of rays lying on the

surface of a cone.

Let us take the case in which the surface of the crystal is perpendicular

to the ray-axis and determine the equation of the cone of external rays. Let

Oct. represent the normal to the plate, ON any wave-normal within the crystal

corresponding to the ray-axis, ON' the corresponding emergent wave-normal,

and suppose a, N, N' to lie in a plane perpendicular to Oa. Then the locus

of N is, as we have seen, a circle with its diameter aP in the plane of the

ray-axes.

Fig. 33.

Now by Huygens' principle ON, OjV' and Oa are in one plane and

sin aON : sin aON' :: o> : O ..................... (79),

O being the propagational speed of light in the isotropic medium and &> the

wave-velocity in the crystal in the direction ON. Also if K be the angle that

the plane zON makes with the plane of the ray-axes

= tan MN = in 22 .sn cos ,

whence
abc

ft) =
Va2

c
2 + (a

2 - 62

) (o
2 - c

2

) cos
2 K

Take the surface of the plate as the plane of asy,
the plane of the ray-axes as
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that of xz, the origin being at : then the coordinates of N being x, y, z and

p being written for \/a? + y*, we have

p = aP cos K = z tan aOP . cos K = z V(a
2 - 6a

) (6
2 - c2

) cos
2

*/ac. . .(80).

But p/
= tan a.ON, hence a;', y

7

,
/ being the coordinates of N'

= sn a=- sn
a*c* + (a

2 - &2

) (6
2 - c2) cos

2 * V2 + y'- + /'
'

and from (80)

II2

(a
2 - V) (6

2 - c
2

) cos
2 K = a262

c
2

(x'
2 + y'

z
)l(x'~ + y'

2 + /),

and since cos K = #'/VV
2 + y'

2
,
we obtain

a"6V (a;'
2 + y'

2

)
2 = ^2

(
2 - &2

) (&
2 - c

2

) #'
2

(#'
2 + y'

2 + /2
) (81).

On account of the weak double refraction of all biaxal crystals, this equation

takes approximately the form*

abc (a/
2 + y'

2

)
= O V(a

2 - 62) (6
2 - c

2
) a?V (82),

whence it follows that the locus of N' is approximately a circle passing

through a with the diameter aP' in the plane of the ray-axes of the crystal.

If now the stream of light within the crystal be limited by a circular

cylinder having its axis in the direction of a ray-axis, the axes of the

emergent streams will form the generating lines of the cone just obtained,

and the section of any one of these streams by a plane parallel to the face of

the crystal will be a circle equal to the section of the incident stream. The

emergent light will therefore give a bright ring on a screen parallel to the

face of the crystal and at a sufficient distance from it
;
but as the screen is

moved towards the crystal, the ring will contract retaining the same width,

until the central dark spot vanishes, and on a further approach of the screen

the bright spot contracts, until at the surface it becomes equal to the section

of the stream within the crystal.

The intensity and the polarisation at any point of the bright ring or spot

may be calculated in the same manner as in the case of internal conical

refraction, since the polarisation-vector for any part of one of the emergent
streams is in the plane containing the axis of the stream and the normal Oa.

to the face of the crystal. That this is so, is clear at once from the fact that

for any one of the waves corresponding to the ray-axis, the polarisation-

vector is in the plane through the ray-axis perpendicular to the wave-front,

that is the plane of incidence of the wavef.

* This equation is obtained at once as follows : equation (79) gives approximately

aN : aN' :: u : O :: b : fl or p/p' = 6/D,

whence substituting for p from (80), equation (82) is at once obtained,

t Beer, Hohere Optik, 2nd ed. p. 362.
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138. It is to Sir William Hamilton that we owe the discovery of the

conical refractions in biaxal crystals, as it was in the course of his researches

on Fresnel's laws of double refraction by means of the surface of wave-

slowness, that he found singularities of the wave-surface, that led him to

anticipate the existence of these phenomena*. At his instigation Llovdf
undertook an experimental investigation of these cases of refraction, and

entirely established the accuracy of the conclusions.

This confirmation of Hamilton's deductions was naturally regarded as

a decisive proof of the general correctness of Fresnel's form of the wave-

surface, but Stokes^ has pointed out that the phenomena of conical refraction

are not of themselves competent to decide between different theories that

lead to Fresnel's surface as a near approximation.

Internal conical refraction depends upon the existence of a tangent plane

touching the wave-surface along a plane curve. Let us then consider the

result of supposing that the nearest approach to a plane curve of contact

is a twisted curve. Let a plane be drawn touching the part where the

surface bends over, at two points on opposite sides of the rim, and let this

plane be moved parallel to itself towards the centre, after having been slightly

tilted about one of the points of contact. The section of the wave-surface

made by this plane will be of the general form represented in the following

figures, from which we see that in four positions, as shown in a, b, d, e, the

abed e

Fig. 34.

plane will touch the surface in one point, so that in the direction considered

there will be four possible wave-velocities. On the other hand whatever

theory of double refraction may be adopted, we are led to assign to a wave in

a given direction three possible directions of the polarisation-vector, to each

of which corresponds a different waw-velocity : but if these three parallel

waves can be propagated, a fourth in the same direction is impossible, for

replacing its polarisation-vector by its components in the three given directions,

we should have three pairs of parallel waves and in each pair the waves would

travel with different speeds though their polarisation -vectors were coincident.

Thus the number of possible waves in a given direction is limited to three, or

excluding waves with longitudinal vectors, to at most two. It follows then

that a tangent plane with a plane curve of contact is a necessary property of

the wave-surface and not a distinctive feature of Fresnel's form.

* Trans. Roy. Irish Acad. xvn. 134 (1832).

t Ibid. xvn. 145 (1833) ; Papers on Physical Science, p. 1. J B. A. Report, 1862, p. 270.
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This is not the case with the conoidal cusp on Fresnel's surface, on which

the phenomenon of external conical refraction depends : but since the wave-

surface must have approximately the same form as Fresnel's surface, and

since it also has plane curves of contact with a tangent plane, the outer sheet

will pass into the inner by what is very nearly a conoidal cusp, and hence

taking into account the impossibility of reducing indefinitely the pencil of

rays with which observations are made, we see that we should obtain a

phenomenon that would be practically indistinguishable from true conical

refraction.



CHAPTER XII.

DETERMINATION OF THE PRINCIPAL WAVE-VELOCITIES.

139. FROM an optical point of view, one of the most important practical

questions connected with crystals is the measurement of the principal wave-

velocities, as on these quantities the doubly refracting properties of the

medium depend, and we will now pass in review the methods by which these

determinations may be made, taking the three cases in which we have at our

disposal (1) a plate, (2) a prism and (3) a single reflecting surface of the

crystal.

Foci of lines seen through a crystalline plate.

140. In 1767 De Chaulnes* proposed the well-known method of deter-

mining the refractive index of a plate from measurements of its real and

apparent thickness by means of a microscope. When the plate is isotropic,

it may be easily shown that the refractive index is the ratio of these

quantities : with crystalline plates, however, the case .is not so simple, but

when the object viewed through the plate consists of systems of lines at

right-angles to one another, certain characteristic phenomena are observed,

that serve to differentiate between singly refracting media, uniaxal and biaxal

crystals, and that in general afford a method of deducing the principal indices

of the plate -f-.

Consider a small pencil of rays emanating from a point on the lower

surface of the plate, in such a direction that its axis on emergence is per-

pendicular to the plate. Round as centre describe a half wave-surface and

considering only a single sheet of this surface, let its dimensions be such that

the upper face of the plate touches this sheet at the point E : then by

Huygeus' construction OE will be the axis of the pencil considered.

Let an adjacent ray OPQ cut the wave-surface in P and the face of the

plate in Q, then the form of the wave on emergence will by Huygens'

* Mem. de VAcad. Roy. des Sci. Paris, 1767, p. 431.

t Stokes, Proc. R. S. xxvi. 386 (1877).

w. 15
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principle depend upon the time that the light requires to traverse PQ
regarded as a function of the coordinates that determine the position of the

point Q on the surface of the plate.

Fig. 35.

If QE be a small quantity of the first order, the retardation will be

a small quantity of the second order, and it is only to this order that we

require the retardation in determining the foci of the emergent pencil We
may then substitute for the retardation any quantity that bears to it a ratio

that is ultimately one of equality. Now if QM be the normal to the sheet

of the wave-surface drawn from the point Q, the wave-velocity in the

direction QM will differ from that in a direction perpendicular to the plate

by a small quantity of the first order, and the distance QM is a small quantity
of the second order: hence we may neglect the variation of the wave-

velocity and may regard the medium as if it were a singly refracting one, in

which a wave is travelling that has already by some means acquired the

form DBF.

Through the normal HE draw the two rectangular planes of principal

curvature of the surface and let G, C' be the centres of curvature, p, p the

radii of curvature on the same scale as that in which EH represents the

wave-velocity &> in the direction EH. Then by what precedes, we may regard
the rays in that principal plane of curvature, the normals in which intersect

in C, as diverging from C in an isotropic medium with refractive index H/to

and these will on emergence diverge from a focus distant CE(a>/l) below the

surface of the plate. But if r be the thickness of the plate, CE=pr/co:
hence the distance of the focus is prjl and the apparent refractive index will

be fl/p. In the same way H//O' will be the apparent index in the perpendicular

plane.
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In each case the image of the point will be seen as a short line

perpendicular to the plane of principal curvature, and hence in order that

one or other of two rectangular systems of lines may be seen distinctly

through the plate at a certain focal adjustment of the microscope, the lines

must be perpendicular respectively to the two principal planes of curvature.

Hence taking into account the second sheet of the wave-surface, it follows

that with biaxal plates there will be in general four focal distances at which

lines properly orientated will be seen distinctly, and for each>of the polarised

streams the two necessary directions of the lines will be at right-angles to

each other.

In the case of uniaxal plates, the focal distances are reduced to three,

since one sheet of the wave-surface is spherical, and the image corresponding

to the ordinary stream is free from astigmatism.

141. It may be shown* that, if &>! and &>2 be the wave-velocities in

a direction normal to the plate, p1} p/ and p2 , p,' the principal radii of

curvature of the corresponding sheets of the wave-surface at the points

where they are touched by tangent planes parallel to the faces of the plate,

then

(p l + p/) oh
3 - o> 2

2

)
=

co!
4
(a

2 + If- + c
2 - 2<w2

2

)
- a262

c
2

i

(pi
~
PiJ< (*>i

2 -
2
2

)
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2
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2
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2
) (c
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142. In the case of an uniaxal plate, wl
= a and b a

;
hence

and

(p2 + Pa') &>2
3 = c

2 + a2
), (p2

-
p3 w2

3 = c2 (to./
- a2

).

. . p2
= c

2

/&)2 , p2

' = a2
c
2

/<o2
8
'

(a) If the plate be perpendicular to the optic axis, &>2
= a and

In this case then there will be only two images, which are free from

astigmatism and indistinguishable directly by their polarisation, and the

apparent indices of the plate are
/JLO and /vV^o-

* See Appendix in. 8. Hecht, N. Jahrb. fur Min. Beil.-Bd. vi. 265 (1889).
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(6) If the plate be parallel to the optic axis, &>2 = c, and

P
=

c, pt
=

a?/c.

In this case there are three focal adjustments of the microscope, at which

one or other or both systems of lines are seen distinctly the one for the

ordinary pencil polarised in the axial plane, at which both sets of lines are

in focus together, giving the index
/j, ;

the other two for the extraordinary

pencil polarised in the equatorial plane, at the one lines in that plane are

seen distinctly and this gives an apparent index /i
2
//*e> a^ ^ne other lines in

the axial plane are brought into focus and the index obtained is
/j,e .

(c) In the general case, calling 6 the angle between the optic axis and

the normal to the plate, we have

eo2
2 = & cos2 + c

2 sin2 6
;

and the apparent index obtained by focussing a line in the principal plane is

flc~2

(a? cos
2 d + c

2 sin2
6)*,

and that given by observing a line perpendicular to the principal plane is

flo-'c-8
(a

2 cos2 6 + c2 sin2
0)$.

As increases from to 90, this latter index changes from /ze
2

//A to

^o
2

//*e>
and therefore for an intermediate value of the index obtained will

be
fji

. This value is given by

tan2 = Mo->/(/C + /*/).

When the plate has this orientation, there are only two focal adjustments

at which a distinct image is seen. This case is however easily distinguished

from that of a plate perpendicular to the optic axis, because at one of the

focal distances only lines parallel to the principal plane are brought into

focus and this image is polarised in a plane perpendicular to the principal

plane.

143. Let us now suppose that we have a biaxal plate, the faces of which

are parallel to one of the axes of symmetry of the crystal and therefore

perpendicular to one of the planes of symmetry.

Then either pl
= 6 or p2

= 0, and taking pl
= 0, the equations (1) become

(pi + pi) *>i
3
(< -

2
2

)
=

i

4O2 + & + c
2 - 2&>2

2
)
- a262

c
2

)

(pi
-

Pi) i
3
(<i

2 - a>2
2
)
= a262

c
2 -< (a

2 + 62 + c
2 -

20)^)}

which give
6>a

4
(a

2 + 62 + c2 - o)!
2 - a>2

2
)
- a262c

2

Pl
=

! and o, = - - -
(5),

a>i* (o>i &>2 )

and from (2) we obtain

(p. + P/)< 2
3
(< -

&>i
2

)
=

i

2 K4
(

2 + &2 + c
2 -

20JJ
2

)
- a262

c
2

} (6),

(p,
-

ps') wj
2
co,

3 - <)' =< {a
262

c
2 -< (a

2 + 62 + c
2 - 2a>2

2

)} (a>2
2 - <)

+ 26)2
2

(ft, 1

2

^2 -a)2
2

^1) (7).



142, 143] Biaxal Plates 229

But

o>i
2
2>2
-

*<? Pi
= 2&2

c
2 Oi2 -O + ohW (>2

2 -
i
2
) (

2 + &2 + c
2

) + &)!
2
ft>2

2 <V -O
=

(a>2
2 - m^) {(a

2 + b2 + c
2 - wj

2 - &)2
2

) fthW - a262
c2

}
......... (8),

and therefore (7) becomes

(pa
-

p.2') oh
a
o>2

8

(o>2
2 -

a)!
2
)
= a262

c2 (a)!
2 - 2o)2

2

) + ft)iX
4
(a

2 + 62 + c
2 -

2ft)!
2

). . .(9).

Hence from (6) and (9)

_ ftytds
2
(o

2 + 62 + c
2 -

2ft>!
a
)
- g

,a262c2

(a) If the plate be parallel to the mean axis of the ellipsoid of

polarisation, then

ft)l
=

b, 6>2
2 = a2 cos2 6 + c

2 sin2
0,

where 6 is the angle between the normal to the plate and the greatest axis.

In this case therefore

-b / =pi- , pi
-

2 _ a.) COS
2 + (5,

_
c2) sin

2

0j-

a2
(6

2 - a2
) cos

2 + c2 (6
2 - c2) sin

2

(a
2 cos2 + c2 sin2

0)* {(6
2 - a2

) cos
2 + (6

2 - c2) sin
2

0}
'

For light polarised in the principal plane, the apparent index is /i& when
a line perpendicular to that plane is brought into focus and fl/pi in the case

of focal adjustment for a line in that plane : for light polarised perpen-

dicularly to the principal plane the apparent index is O//32 or n/p2

'

according
as a line in or perpendicular to the principal plane is the object of

observation.

(b) The cases in which the plate is parallel to the greatest axis z and to

the least axis x of the ellipsoid of polarisation are obtained from the above

by changing a, b, c and x, y, z in cyclical order.

In each of the planes of symmetry xy and yz, the radii of curvature p2

and p2

'

at a point on the elliptic section of the wave-surface can become

equal, the position of these umbilics being determined in the first plane by

tan4 (NX) = b2

(c
2 - 62

)/{a
2
(c

2 - a2

)},

and in the second plane by

tan4 (NY) = c
2
(a

2 - c2)/{6
2
(a

2 - 62

)},

N denoting the perpendicular from the centre on the tangent plane at the

point.
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If the plate be perpendicular to the normal at one of the umbilics, one of

the polarised streams that it transmits will give images of both systems
of cross-lines distinct together, and in this respect it acts as a plate of an

uniaxal crystal cut in an arbitrary direction. The two cases may however be

readily distinguished, when the double refraction is sufficiently strong to give
a lateral separation of the two oppositely polarised images ;

for with an

uniaxal plate the plane of polarisation of the image free from astigmatism is

parallel to the plane of separation of the images, while with the biaxal plate

it is perpendicular to that direction : further on rotating the plate about its

normal, the image free from astigmatism will remain fixed in the case of the

uniaxal plate, while with the biaxal crystal any point of this image will

describe a small circle round its mean position.

144. When the plate is perpendicular to an axis of optical symmetry,

Pi
=

P<t
= and we have from (8)

ohX2

(a
2
i- 62 + c2 - ah

2 - &>2
2
)
= a262

c2 .

Hence equations (5) and (10) give
, a262

c2

= ft>2 ,

Thus if the plate be perpendicular to the least axis of the ellipsoid of

polarisation, x, tuj
=

6, eo2
=

c, and we have the following results : when the

line brought into focus is parallel to the mean axis y, the apparent indices

are /z& and //.a
2

//Ac ,
the planes of polarisation being zx and xy respectively; the

indices obtained by focussing on a line parallel to the greatest axis z are pe

and fAa/Pb, the planes of polarisation being in these cases xy and zx.

The other cases are obtained from this by changing x, y, z and a, b, c in

cyclical order.

Prisms*.

145. We have already in Chapter I. considered the question of the

passage of a stream of light through a prism from a general point of view

without any assumption respecting the form of the wave-surface within the

prism, and it is now only necessary to apply the results to the special cases,

in which the wave-surface has one of the forms discussed in the last chapter.

Let us first take the case of a prism made of an uniaxal crystal, of which

the crystallographic orientation is arbitrary but supposed to be known.

*
Stokes, Camb. and Dublin Math. J. i. 183 (1846): Math, and Phys. Papers, i. 148.

Senarmont, Nouv. Ann. de Math. xvl. 273 (1857). Von Lang, Wien. Ber. xxxin. 155, 577 (1858).

Liebisch, N. Jakrb. fur Min. (1886) i. 14; (1900) i. 57: Gott. Nachr. (1888) 197: Phys. Kryst.

pp. 376403. Born, N. Jahrb.filr.Min. Beil.-Bd. v. 1 (1887). Viola, Zeitschrift fur Kryst. und

Min. xxxn. 66, 545 (1900): Eend. Lincei (5) ix. [1] 196 (1900).
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Referring the prism to rectangular axes, such that the axis of is the

edge of the prism and the plane of bisects its angle, we may regard as

given the angle //, that the optic axis makes with the normal section and the

angle </>
that its projection on this section makes with the axis of

,
this

angle being measured towards the direction in which the light is travelling.

Fig. 36.

Suppose lines and planes, parallel to those that we have to consider, to be

drawn through the centre of a sphere of unit radius, and let the coordinate

axes meet the surface of the sphere in the points f, 77, and let the optic

axis and the normal to the wave within the prism cut it in the points A and

N respectively.

The surface of wave-quickness for the prism consists of a sphere of radius

a and an ovaloid with the equation

w2 = a2 cos2 6 + c2 sin2

(11),

where 6 is the angle between the wave-normal and the optic axis
;
and if %'

be the angle that the wave-normal makes with the plane of 77 and -fy
be the

angle that its projection on this plane makes with the axis of f, the spherical

triangle A%N gives

cos 6 = sin
yu,

sin ^' + cos p cos %' cos (ty </>) (12).

If now we measure the angle of the prism A, the deviation D produced

by it, the angle of incidence i and the angle % that the incident wave makes

with the edge of the prism, we have, 7,

sin (A/2) = sec % sin (D/2), cos i = sec % cos i

and ty and ^' are given by

where

A
tan -^

= cot jr-
cot

Z

tan2

x = tan2

% ((7
~2 cos2

-A

A + D \ , A+D9

C = cos
! A
COS 7;

^ + ^~2

Sn
= sin

tan ;

sin2 ty),

A+D A
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and finally to determine &> we have

oj
2 = Q2 sin2 x'/sin

2

%

In the case of the ordinary wave, the one principal wave-velocity is given
at once by a = a>

;
while from measurements with the extraordinary wave,

calculating 6 from equation (12), the second principal velocity is determined

from (11), or writing

cos = a cos 0/co .............................. (13),

by c = w sin /sin .............................. (14).

146. Passing now to the case in which the deviation is a minimum, we
have in the first place that the wave-velocity within the prism is expressed
in terms of the angles A, D , -fr, x' by the relation

t
2 sin2 V , tan2 V

7^,
=

.
= sm2V + cos2V-*

2 2 * 2

where 2M = Or2 + SQ

-2
,
2^ = (7

-2 - S ~2
,

and on the other hand &> must satisfy the equation of the surface of wave-

quickness, which may be written

/(,^>%') = .............................. (16),

whence eliminating w between (15) and (16), we obtain an equation

t,%') = .............................. (17),

and the minimum deviation being characterised by dD /d^r
=

0, we have in

this case dFd = 0.

Thus in the case of the ordinary wave with an uniaxal prism, we have

fl2

{sin
2

% + cos2

-% (M+N cos 2-^)}
= a2

,

and in the case of minimum deviation

whence
i|r
=

?r/2 and

. A + A/ -TUT
-

\r .

tan x *an X VM N = tan ^ sin ^ / sin
2i

I
i

and

A. \ A. -\- A
a2

/n
2 = sin2

x + cos2 y'(M-N} = sin2

%' + cos2

%' sin2 -= sin2 -= -

'2. \

AO being the minimum value of D .

In the case of the extraordinary wave, (17) becomes

n2

{sin
2

x + cos2x(M+N cos 2-^)}

c
2

(a
2 c2) {sin p sin % + cos /* cos x cos (^ ~ ^>)}

2 =
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and in the case of minimum deviation we have

O2 cos2

%' . N sin 2\Jr
-

(a
2 c2) {sin p sin x + cos p cos % cos

(\jr
-

<)}

cos n cos x sin
(>/r </>)

= ......(19).

It is clear however that with a prism of arbitrary orientation and in the

general case of oblique refraction, no result of practical utility will be

obtained, and we will therefore proceed to consider some special cases.

In the first place we will suppose that the incident waves are parallel to

the edge of the prism ;
then we have %'

= and

fl 2
(if+ N cos 2i/r)

- c
2 -

(a
2 - c2

) cos2
/* cos

2

(^ - <f>)
= ......(20),

H2 JVsin 2-/r -(a
2 - c

2
) cos

2
/i sin (^ - </>)

cos (-f -</>)= ...... (21),

whence

H2M sin 2i/r
- c2 sin 2i/r

-
(a

2 - c
2
) cos

2
/u,

cos (^ - <f>)
sin

(i/r + </>)
=

. . .(22),

and from (21) and (22)

{H
2
(Jlf+ JV)

- c2

}
sin 2^ = (a

2 - c
2

) cos
2

/z cos (^ - <) 2 cos < sin
i/r,

{fi
2 (M-N}- c2

)
sin 2>/r

= (a
2 - c

2

) cos
2 n cos (-^

-
0) 2 sin cos

>/r.

These equations give

(fl
2^-2 - c

2

) (n
2S -2 - c

2

) sin 2i/r
= (a

2 - c
2

)
2 cos4

p cos2

(-f
-

</>)
sin 2<

and

{II
2

((7
-2 sin2

(/>
+ /Sf

~2 cos2

<)
- c

2

}
sin 2>/r

= (a
2 - c

2

) cos
2 p cos2

(i/r
-
0) sin 2<,

whence

(H
2^- 2 - c

2
) (H

2 -2 - c
2

)
= (a

2 - c
2

) cos
2

/* {O
2

(0
-2 sin2

<^>
+ ~2 cos2

0)
- c

2

}

.........(23),

which determines the principal wave-velocity c from measurements of the

angle of the prism and the angle of minimum deviation of the extraordinary

wave, the other principal wave-velocity a having been determined. Equation

(23) is a quadratic in c2
,
but since the double refraction of all known crystals

is weak, that root must be taken for which ty is very nearly 7r/2.

Returning to the general equations (18) and (19), let us next suppose

that at minimum deviation the wave within the prism is parallel to the axis

of f ;
then

i|r
=

Tr/2, a case that is characterised by the vanishing of the

lateral deviation, and we have

H2

{sin
2

x + cos2

x (M - N}} c
2 -

(a,
2 - c2

) (sin /* sin x + cos /A cos x sin
</>)

2 =

......... (24),

(sin p sin %' + cos p, cos %' sin
<f>)

cos
/j,
cos %' cos

<f>
= ......... (25),

A. I A. + A.

and tan x = tan x *JM N = tan x sin o" sin
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From (25) we have

sin
/j,

sin x' -f cos /n cos x' sin
<fi
= 0, or cos

/i,
= 0, or cos

</>
= 0.

In the first of these cases, the optic axis is perpendicular to the wave-normal

and from (24)

sin 2 ' + cos2 '

sin2 - sin2
^ A

-j

in the second case fi
=

Tr/2 or the optic axis is parallel to the edge of the

prism, and

( A I A. 4- A )H2

jsin
2

x + cos2

%' sin2

^ /sin
2

^ 'I = c
2 + (a

2 - c
2

) sin2

x 5

and in the third case, <f>
=

?r/2, or the plane through the edge of the prism
and the optic axis is perpendicular to the plane bisecting the angle of the

prism and we have

A I A 4- A )

sin2

x' + cos2

x sin2 Wsin2 -- - = c
2 + (a

2 - c
2
) cos

2

(yu,
-

^').

147. Turning now to the case of a prism made from a biaxal crystal and

referring it to the same axes (, 77, f) as before, let the direction-cosines of

these axes with respect to the axes of optical symmetry (x, y, z) be given by

x y z

% i A 7i

T] Os /32 72

S" s A 7s-

Then (a;, y, z) being the coordinates of a point referred to the crystallographic

axes, and (f, 77, ) the coordinates of the same point with respect to the axes

of the prism, we have

^ = 7i^ + 72^7 + 7s?

with the ordinary relations of orthogonal transformations.

Hence the equation of the surface of wave-quickness becomes

i 3 = ft

a? -co2 62 - <o
2 c2 -

or since = G> cos
-|r

cos ^', ij
= o) sin

A/r
cos ^', ^= eo sin ^',

the equation in polar coordinates becomes

/(eo, x/r, ^')
=

ft)
4 w2

(Lu cos2

-|r
cos2

%' + L^ sin2

i/r
cos2

x' + L3S sin
2

^'

+ LK sin
i/r

sin 2^;' + Z31 cos >|r
sin 2^' + Z^ sin 2i/r cos2

%')

4- -Mu cos2

i/r
cos2

^' + M* sin2

i|r
cos2

^' -I- M^ sin2

^'

+ J/23 sin
i/r

sin 2%' + Jf31 cos >|r
sin 2%' + if12 sin 2-^- cos2

%'
=

.........(28),
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where Lmn =
(b

2 + c
2
) c^a,, + (c

2 + a2

) m /3H + (a
2 + 62) ym7n

I
(29).

148. Arranged according to a2
,
b2

,
c2

,
the equation takes the form

/(a), >/r, %')
= Eb2

c
2 + JW + a262

- a>
2 (F+ 0) a? - a?(G + E) b2 -a>2

(E + F)c
2 + w4 = O...

where E =
(otj cos >/r cos % + a2 sin ^ cos ^' + 3 sin ^')

2

^

F = (& cos
i/r

cos x' 4- /32 sin i|r
cos x' + /33 sin %')

2 I .........(31).

G = (7l cos ^ cos ^' + 72 sin i/r cos ^' + 7s sin ^')
2

J

Suppose now that we have obtained three sets of corresponding values of

<B, ty, x', so that we have three equations

^n6
2c2 + n̂c

2a2 + na
262 - &)n

2
(Fn + Qn) a

2

- WW2
(Gn + ^M) &2 - n

2

(^w + ^B) C
2 + O)n

4 = 0, (w = 1, 2, 3) ......(32),

then solving for 62
c2, c

2a2
,
a262

,
we shall obtain three equations of the form

c
2a2 = A 2a? + B2b* + (72c

2

wherein A l ,.Bl ...D3 depend only upon the coefficients E1} F^^Gs and

<*>\> 2
2

>
ws

2
;
the first two equations give

B"c* + C"

A'"c* + B'"c2 + C"'
'

A"'c* + B"'c2 + C'"
'

the coefficients being functions of El} Fl ... G3 and w^, &>2
2

, co3
2
,
and substi-

tuting these values in the third equation, we obtain an equation that involves

only c
2 and coefficients deduced from measured quantities.

This equation is however of the fifth degree in c
2 and each root with the

corresponding values of a2 and b2

gives a set of values that satisfy the three

equations (32). The problem is thus indeterminate, unless we know approxi-

mate values aQ
2
,
b 2

, c 2 of a2
,
b2

, c
2
.

One method of proceeding is as follows. If we obtain six sets of corre-

sponding values of &>, ty, ^', we shall have six equations of the form (32),

from which we can deduce the values of 62c2
,
c2a2

, a
2b2

,
a2

,
b2

, c
2

. Calling these

A, B, G, A lt Blt C-i we have

so that we have approximately

Now if the observations were absolutely exact, we should of course find

A 2 = BC/A, B 2
=CA/B, Cf
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and since A ... G! are affected by errors, we can obtain more accurate values

Oj
2
, 6j

2
, Ci

2
,
for a2

, ft
2
,
c
2

by taking the geometric mean of the two values obtained

for o 2
,
& 2 and c

2
: thus

4

/BCAS ,, V0JA" Y.11HV
G

Suppose now that the three values of a2
,
62 and c

2 are

a2 = aj
2 + x, 62 = V + y, c

2 = c^ + z
;

then substituting these values in the six equations of the form (32) and

neglecting squares and products of the small quantities x, y, z we obtain,

since E + F+G=l,
X [Fn (Vj

-
Cl

2
) + Gn (ft>n

2 -
V)} + y {Gn (<n*

~ ^) + En (fi)n
9 -

C^)}

+ Z [En (6>n
2 -

&i
2

) + Fn (ft>w
2 -

ftl
2

)}
- En (ft>n

2 - V) (ft)n
2 -

Cl
2
)

- Fn (o>n
2 -

Cl
2

)K2 -
a,

2
)
- Gn (a>n

2 * a:

2

) (a)n
2 - V) = 0, (w = 1

, 2, . . . 6),

and from these six equations the values of x, y, z may be determined by the

method of least squares*.

149. It is possible by means of prisms, as has been pointed out in

Chapter I., to find any number of points on the surface of wave-quickness
and hence to determine completely the form and orientation of this surface,

and the question now arises whether in the case of crystalline media a deter-

mination of a plane central section suffices for this purposef.

Taking this section as the plane of grj, the polar equation of the section

may be written

/(CD, i/r)
= a)

4
(a

2
(L-a cos2

T/T
+ L^ sin2

ty + 2L1Z sin i|r
cos ty)

+ Mu cos2

i/r + MV. sin2

i/r + 2 A/u sin -^ cos
i/r
=

(33),

the values of Lu ... MK being given by (29), where i ... 73 are the direction-

cosines of the principal axes of the surface referred to the axes of f, 77,

This equation contains six coefficients, so that six pairs of corresponding
values of &> and ty suffice for their determination, and the problem is to

deduce the values of a2
,
62

,
c2

, j . . . 73 from the expressions for Lu . . . M12 in

terms of these quantities.

From the equations

l = !
2 + A2 + 7a

2
>

Lu = (&
2 + c

2

) !

2 + (c
2 + a2

) ft" + (a
2 + &2) 7^

Mu = fcVtt!
2 + C2a2

/3a
2 + a2&V,

*
Born, loc. cit. p. 40.

t Bull, Sitzungsb. Bayer. Acad. (1883) 423; Math. Ann. xxxiv. 297 (1889). Liebisch, N.

Jahrb. fur Min. (1886) i. 31.



148, 149] Indeterminate Problem 237

and = do,, + && + 7l72 ,

12
=

(6
2 + c2) aia2 + (c

2 + a2
) && + (a

2 + 62

) 7l7a ,

we have

at

l

(a
2 -62

)(a
2 -c2

)'
i2

(a
2 -62

)(a
2 -c2

)'

(6
2 - c

2
) (6

2 - a2

)
'

(6
2 - c2) (6

2 - a2
)

'

7'

2 =
(c

2 -a2

)(c
2 -&2

)
' 7l72

=
(c

2 - a2

) (c
2 - 62

)
'

and in the same way*- o^
2

, /3,
2
, 72

2 are obtained. Hence writing a? = M and

forming the expression aj
2a2

2 = (a^)
2

, we find

and 62
, c

2

satisfy the same equation, as is easily seen.

Hence a2
,
62

, c
2 are three of the roots of (34) and calling the fourth root

d2
,
we have

a2 + 62 + c2 + d2 = Ln + L22
= a2

( 1 + 3
2

) + 62

( 1 + &2

) + c
2

( 1 + 7g
2
),

whence d2 = a2
3
2 + 62

/33
2 + cV.

Thus d is the reciprocal of a semi-diameter of an ellipsoid, of which the

principal semi-axes are I/a, l/b, 1/c, and hence must lie between a and c, but

may be either greater or less than b. Also if (33) represent a real section of

the surface of wave-quickness, the four roots of (34) must be real.

Let us suppose that a2 > 62 > d? > c
2

: if we assume that a, b, c are the

principal wave-velocities required, we have

a2d2 - Mn - MM

(6
2 -c2

)(6
2 -a2

)

7s
2 = -7i

2
~722=

(c
2 -a2

)(c
2 -62

)

'

and if a3 , /33 , 73 be real, this assumption will give a surface of wave-quickness

with its axes of symmetry inclined to the normal to the given central section

at angles, of which the cosines are a3 , /33 , 73.

Again if we take a, d, c as the principal wave-velocities, we find that the

principal axes of the surface are determined by

as2=
(a

2
-cT)(a

2 -c2
)
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c2a2 + fr
2d2 - Mu -

-Mn -
3

(c
2-a2

)(c
2 -d2

)

'
cZ

2 -c2 '

and as, /33', %' are real, if as , /33 , 73 be so. We have then a second real

solution, if we have one.

On the other hand the assumptions, that a, b, d, or 6, d, c are the

principal wave-velocities, will give us positions of the principal axes that are

imaginary, if as , {33 , y3 be real; and it therefore follows that there are two

and only two real solutions of the problem of determining the surface of

wave-quickness from its central section, if there be one such solution, and

that the two surfaces determined will differ in respect of their mean axes

while their greatest and least axes are the same.

The two surfaces will be identical only if b = d, which gives

V3/a3 =>Ja*-b*lJ^c*,
that is if the given central section contain one of the optic axes.

150. Let us now take the case of minimum deviation with a biaxal

prism. We have seen that the velocity of a wave within the prism satisfies

the general relation (15), while on the other hand it is given in terms of the

angles ty and %' by the equation of the surface of wave-quickness (28), and

eliminating w between these equations, we obtain

F(D, ty, x'}
= ft4

{sin
2

x + cos2

% (M + NCOS 2i/r))
2

- II2

[sin
2

x + cos2

x (M+Ncos 2\Jr)| {Ln cos2 ^ cos2

%'

+ L& sin2

-\Jr
cos2

x + L33 sin
2

x + ^L^ sin ty sin x' cos x
+ 2L3l cos i/r

sin x cos x + ZL& sin -^ cos
i|r

cos2

x'}

+ Mu cos2

-vjr
cos2

x + MM sin2

-^ cos2

x' +M33 sin
2

x
+ 2^/23 sin

i/r
sin x cos x + 2-M31 cos ^r sin x' cos x

+ 2M12 sin -fy
cos

i/r
cos2

%'
= . . ...............................(35).

When the deviation is a minimum, we have dD/dty = 0, or dF/dty = 0, which

gives

(sin
2

x + cos2

x (-W+ N cos 2>/r)} {4>WN cos2

x sin 2i/r

H2
(Ln sin 2i/r cos

2

x - Lw sin 2-^r cos
2

x' 2-^as cos i/r
sin x cos x

+ 2Z 31 sin i|r
sin %' cos x'

~
2-^i2 cos 2\|r cos

2

x')}

- 2H2jV sin 2i/r cos2

x (Ai cos2^ cos2

x + L& sin2
i/r

cos2

x
+ L33 sin

2

x + 2-^23 sin i|r
sin x cos x + 2D3i cos i/r

sin ^' cos ^'

-1- 2L12 sin -r cos TT cos2 ' +Mu sin 2-r cos2 '

Jf^ sin 2-r cos2 '

cos
i|r

sin ^' cos x + %M31 sin i/r
sin ^' cos ^'

cos 2i|r cos2

x = ............................................. (36).
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Equations (35) and (36) contain the solution of the problem, but in their

general form they are too complicated to be of any practical use, and in fact

even when the incident waves are parallel to the edge of the prism . so that

% = 0, no result of any value is obtained with a prism, of which the crystallo-

graphic orientation is quite arbitrary.

151. Confining then our attention to special cases of interest, let us

first suppose that the refraction is direct and the normal section is the plane
of symmetry xy. Then if the angle 0# be /M, the direction-cosines <*,, 0.3...73
are given by the scheme

x y z

cos
fj,

sin
/j,

tj sin ^ cos
fj,

r o 01,
and the equation of the section of the surface of wave-quickness by the

normal section of the prism is

The minimum deviation of the wave propagated with constant

velocity, which is polarised in the principal section, gives at once the

principal wave-velocity c by the ordinary formula : and in the case of mini-

mum deviation of the other wave, we have

II2 (M+ fl cos 2-f)
- 62 -

(a
2 - 62

) sin
2

(^ - /A)
= 0,

2niZV sin 2$ + (a
2 - 62

) sin 2 (^ - p) = 0,

and eliminating -fr
between these equations, they give the relation

(H
2
(7
-2 - a2 sin2

/*
- 62 cos2

/*)(11
2 -2- a? cos2

^ - 62 sin2

yu)
= (a

2- 62
)
2 sin 2

/* cos
2
/*.

152. Let us next consider the cases, in which the wave within the prism
is parallel to the inner mean line, that is the line of intersection of the plane

bisecting the angle of the prism and the normal section of the prism. The

lateral deviation then vanishes, and since ^r ?r/2, we have from equations

(35) and (36)

H4
{sin

2

^' + (M- N) cos2

x'}
2

- H2

{sin
2

^' + (M-N) cosV} (L^ cos2

%' + L^ sin2^ + 2La sin x
'

cos ^')

4J/22 cos
2

^
/ + i/33sin

2

%
/ + 2M23 sin X

/
cos X

/ = ............ (37),

and

H2

(sin
2

%' + (M-N) cos2

%'} (L 3l sin ^' cos tf + L12 cos
2

^')

- (M3l sin x' cos X
'

+ ^12 cos2

%')
= ......... (38) ;
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or writing in the values of L31 . . .

H4

{sin
2

X
' + (M- N) cos2

x'Y
- H 2

(sin
2

x +(M-N) cos2

x'} {(b
2 + c

2
) ( cos %' + as sin x'Y

+ (c
2
4- a2

) (& cos %
'

4-& sin %7 + (a
2 + 62

) (72 cos x
' + 73 sin %')

2

}

+ 62
c
2

(a2 cos x' + a3 sin xT + <?a? (& cos x +& sin x')
2

+ a2&2
(72 coSA;'-}- 73sm % ')

2 =
(39),

and

H2

{sin
2

x' + (Jlf
- N) cos2

^'} {(&
2 + c

2
) i (oa cos ^' + 3 sin ^')

+ (c
2 + a2

)A (/8, cos x
' + & sin x ') + (<*? + &} 71 (72 cos %' + % sin %')}

- 62
c2
a! (02 cos x' + a3 sin % ')

- c'a^ (/8, cos x +A sin %')

-a262

71 (72 cos%
/ + 73siu%

/

)
=

(40).

Now from the relations of orthogonal transformations, we have

i ( a cos x
'

+ 5t3 sin ^ ') +& (^ cos %' +& sin %') -H 7j (72 cos %' + 7s sin x) = 0,

whence if

O! (2 cos ^' + 3 sin %')
= 0,

equation (40) becomes

[ft
2

(sin
2

x' + (M- N) cos2

x '|
- a2

] (6
2 - c

2
) 7! (% cos %' + 73 sin %')

=
.(41)

and this is satisfied by

(A) 7i (72 cos x + 7s sin %')
= 0, whence also & (/9a cos x' +A sin x')

= 0,

or

(B) sin2

x + (M ~ A
T
) cos

2

x' = 2

/^
2

-

(A) Let us first suppose that

ttl (a2 cos %
' + 3 sin %')

=& (& cos x
'

+ ^3 sin x ')
=

7l (7s cos %' + 7a sin x ')
= 0.

Then we have three cases to consider, of which the following are types :

(a) We may take

ox
= 1, & = 0, 7l = 0,

2
= 0, & = 1, 72

=
0,

a, = 0, & = 0, 73
= 1,

which express that the coordinate axes (, 77, ) coincide with the axes of

optical symmetry of the crystal. Then equation (39) gives

[O
2

(sin
2
x' + (M- H) cos2

%'}
- a2

] [O
2

[sin
2

x
' + (M-N) cos2

x'}

- b* sin2

x'
- c

2 cos2

%']
= 0.

Thus the minimum deviation gives in the one case the principal wave-

velocity a, and in the other a linear relation between the other principal

velocities 6 and c.
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(b) The conditions are also satisfied by

!
=

1, ft = 0, 7l
= 0,

02 = 0, y&2
= cos

/z, 72
= sin

yu,,

3
= 0, /3S

= sin
yu,, 73

= cos /n ;

the axis of symmetry x then coincides with f, and the axis y is inclined at

an angle /* to the axis
TJ.

In this case we have from (39)

[ft
2

{sin
2

X
' + (M-N) cos2

%'}
- a2

]

x [ft
2

{sin
2

x
'

-f (M - N) cos2

x '}
- 62 sin2

(x
' -

p) - c
2 cos2

(x
' -

/*)]
= 0.

(c) Finally we can have

i
= 0, & = sin

/u,, fyx
= cos

//,,

2
= cos ^', /32

= cos
yit

sin ^', 72
= sin

/u,
sin ^',

a3 = sin^', /33
= cos

yu.
cos ^', 73

= sin
yu,

cos X
'

;

the axis of symmetry x is then perpendicular to the axis and the lateral

deviation only vanishes when the wave within the prism is parallel to the

plane of optical symmetry yz. In this case (39) gives

[ft
2

{sin
2

x + (M- N) cos2

x '}
- b2

] [ft
2

{sin
2

X
' + (M- N) cos2

x '}
- c

2

]
= 0,

and the principal wave-velocities 6 and c are determined directly from the

angles of minimum deviation of the two waves.

(B) Taking now the case in which

d! (02 cos x + 3 sin %')
= 0, and ft2

{sin
2

x
'

+ (M - N) cos2

x '}
= a2

,

we have from (39), since

(02 cos x + s sin XJ + (/32 cos x + /33 sin x ')
2 + (j2 cos x + y3 sin X ')*

=
1,

ft4 {sin
2

X +(M-N) cos2

x '}*

- ft 2

{sin
2

X
' + (M- N) cos2

x '} {c
2 + a2 -

(a
2 - 62

) (03 cos x + a3 sin Xy

+ c
2a2 - c2 (a

2 - 62) (as cos x
' + a3 sin ^')

2 + 2

(^
2 ~ c2) (72 cos %' + 7s sin %')

2 =
>

and this equation which is independent of ax is satisfied if

2 cos X
' + 3 sin %'

=

and ft2

{sin
2

X
' + (M-N) cos2

%'}
- a2 = 0.

In this case then 2 cos x
' + a3 sin x

' =
;
that is the axis of symmetry x

is in the plane of the wave, which is therefore perpendicular to the plane of

symmetry yz, and the minimum deviation, characterised by the absence of

lateral deviation, gives the principal wave-velocity a. Similar results are

obtained when the wave within the prism is perpendicular to the planes of

symmetry zx and xy.

w. 16
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(C) Returning to the general condition (40), we "have

G>
2 = ft2

(sin
2

x' + (M-2i) cos2

%'}

62c2 !(q2cos% + g3 sin %') -f c^a2^ (/32 cos %'+ fts sin %')+q2^(72 cos% + 73 sin %'

and this is the expression for the square of the velocity of a wave, parallel to

the inner mean line of the prism with its light-vector in the direction of this

line. We have then the further case that the deviation is a minimum for

symmetrical passage through the prism, when the wave has its plane of

polarisation parallel to the line, in which the plane bisecting the angle of the

prism cuts the normal section.

Total Reflection.

153. When a single reflecting surface of a crystal is all that can be

obtained, recourse must be had to total reflection for the determination of

the principal wave-velocities of the medium. This method of finding refractive

indices was first employed by Wollaston* in 1802, but it is only in recent

years that instruments for measuring the phenomenon have been brought to

perfection or indeed that the theory in the case of crystalline substances has

been worked out with any approach to completeness.

The crystal must be in contact with a more highly refracting medium,
and this is effected, either by suspending it in a liquid f, or by placing its

reflecting surface against the flat face of a solid substance, such as dense glass,

in the form of a prism*, a cylinder or a hemispherical lens||, a drop of liquid

being interposed between the solid and the crystal. If under these circum-

stances diffused monochromatic light be directed upon the surface and the

reflected light be received in a telescope focussed on infinity, the field of view

with a proper orientation of the crystal will be divided into parts of greater

and less intensity by lines that mark the limits of total reflection corresponding
to the two streams that the crystal is capable of transmitting. When the

field is small, these lines are nearly straight.

Now each point of the focal plane of the telescope corresponds to a system
of parallel rays reflected from the surface, the direction of which is given by

e liiiQ joining the point to the optical centre G of the object-glass, and the

lines separating the brighter and darker regions are the intersections of the

focal plane with cones having their vertices at G and parallel to the limiting

* Pht: Trans, xcn. 381 (1802).

t F. Kohlraasch, Wied. Ann. iv. 1 (1878).

J Feussner, JHss. Marburg. (1882). F. Kohlrausch, Wied. Ann. xvi. 609 (1882). Liebisch,

Zeitschr. fur Imtrumentk. iv. 185 (1884); v. 13 (1885).

Pulfrich, Wi<d. Ann. xxx. 193, 317, 487; xxxi. 724 (1887); xxxvi. 561 (1889).

||
This- iff, the form adopted in Abbe's refractometer : cf. Czapski, Zeitschr. filr Instrumentk.

x. 24G, 269 (1890); AT
. Jnhrb.fiir Min. Beil-Bd. vn. 175 (1891); (1892) i. 209. Pulfrich, Zeitschr.

fur Kryst. xxx. 568 (1*99).
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cones K, K' of total reflection at the point 0, in which the optical axis of

the telescope meets the surface of the crystal.

If then the telescope be so placed that its optical axis FO intersects one

or other of these bounding lines, OF will be one of the generating lines of

the cone K (or K') and the angle % that the line makes with the plane of

reflection of the ray OF is the angle between this plane and the tangent

plane to the cone along OF. The ray OF is thus characterised by the angle

% and by the limiting angle of total reflection i (or i
').

The problem then is to express these angles in terms of the optical

constants of the crystal and of the medium in contact with its face, and of

the angles that define the crystallographic orientation of the surface and of

the plane of reflection *.

We have seen in Chapter I, that the equations of the cones K and K' are

obtained by equating to zero the discriminant of the equation

a tan4 r+ 4ax tan
3 r + 6a2 tan

2 r + 4a3 tan r + a4
= ......... (42),

that gives the directions of the refracted waves in terms of the angle of

incidence, the angles defining the plane of incidence and the refracting

surface and the constants of the contiguous media, and in Chapter XI we

have found the form that this equation assumes in the case of uniaxal and

biaxal crystals. We will now apply these results to certain special cases.

154. Let us take first the case of an uniaxal crystal, and suppose that

cos a, cos /3, cos 7 are the direction-cosines of the optic axis referred to

a system of rectangular coordinate axes, such that the reflecting surface

is the plane of xy and the plane of incidence is that of xz.

Then the directions of the refracted waves are given by

sin2 r = a? sin 2

i'/fl
2

and a tan2 r + 2oj tan r + a^ =

where aa
=

{c
2 + (a

2 - c2) cos
2

a} sin2
i - ft2

ttl
= (a

2 c
2
) cos a cos 7 sin2

i

a2
=

{c
2 + (a

2 - c2) cos2
7} sin2

i.

Hence the limiting angles of total reflection are given by

sin2
1'
= fi2

/a
2
...................................(43)

and ao2 = i
2

c
2 + (a

2 - c2) cos
2
7

or sm 1 = -
c-' c

2 + (a
2 - c

2

) (cos
2 a + cos2

7)

H2 c2 + (a
2 - c2) cos

2

7

~
"c

2

"

a2 - (a
2 - c

2

) sin2

p, sin
2

Liebisch, N. Jahrb. fur Min. (1885) i. 245; n. 181; (1886) n. 47: Phys. Kryst. p. 404.
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if p. be the angle that the optic axis makes with the normal to the surface

and 6 be the angle between the plane of incidence E and the principal plane
of the surface, H.

Let us now take rectangular axes (f, 77, ), such that the plane of
77 is

the reflecting surface, and that of f is its principal plane ;
then if (f, 77, ) be

the coordinates with respect to these axes of a point distant p from the origin

on the ray defined by the angles i (or i ') and 6, we have

=
p sin i' cos 9, rj

= p sin i sin 6, % = p cos i
,

and the equations of the cones K and K' become respectively

(a
2 -Ii2

)(f + 7
?

2)-n2 2 = ........................(45),

and

\-n2

f
2 + (c

2 -n2
)77

2 -n2 3 = o ...... (46).*
\a

2 cos2

/* + c
a sin2

p, /

The difference of these equations gives

a2 cos2
p. |

2 + (a
2 cos2

/A + c2 sin2

/i) 77"
= 0,

and therefore the cones in general have only their vertices in common, but if

the optic axis is in the surface of the crystal (p,
=

Tr/2), the cones touch one

another along the axis of .

The cone, K, is a right circular cone with its axis perpendicular to the

surface : hence for this cone the angle ^ between the tangent plane along

any ray and the plane of reflection for that ray is a right-angle.

In the case of the cone, K', the plane of incidence of the ray defined by
the angles i

'

and 6 is

= cot 6 . 77

and the tangent plane to the cone along this ray is

cos . f + (c
2 - n2

) sin . 77
-

fl'cotto' . = 0.
, .

\a
2
cos-' p, + c

2 sm2
p,

Hence

cos x = c (a
2 - c

2
) sin

2

p, sin cos 0/D .....................(47)

where introducing the value of cot2
i

'

from (44)

1)2
_

ft
2

J
a2

c2 _ ^2
(
a2 CQS2 ^ _|_ C2 gin2

^)j Cog2 Q

+ (c
2 - H2

) (a
2 cos2

/* + c2 sin 2

^t)
2 sin2

......(48)

and x is only equal to Tr/2, if the optic axis of the crystal be perpendicular to

the reflecting surface (p,
=

0), or the optic axis having any direction, if the

plane of incidence be parallel or perpendicular to the principal plane of the

surface (6
= or Tr/2).

Now when = 0, we have

sin2 = O2

/a
2

,
sin2 i

' = H2

{a~
2 + (c'

2 - a~2
) cos

2

p,}
= O2

/o-
2
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where cr is the ray-velocity along the line of intersection of the surface of

the crystal with its principal plane : and when 6 = 7r/2

sins
i = H2

/a
2
,

sin2
i

' = W/c*.

Hence from measui'ements of the limiting angles of total reflection, when
the lines separating the regions of partially and totally reflected light are

perpendicular to the plane of incidence, we can determine the principal
wave-velocities and the angle that the optic axis of the crystal makes with

the normal to the reflecting surface.

155. With biaxal crystals the most interesting cases are those in which

equation (42) assumes the form

a tan4 r + 6a2 tan
2 r + a4

= 0,

as we then have two pairs of equal and opposite roots + tan r
x and + tan r2 and

equality of the roots of either of these pairs can only occur when both are

either zero or infinity. Hence since the value zero corresponds to normal

incidence, we must have at the limit of total reflection infinity as the common
value of the roots and the critical angles are given by

a = 0.

These cases occur when either the reflecting surface is a plane of symmetry
or its intersection with the plane of incidence is an axis of optical symmetry.

Let us suppose that the reflecting surface is parallel to the plane of the

optic axes xz : then 6 being the azimuth of the plane of reflection measured

from yz,

a = (^ 62 ~ x
) (IF <* cos2 e + c

* sin2 e}
~ l

}

Hence the limiting angles of total reflection are given by

sin 2
i = O2

/6
2
,

sin2
i

' = H2

/(a
2 cos2 + c

2 sin2

(9)

and the two cones of limiting rays K, K' can be represented as distinct.

Taking new axes (f, r), ), such that the surface of the crystal is the plane

of %r) and the plane of symmetry yz is that of
,
the equations of the cones

K, K' are respectively

(6
2 - ft2

) (f
2 + if)

- O2 2 =

and (a
2 - H 2

) f + (c
2 - H2

) ^ - &? = :

for the cone K, % is always a right-angle, while for the cone K'

(a
2 - c

2
) sin 6 cos d

COS V = .

Vc2
(c

2 - H2
) sin

2 9 + a? (a
2 - to2

) cos
2

The other cases in which the reflecting surface is parallel to a plane of

optical symmetry are obtained at once from this by changing a, b, c and

x, y, z in cyclical order.
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156. The present case is however of special interest both because the

cones K and K' have four lines in common, namely those that lie in planes

through the optic axes normal to the reflecting surface, and because the

limiting rays of total reflection, in addition to being generating lines of these

cones, form part of the surfaces of two other cones L and L' that correspond
to refracted rays in the directions of the ray-axes, and that are determined by
the singular tangent planes to the surface of wave-slowness. These tangent

planes are perpendicular to the plane of the optic axes and pass through the

common tangents to the ellipse and the circle, in which this plane cuts the

surface.

Hence a tangent cylinder to the surface of wave-slowness of the crystal,

perpendicular to the plane of the optic axes, touches the surface not only

along this ellipse and circle, but also along the four circles of contact of these

tangent planes, and the cones L, L' are determined by joining the centre of

the surface to the curves in which these singular tangent planes intersect the

sphere with the same centre and of radius I/ft, that is the surface of wave-

slowness for the outer medium.

Now since these tangent planes are perpendicular to the ray-axes, their

equations are

and combining this with the equation

2 + ff -f
2 =

I/ft
2
,

so as to form an homogeneous equation of the second degree, we obtain as the

equations of the cones L and L1

Each of the cones L and L' has a line in common with each of the cones

K and K' : that common to K and L or L' is in the plane through the corre-

sponding ray-axis normal to the reflecting surface
;
that common to K' and L

or L' is in the central plane perpendicular to the reflecting surface through the

point of contact of the corresponding singular tangent plane with the ellipse,

in which the plane of the optic axes cuts the surface of wave-slowness of the

crystal. It is clear that only the part of the cones L and L' between these

two lines give limiting rays of total reflection : all rays on these cones outside

this portion are totally reflected, since the perpendiculars on the reflecting

surface from the points, in which they meet the sphere of radius I/ft, neither

touch nor intersect the surface of wave-slowness of the crystal.

It is now easy to determine the nature of the phenomenon of total

reflection, when the plane of incidence is nearly parallel to one of the optic

axes. Let N be the foot of the perpendicular on the reflecting surface from
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the point in which the incident wave-normal meets the sphere of radius 1/fi,
and let us suppose first of all that the plane of incidence passes through the

optic axis OA : then if this direction meets the common tangent to the

ellipse and circle in the point B, it is clear that total reflection does not com-
mence until N falls outside OB, for until this occurs the perpendicular cuts

Fig. 37.

the surface of wave-slowness in two points within the crystal ; only when N
is at A, two of the infinite number of streams into which the light is divided

are at the limit of total reflection, viz. : those polarised in planes parallel and

perpendicular to the surface of the crystal.

Next let the trace of the plane of incidence on the surface be OPQR,
P, Q, R being the points in which it meets the ellipse, the circle and the

common tangent to these curves respectively. When N falls between and

P, the perpendicular meets the surface of wave-slowness at two points within

the crystal, there are two refracted waves and no total reflection
;
when N is

between P and Q, the perpendicular intersects the surface of wave-slowness

at only one point within the crystal and one wave is totally reflected : when

N is between Q and R, the surface of wave-slowness is again cut by the

perpendicular in two points, where the surface bends over, so that there are

again two refracted waves and no total reflection
;
and finally when N is

beyond R, total reflection is complete, as the perpendicular is entirely outside

the surface of wave-slowness. The appearance presented will consequently

be that represented in fig. 38*.

157. When the reflecting surface is parallel to an axis of optical

symmetry, the limiting angles of total reflection are determined by a = if

*
Soret, C. R. CVH. 479 (1888) ;

Zeitschr. fur Kryst. xv. 45 (1889). Mallard, J. de Phys. (2)

v. 389 (1886). W. Kohlrausch, Wied. Ann. vi. 113 (1879).
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Fig. 38.

the plane of incidence contain this axis, and a is then the product of two factors

that are linear functions of sin2
i. On the

other hand, if the plane of incidence be

perpendicular to the axis of symmetry, equa-
tion (42) takes the form

(a tan2 r + a2) (A tan2 r + 2^L X tan r + A 2)
=

0,

wherein a is a linear function of sin2 t, and

the critical angles are then given by

a = and A A Z
= A^.

Thus if the surface of the crystal be

parallel to the axis of x and if
JJL

be the

angle between the axis of y and the normal

to the face, we have

sin i = ft/6 ;
sin i

' = ft/c

when the plane of incidence passes through x, and

sin i = ft/a, sin2
i

' = ft2

{c~
2 + (6~

2 - c~2
) cos

2

/*}

when the plane of incidence is parallel to the plane of symmetry yz.

Hence from measurements in these planes, which are experimentally
determined from the fact that in these cases the lines bounding the regions
of total reflection are perpendicular to the planes of reflection, we can find

the three principal wave-velocities and the orientation of the face of the

crystal.

158. Let us now suppose that the reflecting surface is neither parallel

nor perpendicular to a plane of symmetry of the crystal*, and that it cuts the

three planes of symmetry in the lines ONa ,
ONb> ONC ,

the points Na ,
Nb ,

Nc

being on circular sections of the surface of wave-slowness in these planes, the

radii of which are I/a, 1/6, 1/c respectively.

Then Na ,
Nb , Nc are points on the tangent cylinder to the surface per-

pendicular to the face of the crystal, and the corresponding critical angles are

given by
sin iM = ft/a, sin% =

ft/6, sin ioc
=

ft/c.

Now the greatest and least radii of the section of the surface of wave-slowness

made by the face of the crystal are 1/c and I/a respectively, and l/b will be

the greatest radius of the inner curve of the section or the least radius of the

outer curve, according as the section cuts the plane of xz within or without

the angle between the optic axes that is bisected by the axis of x.

*
Soret, C. E. cvn. 176, 479 (1888) ;

Arch, de Geneve (3) xx. 263 (1888). Perrot, C. R. cvin.

137 (1889); Arch, de Geneve (3) xxi. 113 (1889). Hecht, N. Jahrb. fur Min. Beil-Bd. vi. 241

(1889).
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It follows then that measurements of the greatest and the least critical

angles, that can be obtained by varying the azimuth of the plane of reflection,

give the extreme wave-velocities of the crystal. But we cannot determine

without having recourse to other considerations, whether the mean principal

wave-velocity b corresponds to the greater critical angle of the inner cone or

to the less critical angle of the outer cone of rays of total reflection.

This ambiguity may in general be removed, as Viola* has pointed out, by
a determination of the polarisation of the rays : for the planes of optical

symmetry of the crystal are the planes through the limiting rays, that deter-

mine the principal wave-velocities, perpendicular to their respective planes of

polarisation, and if A, B, G be the corresponding planes of reflection, the

angles a, fi, 7 between the planes of optical symmetry and the crystalline

surface are given by

cos2 a = cot AB . cot GA, cos2
ft
= cot BC . cot AB, cos2

7 = cot CA . cot BO

(49).

On the other hand these angles may easily be determined by an analyser

placed in the eye-piece of the observing telescope, and the agreement of the

measured with the calculated angles will indicate the plane of reflection of

the limiting ray that gives the wave-velocity b.

Cornu-f- has suggested another method of procedure. If to be the wave-

velocity calculated from the fourth angle, we have the relation

or 2 = a~2 cos2 a + b~2 cos2
ft + c~ 2 cos2 7,

where cos2
a, cos2

@, cos2

7 have the values (49), and the verification of this

formula will decide whether the proper angles have been selected for the

calculation of b, a, /3 and 7.

*
Zeitschr.fur Kryst. xxxi. 40 (1899); Rend. Lincei (5) vm. [1] 276 (1899).

t J. de Phys. (4) i. 136 (1902).



CHAPTEE XIII.

CRYSTALLINE REFLECTION AND REFRACTION.

159. BEFORE considering the question of the intensity of the light reflected

and refracted at the surface of a crystal, it is necessary to obtain the differential

equations of the polarisation-vector in crystalline media and to determine the

surface conditions that must be satisfied at the confines of such substances.

This may be done, as in the case of isotropic media, by the application of the

principle of interference.

According to Fresnel's laws of double refraction, the polarisation-vector of

any wave is in the direction of one of the axes of the central section of the

ellipsoid of polarisation parallel to the plane of the wave, and the corresponding
wave-velocity &> is given by the reciprocal of that axis. Hence if the equation
of the ellipsoid be

aux
2 + a^y

2 + a33z* + la^yz + 2a3lzx + ^a-^xy
= 1 ........... (1 ),

we obtain as in 122

a12a + (a^ &>
2

) $ + a^y = Fm .. ................... (2),

3i + 23/3 + (033
- &>

2
) 7 = -Fn )

and

F- (fl^a+ a^/8 + 3i7) I + (i2a + a^ft + a^y^m + (a3la + a^P + a^}n. . .(3),

a, /3, 7 being the direction-cosines of the polarisation-vector, and I, m, n those

of the normal to the wave-front.

Now the principle of interference is expressed by

w = SaD, fl = 2j8D, w = 2yD, D = A exp {IK (las + my + nz a>)}...(4),

where tc = 2ir/\ : whence

M=-2 2aw2A v = - 2/c
2
/Sa)

2A w=-2 2
70)

2
Z>,

and from (2)
aw2 = (an a + Ou/3 + 0^7) (I* + m? + n2

)
- Fl,
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and two similar equations; whence substituting for aw 2
, /3w

2 and 7w
2

,
and

eliminating the direction-cosines, we find at once

(rl

rl

, -^T- , ~
du dv dw;

where

2O = On^2 + ct;nV
2 + d^w* + Za^vw 4- 2a3lwu + 2o12wi; (6).

These equations, as in the case of those relating to isotropic media, may
be put into the more convenient form,

D= curl w, vr = curl E (7),

where the components of E are given by

a

dv' a- /
~ ^ -

As regards the vector E, it is clearly parallel to the normal to the ellipsoid of

polarisation at the point in which the polarisation-vector meets it, and is

therefore perpendicular to the ray corresponding to the given wave, and if

X be the angle between D and E

Equations (7) having the same form as those that relate to isotropic bodies,

the surface conditions will'be the same as those that hold at the interface of

such media. Thus the interface being the plane x = we have that

tAT2) E3 , STg, E2

are continuous across the surface, to which we may add the further conditions,

clearly dependent upon the former, that u and srj are also continuous.

160. We can now determine the significance of the ray in the theory of

double refraction. Proceeding as in 109 we obtain

cos nx

+ (ta3E^ -57^3) cos ny + (vriEz r2-^i) cos nz] dS. . .(9),

the integration being extended over a certain region T, dS being an element

of the surface of T, and n the normal to dS drawn outwards, and this equation

may be regarded as representing the change of energy within the space T
that results from a flow of energy across its surface. We see then that the

direction of this flow is perpendicular to the vectors E and -GT and is therefore

along the ray.
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161. Since the three vectors D, -ar, and E are connected merely by

geometrical relations, we may take which we please as characteristic of a

stream of light, and we shall in the remainder of this chapter employ the

light-vector -or, as by so doing the calculations are somewhat simplified.

Let the plane of incidence be taken as that of xz, the reflecting surface

being the plane of yz and the medium in which the light is incident lying on

the side of negative x : then since the vector or is in the plane of the wave,

we may write

(OTJ, -5T2 ,
-573) =(n, k, 1) D exp {i(lx + nz +st)} (10),

where k = 2?r tan </X, D = \ cos<. J./(2?r) (11),

</> being the angle that the vector makes with the plane of incidence. Now
the vector -nr being independent of y, we have from equations (7)

9 f 9'5T2 /dt!Ti 9-OTjA 9-GTs

dz \
12

dz
**

V dz dx /
*
dx

fa o -,_s o ^ r (12);

dx

.. _ 9 f 9*sr2

dx \
2
dz

whence, substituting the values of VTI} vr2 ,
-sr3 ,

we have

2 //'

k (s
2 -

ctssl
2 - aun

2 + 2a3l ln)
=

(I
2 + ri>) (a^l

- a]2w)

'

which give

{s
2 - a^ (I

2 + n2

)} {s
2 - a^l

2 - ann2 + 2a81 Zn}
=

(a^l
- a12n)

2

(I
2 + n2

) ......(14),

and k = (

.s
2

a^l
2 ~ an n

2 + 2a3i ^w a23 l a^n

Similar equations with b written for a apply to the second medium.

The first of these two equations determines the value of I when n and
s are given : since it is of the fourth degree, it is evident that there are four

possible values corresponding to waves of given period, the traces of which
on the interface of the media travel at a given rate. Two of these waves

approach the surface and two leave it, and the question which of the values

of I correspond to the receding, that is the reflected or refracted waves, is

decided by the position of the corresponding rays as determined by Huygens'
construction.
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The quantity I having been thus determined, equation (15) gives the

corresponding value of k, and thus the directions and the polarisations of the

reflected and the refracted waves are known.

162. Let the suffixes Q, (), the accents ('), (") and the suffixes (,), (.)

refer respectively to the incident and to the reflected waves in the first

medium and to the refracted waves in the second medium, and suppose that

there are no incident waves in the latter medium.

Then introducing the boundary conditions, we have from the continuity
of 13-3 when x =

llD1 +l2D, + rD' + l"D" = l D + leD (16),

from the continuity of E.2 or of tn-j

D1 + J)3 + D' + J)
tt = JD + De (17),

from the continuity of w2 or of u

klDl + k,D, + k'D' + k"D" = kDQ + keDe (18),

while the continuity of E3 gives

2 {a31kn - a& (I
2 + n2

)
- ajd] D = 2 [bslkn

- b^ (I
2 + n2

)
-

ajel] D. . .(19),

the summations extending to the four waves in the first medium and to the

two waves in the second medium respectively.

The last of these equations may be put into a different form, that is

somewhat more convenient. The direction-cosines of the vector E are

proportional to Elt E2 ,
E3 and from (13) we have

El
= knan - (I

2 + n2

) an - kla3l
=

(ks? + lE3)/n,

E2
= knal2 (I

2 + n2

) a^

E3
= kncisi (I

2 + n2

) a^

and since the ray is perpendicular to the vectors E and vr, its direction-

cosines are

(kE3 + lEz)/R, -(lE. + nE^/R, (nEz -kE

where R* = (kE3 + lEtf + (IE, + nE3)* + (nE2
- kE

=
{(/

2 + n2
) #3

2 + 2kl#E9 + (fc + n2

) s
1

} (I
2 + k* + n

and the angle between the ray and the wave-normal is given by

I (kE3 + IE.) + n (nE2
- kEJ

cos y = -1
,

R V^ 2 + n2

s2n vl2 + k2 + n*

... .

x . + n2
) E 2 + 2klE3s? + (* + n2

) s
4

We thus obtain

(I
2 + n2

)E3
- kls* . m

tan Y = - .
, , s^\*KA*r

s
2n V^ a + k2 + 2 /^^ er TMI

'
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kl w^ a

tan %
I V | It/ V ~J~ Iff

and (19) becomes

2{kl + n ^l^+W+n* . tan <%} >,~

Introducing the angles of incidence, reflection and refraction, and the

values of fc and D from (11), the equations (16). ..(19') become

2 cos i cos (f)A
= 2 cos r cos <.B (20),

2 sin i cos < A = 2 sin r cos $B (21 ),

2 sin $A = 2 sin <f>B (22),
and

A
2 {(asi sin i a^ cos i) sin <f> a^ cos

</>}
.

sin. i
n

= 2 |(631 sin r 633 cos r) sin <f> 633 cos <4| -s ......(23),J smr
or

2 sin i (cos i sin < + sin i tan ^) J. = 2 sin r (cos r sin < + sin r tan %) 5. . .(23'),

B representing the amplitude of the vibrations in the second medium.

163. As a first application of these formulae, let us take the case in

which the first medium is isotropic. Then

G&H ft22
== ^33 = " i ^12 ==

^23
==

^31 = ^j

H being the wave-velocity in the medium.

The values of I for this medium are + I and k becomes indeterminate, but

introducing the components of the vector or parallel and perpendicular to the

plane of incidence, and calling the amplitude of these components G and F
for the incident waves and G' and F' for the reflected wave, we have

(GG') cos i = cos r cos
<f>
B + cos re cos (f>e

Be ........................ (24),

(G + G') sin i = sin r cos < jB + sin re cos < e5e ........................(25),

(26),

COS % -OnH2

(.F
-
F') . .

=
{(633 cos r

- b31 sin r ) sin < + 623 cos }
sin i sin 7*0

D
+ {(633 cos re b31 sin re) sin ^>e + 623 cos cf>e }

-^- . . .(27),
sin ?"g

or

(J^ F') sin i cos i = sin r (cos r sin
</>
+ sin r tan ^ )

5

+ sin re (cos re sin <jE>e + sin re tan ^) 5e ...... (27'),
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where

"o
2

&22 &2s cos r 612 sin r
tan <6n =

,
cos r 612 sin r o>

2 -
633 cos

2 r bu sin2 r -f 2631 sin r* cos r
'

with a similar expression for tan
<j>e ,

&> and we being the propagational speeds

of the two waves within the crystal.

For the further consideration of these equations it is convenient, in

accordance with a plan due to MacCullagh*, to consider first of all the special

cases in which only a single wave of amplitude unity exists in the second

medium. Using the suffixes ( ) and () to distinguish the cases in which

B = 1, Be
= and B = 0, Be

= 1, we have

(Go GO) cos i = cos r cos
</>,

(Go + GO') sin i = sin r cos
</> ,

F + FO = sin
</> ,

(F F ') sin i cos i = sin r (cos re sin < -f sin r tan %Q)>

with similar equations for the second case. We thus have eight equations,

from which the eight quantities F ,
G . . . Fe', Ge

'

may be determined, and

then the ratios F /G ,
Fe/Ge give the azimuths of the vector nr with respect to

the plane of incidence, for which the wave Q and the wave () vanish within

the crystal, while F '/G ', Fe'/Ge
'

give the corresponding azimuths in the

reflected stream of light.

If now B and Be ,
instead of being either or 1, have any values, it

follows that

F= F B + FeBe ,
G = G B9 + GeBe ,

F' = F 'B + Fe'Be ,
G' = G 'BQ + Ge'Be ,

whence if F and G be given, F', G', B ,
Be may be determined ;

for

FGe -GFe GF -FG
* ~FQGe-G Fe'

e F Ge-G Fe

'

and (F Ge
- G Fe) F' = F(F 'Ge

- Fe'G ) + G (F F,' - FeF '),

(F Ge
- G Fe) G'

= F(G 'Ge
- Ge'GQ) + G (F Ge

f - FeG ').

Also if
<f>, $' be the azimuths of the vector -or with respect to the plane of

incidence in the case of the incident and reflected streams

FpB + Fe'Be

wherein the ratio B /Be is determined from

F B + FeBe
u * = GoB + GeBe

'

Now tan $ is independent of tan 0, if Fo'IG
' = Fe'/Ge', and this condition

* Collected Works, p. 98.
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determines a special value of the angle of incidence, that is called the polar-

ising angle of the crystalline surface with respect to the isotropic medium.

A stream of common light incident at this angle is reflected as a plane

polarised stream
;
for we may represent the incident light by two independent

streams of the like intensities polarised in perpendicular planes, and since

each of the streams incident at the polarising angle gives the same azimuth

for the plane of polarisation of the reflected stream, it follows that the stream

of common light will give a reflected stream plane polarised in this azimuth

given by

164. Suppose now that the crystalline medium is uniaxal, and that the

direction-cosines of its optic axis are plt pz , p3 ,
then the equation of the

ellipsoid of polarisation is

a2

(of + f + 22
) + (c

2 - a2
) (p& +p2y

whence
bmm = a2 + (c

2 - a2

)pm
2
,

bmn = (c
2 - a2

)pmpn .

When the refracted wave is ordinary, the propagational speed is constant

and equal to a and we have

a . . p2
sin r = ^r sin i, tan <p = =

-
pl sin r p3 cos r

and % = 0, since the ordinary ray coincides with its wave-normal. Thus the

ordinary uniradial system is determined from

(G G
')
cos i = cos r cos

<f> ,
F + F ' = sin <

((TO + GO) sin i = sin r cos <
, (FQ F

') sin i cos i = sin r cos r sin <.

The extraordinary wave-velocity is given by

w 2 = c
2 + (a

2 - c
2

) (PJ.
cos re +p3 sin re)

2

SIH^ 1
and sin2 re

=--
{c

2 + (a
2 - c2) (pl cos re + p3 sin re)}

z

whence the extraordinary uniradial system is determined from

(Ge Ge') cos i = cos re cos < e , (Ge + Ge') sin i = sin re cos <})e

j-j
,. COS I

e
sin i

1

[a
2 cos re sin <f>e + (c

2
a?)ps {(p3 cos re pl sin re)sm <f>e +p2 cos <f>e}].

sin Te

When the plane of incidence is the principal plane of the reflecting
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surface, p* = 0, p1
= sin /*, p3

= cos /*, where //,
is the angle that the optic axis

makes with the surface. Then

4>
= 0, <f>e

=
7T/2,

and for the ordinary uniradial system

(G GQ) cos i = cos r
, (G + G

')
sin i = sin r

,

while for the extraordinary uniradial system

Ge -Ge

' = Ge + Ge

' =
0, Fe + Fe'=I

COS %
fl2

(Fe
- Fe') ^-.

=
-j

(a
2 cos re + (c

2 - a2

) cos ^ cos (,* + re)}

where fl2 sin2 re
= sin 2

i {c
2 -

(c
2 - a2

) sin
2

(//, + re)}.

Thus the vector w is parallel to the plane of incidence in the ordinary
uniradial system, and perpendicular to it in the extraordinary system.

In this particular case, the polarising angle is determined by the condition

Fe'G
' = 0,

or since G '

can only be zero, if i = r
, by the condition

In this case, Fe
=

l, so that if / be the polarising angle, Re the corre-

sponding angle of refraction for the extraordinary stream

cos f

^~T
=

=1 rTP ^ cos R* + (c2
" a') cos /* cos

olll jf nl 11 XI'^

where
fl2 sin2Re

= sin2 / {c
2 -

(c
2 - a2

) sin2

(^ + -

whence eliminating Re between these equations

..._- H2
(
22222

sm2 7 = ^
,

ft4-a2
c2

165. Another interesting case is that of reflection at a twin surface of

a crystal *. Taking the surface as the plane x = 0, the only difference

between the two media is then that which corresponds to a rotation through
180 about the axis of # perpendicular to the twin plane.

Let us assume that there is a plane perpendicular to the twin surface,

with respect to which each medium is symmetrical, and let us consider only

the two cases in which the plane of incidence is parallel and perpendicular

respectively to this plane of symmetry.

* Lord Bayleigh, Phil. Mag. (5) xxvi. 246 (1888).

w. 17
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When the plane of incidence is coincident with the plane of symmetry
the axis of y is a principal axis, and we have

i\ A / r
I*i2

==
<*23

== "> 012
=

"23 v,

Then the values of I are determined from

{s
2 - a* (I

2 + n2

)} [s
2 -

a^l* - aun
2 2asl ln]

=
0,

the upper and lower sign corresponding to the upper and lower medium

respectively and k = or oo according as

s2 = #22 (I
2 + nz

) or s2 = a^ I
2 +o^2 + 2a31 In.

When the vector or is in the plane of incidence, s2 = a^ (I
2 + n2

) and

I' = l
}

1 = I, and the conditions (16) and (17) give

jA--D'=A, A+#'=A,
. . D' = 0, and there is no reflected wave.

Again, when OT is perpendicular to the plane of incidence,

s2 = a^l
2 + ann2 + 2a3l ln,

and the conditions (18) and (19) give

A + D " = De , (a^k - OK )A + (33 1" - a* n) D" = (a,, I, + asln) De ,

whence a^ (I"
- 12) D" = {033 (le

- 12) + 2aslw} De .

But s2 = a&le + nn2 + 2a31 len = a&lf + ann
z 2a31 l2 n,

.

'

33 (I/
- 4

2

) + 2asln (le + 12)
= 0,

or a.*, (k
-

1*) + 2a3in = 0.

Hence D" vanishes and in this case again there is no reflected wave.

It follows then that when light, whether common or polarised in any manner,

is incident in the plane of symmetry there is no reflection at the surface of

the twin plane.

Next let the plane of incidence be perpendicular to the plane of symmetry,
then the axis of z is a principal axis, and we have

3i
=

2s
=

0, &si
=

&2s
= 0, 612

= a12

On = dn , 622
=

G&22, OS3
=

#33,

and consequently for both media

(s
2 -

a** (I
2 + n2

}} {s
2 -Os3 l

2 - Ou?i
2

}
=

(I
2 + n2

) w
2^2

......... (28),

while t _ ..... ...(29)|

the upper and lower sign referring to the upper and lower medium

respectively.
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The values of I are thus + I and + V for both media, and the corresponding
values of k are k and k' for the upper, and k, k' for the lower medium,

and taking the positive values of I to refer to the incident waves, we must

also take the positive values for the refracted waves.

The boundary conditions then give

ZA + I'D,
-W - I'D" = ID, + l'De

&A + k'D, + kD' + k'D" = -kD - k'De

klD, + k'l'D2
- klD' - k'l'D" = - klD - k'l'De ,

or writing K =
k'/k, L = I'fl,

A - D'+ L(D2 -D") = D + LDe

D, + D' + D2 +D" =A +A
A + #' + K(A + D" )

= -A - KDe

.(30).

Solving these equations we obtain

D'=
K (L -V r/

D" =

(L -K}(1- KL)
L-l

+ 1)A + X (g + 1) A]

...(31).

166. We will now introduce the simplification, that the doubly refracting

energy is small. Then an , a^, a^ are nearly equal and a12 is small, under

which circumstances I and I' are nearly equal, so that L = 1, and

D" = -
.(32).

If now the waves A A be regarded as due to a stream of light from an

isotropic medium passing into the crystal through a surface parallel to the

twin plane, under the condition (such as gradual transition) that no light is

lost by reflection, and if the optical power of the medium be so nearly the

same as that of the crystal that the refraction may be neglected, then

denoting the amplitude of the components of the vector us perpendicular and

parallel to the plane of incidence by F and G for the incident stream and by
F' and G' for the reflected stream, we have

F' = kD' + k'D", G' = VFT^2
(D' + D")

(33),

172
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and in these equations we may identify D^...D" with the quantities in

equations (32), provided the thickness of the plate is so small that its effect

may be neglected.

We have then

l kk'l'-l kk'(l'-l) G_
l(k'-k) */l

2 + n2
'

= V/2~+^. F.

Now eliminating s2 between (28) and (29), we obtain

a12 nk? {(OK ass) & + (^22 n) n
2

}
k a12 n (I

2 + n2
)
= 0,

and this equation may be regarded as a quadratic for determining the two

values of k if the difference between I and I' be neglected : hence

kk' = - (l
z + n2

).

Also a12n& = a& (I
2 + n2

)
- s2

, d^nk' = a^ (I'
2 + n2

)
- s2

,

a.n(k' k) = a (V2
I
2
)

r i
1

t ft
.

and 7 , .
=

k k
We thus have finally

, w\/J2 + n2 a12 sin i

2 cos2
i

sint ^
2l2 a^ 2cos2 ta22

and if /, /' be the intensities of the incident and the reflected light

sin2
i

4 cos4 i

Thus the intensity of the reflected light is proportional to that of the

incident light, whatever the state of the latter as regards polarisation : the

reflected light is unpolarised, if the incident light be so; while, if the

incident light be polarised in a plane parallel or perpendicular to the plane
of incidence, the reflected light is polarised in the opposite manner.

If the thickness of the plate cannot be neglected, the retardations of the

streams in their passage to and from the twin surface will generally modify
the relations between the polarisations of the light before entering and after

leaving the crystal. It is clear, however, that if the incident light be

unpolarised, so is also the light reflected from the crystal; for there is

nothing to alter this character in the passage of the light through the plate,

neither is it lost, as has been shown, in the act of the reflection. On the

other hand, if the plate be thick, the reversal of the polarisation of the

reflected light, when the initial stream is polarised in one of the principal

azimuths, will only occur in all probability for small angles of incidence *.

* Lord Kayleigh, loc. cit. p. 255.
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167. The interest of this investigation lies in the explanation that it

affords of the chief features of a remarkable phenomenon of crystalline
reflection exhibited by iridescent crystals of chlorate of potash, that is

ascribed by Stokes* to a thin layer, that he regards as twin stratum,
situated within the crystal and about a thousandth of an inch in thickness.

The chief peculiarities of this internal coloured reflection, as described by
Stokes, have been summarised by Lord Rayleighf as follows:

(1) If one of the crystalline plates be turned round in its own plane,
without alteration of the angle of incidence, the peculiar reflection vanishes

twice in a revolution, viz. when the plane of incidence coincides with the

plane of symmetry of the crystal.

(2) As the incidence is increased, the reflected light becomes brighter
and rises in refrangibility.

(3) The colours are not due to absorption, the transmitted light being

strictly complementary to the reflected.

(4) The coloured light is not polarised. It is produced indifferently

whether the incident light be common light or light polarised in any plane,

and is seen whether the reflected light be viewed directly or through a Nicol's

prism turned in any way.

(5) The spectrum of the reflected light is frequently found to con-

sist entirely of a comparatively narrow band. When the angle of incidence

is increased, the band moves in the direction of increasing refrangibility and

at the same time increases rapidly in width. In many cases the reflection

appears to be almost total.

To these Lord Rayleigh has added the further peculiarity, first predicted

by his theoretical investigation, that when the light is incident in a plane

perpendicular to the plane of symmetry, the polarisation is for small angles

of incidence reversed in the reflected stream, if it be either parallel or

perpendicular to the plane of incidence.

The theory of reflection at a twin plane is however incompetent to explain

the copiousness and the highly selective character of the reflected light, and

Lord Rayleigh J is inclined to attribute these characteristics to repeated

alternations of structure due to a large number of twin planes, within the

thin stratum that is the seat of the colour. He has in fact shown that the

narrowness of the band in the spectrum of the reflected light at nearly

normal incidence and its widening as the incidence increases is what wo.nd

be expected in the case of reflection from such a laminated medium; while

the movement of the band towards the blue end of the spectrum is.iccounted

for by the increasing obliquity within the crystal, as in the pjuinary theory

of thin plates.
* Proc. R. S. xxxvni. 174 (1885).

+ Phil. Mag. (5) xxvi. 256 (1888). $ loc. cv. p. 257.



CHAPTER XIV.

THE INTERFERENCE OP POLARISED LIGHT.

168. THE first discovery of the interference that occurs when a stream of

polarised light is transmitted through crystalline substances was made by

Arago in 1811*. Malus had already observed that, when a plate of a doubly

refracting crystal is interposed between a polariserf and an analyser regulated
for extinction, the light is partially restored

;
and Arago found that in the

case of white light and with a plate that is moderately thin, the light is no

longer white but coloured, and that a variation of brilliancy but not of tint

is produced by a rotation of the plate in its own plane, the polariser and

analyser remaining fixed, while a rotation of the analyser, the plate and the

polariser retaining their positions', causes a change of colour, which passes

through white into the complementary tint.

On the publication of Arago's memoir this chromatic polarisation, as it is

sometimes called, was subjected to a searching investigation by BiotJ, who

during the years 1812 to 1814 succeeded in establishing the experimental
laws of the phenomenon. Biot's earliest researches were limited to the case

in which a stream of nearly parallel light fell upon the plate of crystal : the

phenomena of rings and brushes, that are seen when the incident pencil is

conical, were first discovered by Brewster in the case of uniaxal crystals in

1813, and in that of biaxal crystals in 1814.

169. The first to apply the principles of the wave-theory to the

explanation of Chromatic Polarisation was Thomas Young ||.
From the

* Htm. de la prem. Classe de I'Instit. xn. 93 (1812) : (Euvres Completes, x. 36.

t'- A polariser is an instrument for obtaining a polarised beam of light: it is called an

analyser, when it is used for investigating the character of a stream of light or for reducing it to

a given plaice of polarisation.
Mem. de ^ prem. Classe de I'Instit. xn. 135; xin. lre

partie 1, 2e
partie 1, 31 (1812). Mem.

d'Arceuil, m. 132
(ixi3). Traite de Phys. iv. (1816).

Treatise on New
\philosophical Instruments. Edinburgh (1813), p. 336. Phil. Trans, civ.

187 (1814).

|| Quarterly Review, x.
T 42 (1314) : Misc. Works, i. 269.
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results of Blot's experiments he observed, that a plate of crystal in polarised

light exhibits the same tint as a thin plate of air in transmitted light, when
its thickness is such that the relative retardation of the ordinary and the

extraordinary streams produced by the crystal is the same as that of the

interfering streams in the case of the plate of air, and from this fact he drew
the inference that the phenomenon is the result of the interference of these

two streams.

This explanation is, as was recognised by its author, incomplete, for it

makes the phenomenon of colour depend upon the plate alone and leaves out

of account the action of the polariser and the analyser that are found to be

necessary for the production of the interference. In order to remove this flaw

in Young's explanation, Fresnel and Ara,go* devised a series of experiments
to determine whether and in what manner polarisation of the light modifies

the ordinary laws of interference. The results of these researches are summed

up in the following five laws of the interference of polarised light.

(1) Two streams of light polarised in perpendicular planes do not

interfere under the same circumstances as two streams of common light,

(2) Two streams polarised in parallel planes give the same phenomena
of interference as two streams of common light.

(3) Two streams, polarised at right angles and coming originally from

a stream of common light, can be brought to the same plane of polarisation

without thereby acquiring the faculty of interfering.

(4) Two streams, polarised in perpendicular planes and coming originally

from a beam of polarised light, interfere as common light when brought to

the same plane of polarisation.

(5) When two streams, coming from a stream of polarised light, are first

polarised at right-angles and then brought to the same plane of polarisation,

it is necessary in calculating the conditions of the interference to add a half

wave-length to the actual relative retardation measured in length, unless the

initial and final planes of polarisation lie in the same angle between the two

perpendicular planes.

These laws are a direct consequence of the transversality of the polarisation-

vector, already deduced in Chapter II as a result of the first law. Thus the

gain or loss of half an undulation required in accordance with the fifth law

appears at once as due to the process of resolution of the vector
;
and this

explains the necessity of the polarisation of the primitive light for the

production of interference with two streams polarised at right-angles and

subsequently analysed, for common light may 'be represented by two in-

dependent streams polarised at right-angles, and as the interference

* Fresnel's experiments were commenced in 1816 (CEuvres Completes, i. 385) ;
Fresnel and

Arago published their memoir in 1819 (Ann. de Ch. et de Phys. (2) x. 288; (Euvres Completes de

Fresnel, i. 509; (Euvres Completes d'Arago, x. 132).
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phenomena due to these two streams are complementary, they will obliterate

one another.

170. In the final series of experiments by which Fresnel and Arago
established the laws of interference of polarised light, the arrangement was

adopted that had already been employed by Young for producing interference

fringes with common light.

A stream of light from a luminous point fell upon an opaque screen

pierced with two parallel slits near to one another, and after passing through
these apertures was received in an eye-lens. The light that traverses the

slits gives rise to two systems of diffraction bands, with which we need not

concern ourselves, and intermediate to these a set of interference fringes, that

will be displaced to the right or the left, according as the stream from the

slit on the right or the left side is retarded relatively to the other.

On placing a thin plate of selenite before the two slits it was found that

no change in the phenomenon occurred, a single system of fringes being

produced exactly as was the case before the plate was introduced. From the

position of these fringes it is clear that they are due to streams that have not

acquired any relative retardation in traversing the selenite, and they must

consequently be ascribed to the superposition of two systems of bands, the

one produced by the ordinary streams, the other by the extraordinary streams

coming from the two slits. It follows then that two streams polarised in

parallel planes interfere as common light.

If streams polarised in perpendicular planes also interfere, there could be

two additional systems of fringes, situated on either side of the former and

arising from the interference of the ordinary stream from the one slit and the

extraordinary stream from the other slit. No trace of these fringes was

however seen under any circumstances, nor did they become visible when

the light after passing the eye-lens was analysed in a plane inclined to the

principal section of the selenite.

In order to place this result beyond a doubt, the plate of selenite was

then cut in half, and replaced in front of the slits, after the half covering one

slit had been turned in its own plane through a right-angle. The central

system of fringes then disappeared and was replaced by the two lateral

systems, due to the ordinary stream from the one slit interfering with the

extraordinary stream from the other, these now being polarised in parallel

planes and retarded relatively to one another. The two ordinary streams, as

also the two extraordinary streams, no longer interfered, as they were polarised

in perpendicular planes.

Returning to the arrangement of the first experiment, the light incident

on the selenite was next polarised in a plane at 45 to its principal section,

and a rhomb of Iceland spar was placed before the eye-lens with its principal
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section parallel to the primitive plane of polarisation : then in each image

given by the spar the central system of fringes, together with the two lateral

ones, was produced, and the lateral systems in the extraordinary image were

seen to be displaced so as to become complementary to the lateral systems in

the ordinary image. This experiment proves the fourth and the fifth laws
;

but in order to check this result, Fresnel substituted for the rhomb of spar
a plate of selenite too thin to give sensible separation of the images, and then

found that the six systems of fringes gave by their superposition only one,

the lateral systems being blotted out, which proves that these systems in the

case of one plane of analysation are obtained from those analysed in the

perpendicular plane by the addition of a half-wave to the actual difference

of path.

171. Fresriel's and Arago's experiments have been modified and extended

by subsequent observers*, and we owe in particular to Machf an experiment
that may be described, as it possesses a special theoretical interest.

We have seen that, when a telescope is focussed on a narrow line of

monochromatic light and the object-glass is limited to a slit parallel to the

line, the geometrical image of the line is bordered by a system of diffraction

fringes, and that on covering one half of the slit with a retarding plate the

bands of an odd order are shifted towards the side of the retarded stream,

while those of an even order retain their position. If the light that passes

be white, the diffraction phenomenon may be analysed by a spectroscope with

its slit in the plane of the pattern and perpendicular to the fringes, and

a spectrum is then obtained with dark bands running along it, that approach

one another as the blue end of the spectrum is neared.

This was the arrangement that was adopted by Mach, who covered the

two halves of the slit with equal plates of quartz cut parallel to the optic

axis and so placed that their principal sections were perpendicular to one

another.

If we suppose that the slit is vertical and the plate on the left-hand side

has its principal section vertical, the streams that we have to consider are Lv

and Lh from the left-hand half polarised respectively in a vertical and

horizontal plane, and the corresponding streams Rv and Rh from the right-

hand half of the slit, and of these Lh and Rv are retarded relatively to Lv and

Rh by an amount that increases from red to violet light.

Now Lv and Rv , being polarised in parallel planes, will give rise to

a system of fringes, and as Rv is retarded relatively to Lv ,
the bands of

an even order will retain their former positions, but those of an odd order

will be displaced towards the right by an amount that increases considerably

as the wave-length diminishes. A similar result is obtained from the streams

*
Stefan, Wien. Ber. LIII. (2) 548 (1866) ;

LXVI. (2) 425 (1872).

t Mach and Kosicky, ibid. LXXII. (2) 197 (1876).
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Lh and Rh, the displacement being in this case to the left. Finally, as regards

the stream resulting from Lv and Rv ,
as also that resulting from Lh and Rh>

these are polarised in perpendicular planes and consequently give rise to no

interference. Hence instead of the bands a ancl b seen with an uncovered

slit, the spectrum will be traversed by three series of lines a, c, d.

dac

Fig. 39. Fig. 40.

The insertion of a polarising prism either before the slit or in the

eye-piece does not affect the phenomenon, unless the plane of polarisation

or of analysation is either vertical or horizontal, but in these two cases the

bands d and c respectively disappear.

Next let a polarising prism be introduced both before the slit and in the

eye-piece of the telescope, the planes of polarisation and analysation being
inclined at an angle of 45 to the vertical : then we have four streams Lv ,

Lh ,

Rv , Rk of equal intensity coming from the same polarised stream and finally

brought to the same plane of polarisation. If then the planes of primitive
and final polarisation be parallel, the streams Lv and R^, as also the streams

Lh and Rv will give the system of bands a and b, since they start from the

slit without any relative retardation, and in addition, inasmuch as the stream

resulting from Lh and Rv is retarded relatively to that resulting from L v and

Rji by an amount that is constant for any one wave-length, and increases from

the red to the violet, there will be a set of horizontal bands e, exactly the

same as would be obtained if one of the plates of quartz were placed between

the polariser and the analyser and the light traversing the system were
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analysed by the spectroscope. When the planes of polarisation and analysa-
tion are crossed, we have to add X/2 to the actual retardation in length, and
the system a will remain unchanged, while the system b will be displaced by
an amount corresponding to X/2, which will bring them into coincidence with
the bands a, the central band becoming dark : similarly the horizontal system
of bands e will be replaced by the complementary system e'.

a b

e'

Fig. 41. Fig. 42.

172. Returning now to the interference phenomena produced by crystal-

line plates, let us suppose that a stream of light is received on a screen after it

has traversed an optical system containing a polariser, a plate of crystal and

a second series of lenses containing an analyser. The interference at any

point on the screen is the same as' at its image formed by the second set of

lenses, when the light emanates from the image of the actual source due to

the first optical system, and we may consequently suppress the lenses and

consider merely the passage of light from a polarised source L through the

plate of crystal to a screen 8, the streams on arrival being supposed to be

reduced to a common plane of polarisation. For the sake of simplicity we

may assume that L and 8 are parallel to the faces of the plate.

. Let us first consider a single point of the source. Since the two

streams from that meet at a point P of the screen pass through the crystal

in different directions, their planes of polarisation after traversing the plate

are not strictly at right-angles, but this effect of the double refraction on
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the polarisation may be left out of account in most practical cases, and to the

same degree of approximation we may also suppose that these planes of

polarisation and the initial and final planes of polarisation intersect one

another in the same straight line.

Hence if a, /3, i/r
be the angles that the primitive and final planes of

polarisation and the plane of polarisation of the quicker wave within the

plate make with a fixed plane, and if B be the relative retardation of the

streams at P measured in length in air, the effect at P for light of wave-

length X is represented by the vector

[a\. cos
(i/r a) cos (^ yS) + a\ sin

(i|r a) sin
(tfr $) e~l"s

}
eint ,

where K = 27r/\, n = ZTT/T, the change of amplitude due to the refractions

being neglected, and if aA
2

represent the primitive intensity, that at the

point P will be

/ = A
2 cos2

(ijr a) cos
2

(i/r /3) -f ax
2 sin2

(ty a) sin2

(ty /3)

+ 2aA
2 sin (ty a) cos (ty a) sin

(i/r /3) cos (ty /3) cos tc$

= aA
2 cos2

(
-

a)
- aA2 sin 2 (^ - a) sin 2 (^r

-
/8) sin2

(wS/X) (1).

Hence when the light that passes is white, the intensity is

/ = cos2

(/3 a) SAaA
2 SAaA

2 sin 2
(i/r a) sin 2

(i/r /3) sin2

(7rS/\). . .(2),

the summation extending to all the constituents of the composite stream.

The first term in these expressions represents what may be called the

fundamental intensity, that is the intensity when the plate of crystal is

removed, and in the second case has no effect in producing colour at P
;
but

in the second summation 8/X and in general i/r depend upon the wave-length,
so that the different constituents of white light enter in different degrees,

and this summation is the representation of a stream of more or less coloured

light.

173. We must now determine the relative retardation at P of the two

streams emanating from 0. Let

T be the thickness of the plate,r

h, h' the distances of its surfaces from and P respectively,

i, , i*i the angles of incidence on the plate,

i\ , ?\j the corresponding angles of refraction,

A4!, f* the refractive indices: then

8 = (k + h') (sec t'2 sec i\) + T (/tj sec r2 /^ sec TJ) (3),

with the condition

= (h + h') (tan i. - tan i,) + T (tan r*2
- tan rx) (4) ;
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whence multiplying (4) by sin ^ and subtracting it from (3), we have

COSt2

- sn
L sn r-2

cos 7*2

- sn sn r

cos r1

ft'

Fig. 43.

Let

where sin / = fa sin 72X
=

p*_ sin 722 ,

e 1/1, % being small quantities, since the doubly refracting energy is in most

cases weak
;
then

sn ii sn r2

cosr2

._
sin I cos2 J?2 + & cos / sin2 R^ tj2 sin / sin Rz cos .Rj

sinR2 cos U2

== sin / cotR2 + e cos 7 tan R2 ,

/.. sin R2\

fa sin ^1 sin r-^

cosrj

= sin 7 cot RI + e cos 7 tan 7^ ;

whence neglecting e
2

8 = Tsin 7 (cot R2 cot 72j) + Te cos 7 (tan 722 tan 7^)

,. 7- / , r> t. T> \ i rn r gin (7^2 7^)= T sin 7 (cot R2 cot -aj + 1 e cos 7 j^-
cos HI cos /i2

= 7T

sin7(cotJ?2 -cot721) (5),

since e sin (722 TJx) is of the order of the terms neglected.

To this approximation then the relative retardation is independent of the

distances of and P from the plate, and depends upon the mean of the
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angles of incidence on the plate, or on the mean of the angles at which the

interfering streams meet the screen at P.

174. Suppose now that the colour due to the light from appears to be

the same over a circle B surrounding the point P, then for all points of this

circle the second term in the expression (2) must represent a stream of light

of a practically constant tint, which may be expressed by the inequality

M+ e > 2x aA
2 sin 2 (^ - a)sin 2 (^ - )sin

2

(TT^/X) > M - e (6),

the colour represented by M being independent of the actual value of aA >

provided Sa^2 constitutes a stream of white light, and e representing a very
small variation of tint.

Let us now limit the source to a circle A round the point 0, such that

the rays from any point of the contour of A that meet at P are parallel to

the rays from that intersect at some point on the edge of B. Then the

intensity at any point of the area B will be

2 {cos
2
(/3
-

a) Sxctx
2 - 2 A a*

2 sin 2 (^ - a) sin 2 (-f
-

) sin
2

(irS/\)j. ..(7),

the summation IS extending to all points of A that contribute to the illumi-

nation of the point in question. But the rays from any point of A to any

point of B are parallel to those from to some point of this circle B and

therefore the relation (6) holds for each term of the summation 2 and each

contributes to the illumination light of practically the same tint, so that the

colour of the area B is unaffected by an extension of the source to the

amount assumed, this result being independent of the distance of the screen

from the plate.

Now the relative retardation of the streams from at any point of the

screen is, as we have seen, independent of the distance of the point from the

plate and depends upon the mean angle of incidence on the screen and

therefore the area B, for which the relation (6) holds, increases as the screen

is moved parallel to itself away from the plate. From this it follows that

with a source of given size there is a limiting distance of the screen from

the plate, "at which the interference is first seen and beyond which it is

always visible.

The expression for the retardation shows that for an uniform tint over

the whole field the light must consist of nearly parallel rays. In this case

the colour is perceptible on the surface of the plate itself, and the fringes

seen with crystalline wedges and the patterns given by the superposition of

plates of varying thickness are localised on the crystalline surface, since in

other planes the streams to a given point from the different available points

of the source traverse the crystal at places where the thickness is different

and the relation (6) no longer holds for the different constituents of the

summation (7).
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On the other hand with a conical pencil, giving the phenomena of rings
and brushes, there is partial localisation, as an extension of the source leads

to an obliteration of the interference until the screen is at a considerable

distance from the plate, and in most cases, particularly when the light is

monochromatic, the rings and brushes are only seen in the principal focus of

the observing system of lenses, an indefinite extension of the source being
then permissible.

175. The two classes of interference, produced by crystalline plates,

though very different in appearance, are in reality explained by the same

principles: in the case of nearly parallel light, the expressions (1) and (2)

have the same value over the whole extent of the field, while in the case

of the rings and brushes, observed with conical pencils of light, the intensity
varies from point to point of the plane, in which the phenomenon is

observed.

Let us first consider the simpler case, in which the light is nearly parallel.

When the light is monochromatic, the intensity is given by

/ = a2

{cos
2

(/3
-

a)
- sin 2 ty - a) sin 2 (^ - /3) sin2

(irS/X)},

and if the polariser and analyser remain fixed, while the plate is rotated in

its own plane, there are eight positions given by

i/r
=

a, 7r/2 + a, 7r + a, 37r/2 + a, @, 7T/2 + /3, 7T + /3, 37T/2 + /S,

in which the intensity is the same as before the introduction of the plate, and

between these positions the intensity becomes a maximum or a minimum.

If however 8 = n\ the intensity is unaltered by the rotation.

In the special case in which the planes of polarisation and analysation

are parallel, the intensity is

a2

{1
- sin2 2 0/r

-
a) sin2

(-n-S/X)},

and is a maximum when the planes of polarisation of the streams within the

plate are parallel and perpendicular to the primitive plane of polarisation

and is a minimum when they are inclined at 45 to this plane, the field

being completely dark in this case, when 8 = (2n + 1) X/2.

When the planes of polarisation and analysation are crossed

I = a2 sin2 2 (^ - o) sin2
(vrS/X),

and the field is dark if 8 = n\, and in other cases the light is entirely cut off

when the planes of polarisation of the transmitted streams coincide with the

initial and final planes of polarisation.

When the initial light is white, the intensity is given by the expres-

sion (2). In strictness, the angle -/r
is dependent upon the wave-length, but

when the dispersion is weak relatively to the double refraction, the product
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sin 2 (i|r a) sin 2
(i/r /3) has sensibly the same value for all terms of the

summation, and we may take as the expression for the intensity

/ = cos2
(
-

a) 2aA
2 - sin 2 (^ - a) sin 2 (^ - ft) 2aA

2 sin2

(irS/X).

Since then the first term in this expression represents a stream of white

light, the plate will appear uncoloured, when the plane of polarisation of

either of the streams transmitted by it coincides with either the primitive or

final plane of polarisation. In intermediate cases the field is coloured, the

tint changing to its complementary as the plate passes through one of these

eight positions, since the second term in the expression for the intensity then

changes sign.

The plate exhibits only one colour during its revolution, when the planes

of polarisation and analysation are either parallel or crossed
;
as the intensity

in these cases is given by

/ = 2ax
8 - sin2 2 - a 2ax

2 sin2

and / = sin 2 2 (^ - a) 2aA
2 sin2

(ir&/\),

respectively, the colours being thus complementary.

If the polariser and plate remain fixed, while the analyser is turned, the

plate exhibits no colour for four positions of the analyser given by

ft=TJr, ^ + 7T/2, T/r + TT, 1/T + 37T/2,

and the colour changes to its complementary tint, as the analyser passes

through one of these positions.

176. The crystalline plate shows no colour when it is very thin and also

when its thickness exceeds a moderate amount. The reason for this is

obvious : in the former case, the retardation of phase varies so little with

the wave-length, that the resulting intensity is practically the same for all

colours
;
in the latter case it alters so rapidly that for a slight change in the

wave-length the intensity passes from a maximum to a minimum, and con-

sequently so many constituents of the white light are weakened and these

are so close to one another in colour that the light presents to the eye the

appearance of being white. The true character of the light may be ascer-

tained by analysing it with a spectroscope, when a spectrum is obtained

traversed by dark bands corresponding to the tints that are weakened or

annulled.

It is however possible, even with thick plates, to obtain the phenomenon
of colour by combining two of them in a suitable manner between a polariser

and an analyser : in order that this may be effected, the retardations of phase
introduced by the two plates must nearly balance one another.

Making the same assumptions with respect to the polarisations as in the

case of a single plate and neglecting the effect of the refraction from the
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first into the second crystal, let the primitive and final planes of polarisation
and the planes of polarisation of the quicker waves in the two plates make
angles a, ft, fa, fa respectively with some fixed plane, and let ^ be the
relative retardation in length in air for the two streams of given wave-length
that traverse the second plate with the same speed, S2 that for the two
streams that pass through the first plate at the same rate

; then after

traversing the analyser, the resultant stream will be represented by the
vector

a [{cos (fa
-

a) cos (fa
-
fa)

- sin (fa
-

a) sin (fa
-
fa) e -"**} cos (fa

-
ft)

+ {cos (fa a) sin (fa fa) e~ tlcS*

+ sin (fa
-

a.) cos (fa>
-
fa) e-(

5

i+s*)} sin (fa
-

ft)] e int

and the intensity, obtaining by multiplying this by the conjugate ex-

pression, is

A 2 + B* + Cz +D2 + 2 (AB + CD) cos K8, + 2 (AC + BD) cos S2

+ 25(7 cos K (8,
- 83) + 2AD cos K (81 + 8.)

= (A + B + C+ D)
2 - 4 (AB + CD) sin2

(TT^/X) -4,(AC + BD) sin2
1

- 45(7 sin2 {TT (8l
- S2)/X}

- 4AD sin2

{TT (81 + 82)/X}(c\cos2
(ft a) + sin 2 (fa a.) cos 2 (fa ft) sin 2 (fa fa) sin2 1

X
t\

cos 2 (fa a) sin 2 (fa
-

ft) sin 2 (fa fa) sin2-~
X

+ sin 2 (fa a) sin 2 (fa ft) sin2

(fa fa) sin2 Mr -

- sin 2 (^ -
a) sin 2 (^r2

-
/S) cos

2

(fa
-
fa) sin2 1 z

......... (8).

It follows from this that the combination acts as if only the first plate were

present, when the plane of polarisation of the quicker wave in the second is

parallel or perpendicular to the plane of analysation (fa = y9 or /3 + Tr/2) and

that the first plate is inoperative, when the plane of polarisation of the

quicker stream within it is parallel or perpendicular to the primitive plane

of polarisation (fa
= a. or a + Tr/2). According as the planes of polarisation

of the quicker waves in the plates are parallel or crossed (fa = fa or

fa 7T/2), we have

and

/= a8

{cos
2

(ft -a)- sin 2 (^ -
a) sin 2 (^ -

/3) sin2^ 1+ 2H
I

X j

/ = a2

{cos
2

(/8
-

a)
- sin 2 (^ - a) sin 2 (^ - ) sin

2
"
^\~

8

^\ ,

(
*

)

w. 18
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that is, the combination acts as a thicker or a thinner plate than either

of the two constituent plates.

From the foregoing investigation we obtain a very delicate test for slight

traces of double refraction in a plate. When the retardation of phase for

light of mean wave-length amounts to IT or to a small multiple of TT, a

crystalline plate between a crossed polariser and analyser shows in white

light a distinctive greyish violet colour, known as a sensitive tint from the

fact that it changes rapidly for a slight alteration in the retardation, becoming
blue or red according as the retardation is increased or diminished. If then

the plate to be tested be combined with a plate giving the sensitive tint, a

slight trace of double refraction will be made manifest by a change of colour.

The test is rendered still more delicate by cutting the sensitive plate in two

and reuniting the halves after the one has been turned in its own plane

through a right-angle : since now the planes of polarisation of the quicker

waves in the two halves of the plate are perpendicular to one another, the

tint of the one half will be raised and that of the other will be lowered,

if the compound plate be combined with a second plate giving double

refraction*.

177. If instead of a parallel beam of light a conical pencil be incident

on a crystalline plate, the intensity varies from point to point of the field and

the complete discussion of the phenomenon becomes very complicated. If

however we confine our attention to directions making no great angle with

the axis of the pencil, we may simplify the investigation by assuming that

the planes of polarisation and analysation are constant over the field and that

the planes of polarisation of the streams within the plate are at right-angles

to one another and intersect the planes of primitive polarisation and of

analysation along the axis of the pencil. The intensity is then given in the

case of monochromatic light by the expression (1), namely

( X\

1= a2 Jcos2
(/3

-
a)
- sin 2 ty - a) sin 2 (^ - /3) sin2^l (9),

1
*

J

wherein
-fy

and 8 alone depend upon the direction under consideration.

The interference phenomenon is thus characterised by three systems of

curves
;
the curves of constant retardation, 8 = const.

;
the curves of like

polarisation, ty
= const.

;
and the curves of constant intensity, /= const.

At all points of the field, for which

sin 2 (^ - a) sin 2
(i/r

-
/3) sin

2
(-7rS/\)

=
0,

the intensity is the same as when the plate is removed. This equation
defines (1) a system of curves, for which the relative retardation is an

integral number of wave-lengths 8 = n\ (2) lines of like polarisation -\Jr
= a

*
Bravais, Ann. de Ch. et de Phys. (3) XLIII. 129 (1885).
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or a + 7T/2, ^ =
/3 or /3 + Tr/2, that is lines joining the points for which the

streams within the plate are polarised in planes parallel and perpendicular to

the planes of primitive and final polarisation. These systems of curves are

called respectively the principal curves of constant retardation and the

principal lines of like polarisation. The latter lines divide the field into

regions in which the intensity is alternately greater and less than the

fundamental intensity, but when the planes of polarisation and analysation

are parallel or crossed (ft
= a or Tr/2 4- a), the two pairs of lines coincide and

the intensity of the field except on these lines and on the principal curves of

constant retardation, is in the former case less and in the latter case greater

than it was before the introduction of the plate.

Unless the dispersion of the optic axes is considerable, the principal lines

of like polarisation vary but slightly with the wave-length and thus with

white light appear practically uncoloured : they are hence often called the

achromatic lines. The principal curves of constant retardation on the other

hand depend upon the wave-length, but in general each curve within a region

bounded by principal lines of like polarisation, has the same colour in white

light throughout its length, which changes into the complementary tint on

passing into the adjacent region : when however the pairs of principal lines

of like polarisation coincide, the hue is the same along the whole curve of

constant retardation, whence they are sometimes called the isochromatic

curves. When the dispersion of the optic axes is large, this is not the

case and the curves of constant retardation are far from isochromatic.

178. The principal curves of constant retardation and the principal lines

of like polarisation divide the field into spaces, in which there is a point

of maximum or of minimum intensity surrounded by curves of constant

intensity

cos2

(/3
-

a)
- sin 2

(>/r
-

a) sin 2 ty - /9) sin2
(-TrS/X)

= const,

in which ty and B are regarded as variables.

The points of maximum and minimum intensity are situated at the

intersection of the curves of constant retardation S=(2n + l)\/2 with

the two pairs of lines of like polarisation

^ = (a + /3)/2, i/r
= (a + /3 + 7r)/2,

and V =
(a + )/2 + ir/4, -f

= (a + )/2 + STT/*

respectively. .

Let us consider the region of the field between the lines
i/r
= a and

i/r
=

and write
- sin 2

(^/r
-

a) sin 2
(i/r

-
/3) sin2

(w8/X)
= k

;

then curves in this region with intensity-constant k are touched by the lines

of like polarisation ty
= (a + /3)/2 + 17, where

- sin (217 + -
a) sin (^ - ft + a) = k,

182
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or sin 2?/
= Vsin2

(/3 a) k,

at the points in which they are cut by the curves of constant retardation

8 = (2n + 1) X/2, and are also touched by the curves

8 = n\ + A, $ = (n+ 1) X - A,

where sin2
(/3 a) sin2

(?rA/A,)
= k,

at the points in which they are intersected by the line of like polarisation

Further each curve with intensity-constant k is cut by a curve of constant

retardation 8 = n\ + e, (e > A) in points on the lines of like polarisation

where sin 2?/ = Vsin2

(@ a) k cosec2

(-Tre/X),

and the other points in which these lines meet the curve are on the curves

of constant retardation 8 = (w + l)X e. Hence if Sn ,
$'n be the relative

retardations at the points in which a line of like polarisation meets an

intensity-curve A; in a space of order n, B'n Sn = \ 2e is independent of the

order of the space and &'n + 8n = (2w + 1) A, is independent of e and hence of

the intensity-curve k. Moreover if Sn-i, &'n-i be the relative retardations

at the points in which the same line of like polarisation meets the curve

with the same intensity-constant k in the space of order (n 1), we have

S'w_1
= n\ e, whence 8n S'n_! = 2e is independent of the order-number n

and 8n + 8'n-i = 2wA. is independent of the intensity-constant k.

Similar results will clearly hold for the other regions of the field*.

179. We have seen that the relative retardation of the interfering

streams at a given point of the pattern is T sin i (cot r2 cot r^, where T is

the thickness of the plate, i the mean of the angles of incidence of the

streams, and rlt r2 the corresponding angles of refraction. Since by Huygens'

principle the traces of the incident and refracted waves on the face of the

crystal travel with the same speed, this expression is equal to flT (n2 n-^,

where O is the distance traversed by the light in air in unit time, and nlt n2

are the reciprocals of the intercepts on the normal to the plate through

a point of the surface made by the refracted waves in unit time after

passing through 0.

Hence if the axis of f be normal to the plate and

*
Lommel, Pogg. Ann. cxx. 69 (1863) ;

Wied. Ann. xxxix. 258 (1890). Niven, Quart. J. of

Math. xra. 174 (1874). Glazebrook, Proc. Camb. Phil. Soc. iv. 299 (1883). Spurge, ibid. v. 74

(1885) ; Camb. Phil. Trans, xiv. 63 (1884).
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be the equations of the waves in unit time after passing through 0, their

relative retardation is

also 6 being the azimuth of the plane of incidence with respect to that of

I = sin i cos 0/fl, m = sin i sin 0/fl.

Let the plane of be chosen so as to contain the greatest axis Oz of the

ellipsoid of polarisation, the plate lying on the side of positive f, then if Ox,

Oy, Oz be the axes of the ellipsoid, and yOtj = </>, zO%= %, the transformation

from the axes of optical symmetry to the new axes, may be effected by the

following successive transformations, each in one plane :

(1) through an angle <f>
in the plane of xy from Ox, Oy to OiC1} Ot],

(2) through an angle ^ in the plane of zxt from Oz, Oa?i to Of, 0%.

The formulae for these transformations are

x = X-L cos <f> 77 sin
<f>, y = xl sin <f>

4- 77 cos 0,

from which we obtain

x = cos
</>

cos % 77 sin </>
+ f cos < sin ^,

y = f sin
<j>

cos % + 17 cos < + f sin sin ^,

Now the equation to the wave-surface referred to the axes of optical

symmetry is

O 9 r 9 To F n n ' ^9
a2 a2

<r
2 6 cr <?

and the condition that the plane Ix + my + nz = 1 should be a tangent plane

to it, is obtained by eliminating o> between the equations

G)
2 =

(I
2 + m? + w2

)-
1 and

-737^
+

&2^ ^ +
GT~i

= '

Hence the condition that in the new system of coordinates the plane

1% + my + nf = 1

should touch the wave-surface is found by eliminating &> between the

equations
9 /79 I 91 2\ 1 /lfl\^ _

/^2 _j_ m*
_j. w^^

i
V^W,

(^cos0cos% m sin ^> + w cos ^>
sin %)

2
(^ sin <f>

cos % +m cos
<f>
+ n sin

<ft
sin^

/,. _ * 62 - w2

.(11).
C
2 -ft)2

The result of this elimination is a biquadratic in n, that from the nature of

I
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the problem has two real positive and two real negative roots, and if nlt nz be

the positive roots, the relative retardation is

Writing b = a for the case of an uniaxal crystal, equation (11) gives the

two equations

eo
2 - a2 = and {(I cos^ + n sin %)

2 + m2

} (&>
2 - c2)

+ (I sin % n cos ^)
2

(o>
2 a2

)
= 0,

and the values of n are given by

a2
(Z

2 +m2 + n2

)
= 1,

c2 (? + m2 + w2
)
- 1 + (a

2 - c2) (J sin % - n cos ^)
2 = 0,

whence Wj = - A/ 1 a2-^ ,

n2
= {V(a

2 cos2

^ + c2 sin2

%) (1
- c

2 sin2

i'/ll
2

)
- c

2
(a

2 - c2) sin
2

^ cos2 sin 2

I'/fl
2

+ (a
2

c
2

) sin % cos % cos 6 sin
i'/fl}

-4- (a
2 cos2

% + c
2 sin2

%)
and

Vli2 a2 sin2
i (a

2 c2

) sin ^ cos ^ cos 6 sin i

T~ a a? cos2

% + c2 sin2

V(a
2 cos2

% + c
2 sin2

y) (Q
2 - c2 sin2

&')
- c

2

(a
2 - c2) sin

2

% cos2 sin2 i -

a2 cos2

% + c2 sin 2

^
In the special case of a plate perpendicular to the optic axis (^ = 0)

B/T= {Vli
2 - c

2 sin2
i - \/H2 - a2 sin2 *j/a,

and when the plate is parallel to the optic axis (% = Tr/2)

8/Z
1= Vfl2 -

(a
2 cos2 + c

2 sin2

0) sin2

*/c
- Vfl2 - a2 sin3 i/a.

Taking now the case of a biaxal plate perpendicular to the greatest axis

of the ellipsoid of polarisation, the biquadratic becomes

(6
2
c2

^
2 + tftfm? + aW) (I* + m2 + w2

)

-
(6

2 + c
2

) Z
2 -

(c
2 + a2

) m2 -
(a

2 + 62

) n
2 + 1 = Q,

or

a262w4 -
{(a

2 + 62

)
- 62

(c
2 + a2

) Z
2 - a2

(6
2 + c2) m2

}
n2

+ (1
- c

2

(P + m2

)} (1
- 6

2
^
2 - a2

?/i
2

}
= 0,

and H!, H2 being the positive roots

(w2
- ntfaW = a2 + 62 - 62

(c
2 + a2

) P - a2

(6
2 + c

2
) w2

V{1
- c

2

(
2 + m2

)} {1
- 62

^
2 - a2m2

},

whence

a?tf
-^
= (a

2 + 62
) fl

2 -
[6

2

(c
2 + a2

) cos
2 6 + a? (6

2 + c
2

) sin
2

0} sin2
i

- 2ab V(fl
2 - c

2 sin2

i) {O
2 -

(6
2 cos2 6 + a? sin2

0) sin2

1} (13).
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In the general case of a biaxal plate cut in any direction, the relative

retardation cannot be expressed in finite terms, and it is necessary to have

recourse to an approximate solution*.

To obtain the Cartesian equations of the curves of constant retardation,

we have to write

f =/cos 9 tan i =/cos 9 sin i, 77 =/sin 9 tan i =/sin 9 sin i,

since i is supposed small. In these expressionsf is a constant and when the

interference is observed in the principal focal plane of a system of lenses, is

equal to the focal length of the optical system.

180. Let us now determine the lines of like polarisation f. If OA, OA'

be the directions of the optic axes of the crystal, we know that the planes of

polarisation of the waves, that travel in a direction OM within the crystal,

bisect the angles between the planes MOA, MOA', that is they are tangent

planes to the cones through OM that have the optic axes for their focal lines.

Referred to the principal axes of the crystal, let the general equation of

the cones be

then the equation of the focal lines is

J^TB + ^TB =O '

so that 2^ being the angle between the optic axes, A, B, C are connected by
the relation

The tangent plane to the cone along the line xjx = y\y = zjz' is

xx' yy' zz' _
~A

+ F +
~C~

and if this be perpendicular to the plane \ac + py + vz = we have

Eliminating then A, B, C between this equation and

x'*fA + y'
2

/B + z'*/C
= and tan2 = (A - B)j(B - C),

we obtain the equation of a cone, such that the planes of polarisation of the

waves, that travel along its generating lines, are parallel and perpendicular to

a given plane.

*
Proc. E. S. LXIII. 83 (1898) : cf. also Zech, Pogg. Ann. xcvn. 129 (1856) ; en. 354 (1857).

t Mac de L^pinay, J. de Phys. (2) n. 162 (1883). Lommel, Wied. Ann. xvm. 56 (1883);

Pogg. Ann. cxx. 69 (1863). Pitsch, Wien. Ber. xci. (2) 527 (1885).
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First we have

I/A l/B l/C

y'z (fj,z vy') z'x' (yx
r

\z) x'y' (\y'

or A : B : C : : x'Kpz vy'} : y
'

l(vx' \z'} : z/(\y' px') ;

but .4cos2 -.B + <7sin2 =
0,

whence substituting for A, B, C,

a?'cos2

y' z' sin2

fiz' vy
1

vx' \z' \y' fjuc'

a cone of the third degree passing through the two optic axes.

Now to the approximation adopted in finding the expression for the

intensity, the direction (X, /*, v) is parallel to the surface of the plate, whence

these direction-cosines are connected by the relation

cos
<f>

sin % . \ + sin
<j>

sin % .
/u, + cos % . v = 0,

and the form of the lines of like polarisation is determined by finding the

section of the cone (14) by the surface of the plate

cos
</>

sin x . x + sin
<j>

sin % .
2/ + cos x- z= T-

181. In the case of an uniaxal plate, ^ = 0, and the surface of like

polarisation becomes the plane

nx'-\y'=0,

and the cone of the second degree

v (a/
2 + y'

2

)
- z' (XV + py'} = 0.

Taking the same axes as in the case of the curves of constant retardation,

we have to write cos % + f sin ^ for x', i) for y', sin ^ + cos ^ for z', and

X' cos % + v sin % for X, // for /A, X' sin x + v cos ^ for v : but the line, for

which the original direction-cosines were X, fi, v, is parallel to the surface of

the plate, hence v = and if it make an angle ty with the axis of
,

IJL
= sin

T/T,
X' = cos ty.

Making these substitutions and writing %=T, the equations of the lines of

like polarisation become

\jf tan % j~r) tan i|r
tan ^ + T(j; + rj tan ty + I

7
tan %) = 0.

The first of these equations represents a series of straight lines through
the extremity of the optic axis (

= T tan %, 77
=

0), and the second a system
of hyperbolas through the same point, the asymptotes of which are the trace

of the principal section of the plate and the line

77 tan i|r
= 0.
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The curves of constant retardation are in this case given by (12) or to

terms of the second order by

B H fl Ia2 -c2
.

where d 2
is written for a2 cos2

% + e2 sin2

%. Hence their equation is

8 = a_0 lo2

-^
2

f l/a__^W I/a a'c'Xf
T d a 2 d2 %/

+
2Ui nd;/2

+
2Vn~ndV72<

The centre of the curves is at the point

and is at infinity, if d3 = ac2
,
and as the coefficient of 2

is then zero, the curves

are parabolas with their axes in the principal section of the plate : the value

of % corresponding to this case is given by

cos2 =
;2 _ />2

* * i * ,a5 + d* c + CT

which always gives a possible value of ^. According as % is less or greater

than this value, the curves will be ellipses or hyperbolas.

The curves can never become straight lines, as the coefficients of f
2 and ?/

2

cannot simultaneously vanish.

182. When the uniaxal plate is perpendicular to the optic axis, the

curves of constant retardation are given by

8 _ VH2 -c2 sinH' A/ft
2 - a2 sin2

i _ (a?
- c2) sin

8
i

_

T~ a ~~eT~

when i is small. For the principal curves of constant retardation 8 = n\ and

with small fields the squares of the sines of the angular radii of these curves

form an arithmetic progression.

The lines of like polarisation in this case are

|
-

77 cot i/r
= 0, 1+77 tan ^ = 0,

and the principal lines of like polarisation are two pairs of straight lines

parallel and perpendicular to the planes of polarisation and analysation.

The illumination of a small area pdpd^r of the field is

a2

{cos
2

(
-

a)
- sin 2 (^ - a) sin 2 (ty

-
) sin2

if we take the approximate value of B and write F for ,
2 _ ;. y. Integrating
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this with respect to p, we obtain for the amount of light that falls on the

area of a curve of constant intensity included between the radii ty and

cos2
(/3
-

a) (p.?
-

pf) d^r
-

\a? sin 2O -
a) sin 2O -

)

F

where pl} /o2
are the distances from the centre of the field to the points in

which the radius-vector cuts the curve. But we have ( 178)

p*/F=n + /\, p.//F
= (n + 1 )

-
e/X,

whence the expression becomes

a2 cos2 (0-a)F(I- 2e/X)^ - a2 sin 2 (^ - a) sin

x
|
^ (1

-
2e/X) + - sin I cty,

(
7T A,

j

which is independent of the order n of the space in which the curve is

situated, and is the same for all curves having the same intensity-constant.

This is true for each strip of the curves, and as all curves in a given region

that have the same intensity-constant, are touched by the same pair of radii,

it follows that the total illuminations of the areas bounded by each of the

curves of a given intensity are the same.

183. With an uniaxal plate parallel to the optic axis, the curves of

constant retardation are to terms of the second order

8 n, x a c f . a a , ^Y ,

"

^ = (a
-

c) 4- - sin2 6 -- cos2 6 sm2
1.

T ac 2H V c )

Hence their equation is

which represents a series of hyperbolas with asymptotes r)jj~
= + Va/c.

If the field be small, there are no lines of like polarisation, as the

polarisation of the streams within the plate is practically constant over the

field, and when the principal section is parallel or perpendicular to either the

plane of polarisation or that of analysation, the intensity is uniform. The

isochromatic curves are most marked, when the planes of primitive and final

polarisation are crossed and the principal section of the plate inclined to them

at an angle of 45.

With larger fields, the lines of like polarisation are a system of hyperbolas
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having for asymptotes the lines 77
= 0, i)

= % tan ty. The real axis of the

hyperbolas is inclined at an angle ty/2 to the axis of and the real semi-axis is

COS Tjr/(l
- COS

>/r).

The principal lines of like polarisation can be best observed in white light

with plates so thick that the coloured bands are invisible: with a crossed

polariser and analyser they are seen as a black cross with its arms in the

planes of primitive and final polarisation, when the principal section of the

plate is in either of these planes, and in other cases they are a pair of

hyperbolas with their real axes in the quadrant containing the optic axis and

equally inclined to this direction, only one hyperbola being in the field, when

the angle between the principal section and the plane of analysation or

polarisation is small.

This affords a ready method of determining the direction of the optic axis

in the case of a plate parallel to it. Starting with the case in which the

achromatic curve is a black cross, the optic axis is parallel to one of the arms

of the cross : if the plate be now slightly turned in its own plane, the cross

becomes an hyperbola with its real axis in the quadrant, into which the optic

axis has turned*.

184. Taking now the case of biaxal plates, let us first suppose that the

surfaces of the plate are perpendicular to the mean line. The curves of

constant retardation are then determined from (13), which may be written

(a
2 - c

2
)
2

(ft
2 sin2 + b2 cos2 6 sin2

i + a2 cos2 sin2 6 sin3
}*

- 4 (a*
- c2)

2 b2 fl2 sin2V cos2 sin2
*

_ 2 j- {(a
2 + 62

) ft
2 - 62

(a
2

-I- c
2
) cos

2 sin2 i - a2

(6
2
4- c

2

) sin
2 sin2

i\

where 2^P is the angle between the optic axes, and their equation is

(a
2 - c2)

2

|6f + a2 cos2
. rf + O2/2 sin2

}

2 - 4p (a
2 - c2)

2 62 H2/ 2 sin

......(15).

The lines of like polarisation are given by

|2 COS2 ^ _
(COS

2 ^ Cot
T/T
- tan ^r) lft-vf = T* sin2 ......(16).

A system of hyperbolas through the points corresponding to the optic axes

(
= + T tan , 77

= 0) having for their asymptotes the lines

( cos2 + r) tan ^ = 0, f-
-

rj cot ^ = 0.

* Lommel, Wied. Ann. xvni. 56 (1883).
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When the angle between the optic axes is very small, the equations take

simpler forms, as we may write a = b in the small terms : neglecting S4 and
2 sin2

i, the curves of constant retardation become

(sin
2
i + sin2 VJ - 4 sin2

>

cos2 6 sin2
i = /f ,

where 2M*' is the apparent angle between the optic axes. In Cartesian

coordinates if the points corresponding to the optic axes be + a, 0, the

equation becomes

a system of Cassini's ovals.

If i', i" be the angles of incidence corresponding to the points in which a

given curve cuts the plane of the optic axes, the complete equation gives

sin' i' + sin' i" = 2 sin'V -
^^fjf ,

and if the curves be Cassini's ovals

sin2
* + sin2 i" = 2 sin2 ^'.

When the angle between the optic axes is small, the lines of like

polarisation become the equilateral hyperbolas

p - 2?7 cot 2i/r
-

T?
2 = T2 sin2

,

and since dy/dl;
= tan 2-^r for 77

= 0, the angle that an hyperbola makes with

the trace of the plane of the optic axes at the point corresponding to an

optic axis is
2i/r,

and hence at this point the angle between the principal

lines of like polarisation is twice that between the planes of primitive and

final polarisation. When these planes are crossed, the principal hyperbolas

coincide, and if either of these planes coincide with the plane of the optic

axes, the principal lines of like polarisation are straight lines in and perpen-
dicular to this plane.

185. With a plate parallel to the plane of the optic axes, the relative

retardation is obtained from (13) by changing c, b, a in cyclical order, if we
take the axis of f perpendicular to its faces, and that of parallel to the

greatest axis of the ellipsoid of polarisation, and as far as terms of the second

order

a2
c
2 S2

/T
2 = (a

-
c)

2 ft2 + (a
-

c) (ac
- 62

) (a cos2 6 - c sin2
6) sin2

i
;

whence the curves of constant retardation are the system of hyperbolas

r2fp _ (n _ /.\2

having the lines
ij/1;

= Va/c for their asymptotes.
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Making the same changes in (16), the lines of like polarisation are

given by

, ,T, 1 cos 2^P cos 2^/r- sin2^ . %* + %rj
- L - cos2 V . 77

2 = Tz
,

sin 2-Jr

and are thus hyperbolas with asymptotes

sin
i|r 77 cos T/T

= 0, cos^ sin2 M*
ij sin

i|r
cos2 ^ = 0.

The real axes of the hyperbolas make angles

\ tan-1 {(1 cos 2^ cos 2\Jr)/(cos 2^ sin
2>/r)}

with the axis of and referred to their principal axes their equation becomes

{
Vl + cos2 2^ 2 cos 2NP cos 2i|r sin

2-^r}
x2

{Vl 4- cos2 2^ 2 cos 2"^ cos 2i/r + sin
2-^r} y

2 = 2T2 sin
2>Jr.

The principal lines of like polarisation are however scarcely visible, as the

polarisation of the streams within the plate varies but slightly within the

field of view.

186. The interference phenomenon, observed with a biaxal plate per-

pendicular to one of the optic axes, has a certain resemblance to that produced

by an uniaxal plate similarly cut
;
the rings, when the field is small, being

circles round the point corresponding to the optic axis.

This may be seen from the following approximate calculation. The relative

retardation of the interfering streams is

8 = Tsin i (cot r2 cot rj)
= QT (cos r2/< 2 cos r^coj).

When the double refraction is weak and the field is small, we may replace the

angles r,, rz by their mean value r and regard o^, <w2 as the propagational

speeds of the waves travelling in a given direction making angles <f>, </>'
with

the optic axes, then

ft)
^ ^ ft)

^ a *- ~ (^

S = LTcosi , r=OTcosr ^rr-
- sin d> sin d>',

<! ft>2 (a>! + (O2) 2*0*

if we write for &>j, a>2 in the denominator their common value b corresponding

to normal incidence : but

sin
</>'
= sin 2 = 2 V(a

2 - 62
) (6

2 - c2)/(a
2 - c2

),

sin
<f>
= sin r '= b sin t'/H,

whence retaining only the first power of sin i

8=T (V(a
2 - 62) (6

2 - c2

)/6
2

}
sin t.

To this approximation the curves of constant retardation are circles with

radii proportional to the relative retardation, instead of the square root of

this quantity, as in the case of the uniaxal plate.
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To obtain the lines of like polarisation, we have to write in (14)

as' = !;cosV + Tsmy, y'-^ z = - sin V + TcosV,

A, = cos ty cos M*, p,
= sin

-fy, v = cos
\/r

sin M*",

which gives

77 (f sin
-Jr 77 cos i/r)

2 27T
cot 2^ ( sin

-\/r 77 cos ^) ( cos
>/r + 77 sin ty)

- T* (f sin 2^-77 cos 2-f)
=

0,

and when the field is very small

sin 2-^ 77 cos 2-Jr
= 0.

Thus in this case, the principal lines of like polarisation are two straight

lines through the centre of the field inclined to one another at an angle equal
to twice that between the planes of polarisation and analysation. When
these planes are at right-angles, these lines coincide and the planes of

polarisation and analysation bisect the angles between this line and the trace

of the plane of the optic axes. Hence as the plate is turned in its own plane,

the principal line of like polarisation turns at the same rate in the opposite

direction. In the case of the uniaxal plate perpendicular to the optic axis

between crossed polariser and analyser, the principal lines of like polarisation

form a black cross, that remains fixed as the plate is rotated about its

normal.

187. When a conical pencil of white light is employed, coloured rings or

bands are obtained, provided, as in all cases of interference, the relative

retardation of the interfering streams is not too great. The isochromatic

curves follow more or less the course of the curves of constant retardation,

unless the dispersion is excessive, and the principal lines of like polarisation

become, when the polariser and analyser are crossed, dark brushes fringed

with colour. The phenomena may however be considerably modified, if the

axes of the ellipsoid of polarisation not only vary in magnitude, but also

change their position, as the wave-length alters.

An uniaxal crystal has its optic axis in an invariable direction for all

colours, determined by the principal axis of the crystallographic system to

which it belongs, and the dispersion only affects the law of distribution of

colour in the coloured curves. There are however a small number of crystals,

such as the uniaxal Apophylite and Brucite of Texas, that are of opposite

sign for the extreme spectral colours, becoming isotropic for some inter-

mediate wave-length.

In biaxal crystals the optic axes have, in the majority of cases, different

directions for the different colours and the plane in which they are situated

may also vary, and crystals may exhibit both dispersion of the optic axes and

dispersion of the mean line. The different cases of dispersion may be most

conveniently examined with plates perpendicular to the first mean line placed
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iu the diagonal position between crossed polariser and analyser, that is with

the plane of the optic axes for light of mean wave-length bisecting the angle
between the planes of primitive and final polarisation.

With crystals of the prismatic system, the axes of the ellipsoid of

polarisation coincide with the crystallographic axes for all wave-lengths and

are fixed in direction, but in some few cases, such as Brookite, their order of

magnitude changes, so that the plane of the optic axes for red light is at

right-angles to the plane of the optic axes for blue light, the crystal being uni-

axal for some intermediate colour. More generally the optic axes are in the

same plane for all colours, the dispersion only affecting the angle between them,
which may be the greater for blue light as in Aragonite, or for red light as is

the case with Topaz. In these more common cases the system of rings is

coloured symmetrically with respect to the plane of the optic axes and to the

perpendicular line, while the colour for which the apparent separation of the

axes is the least is that on the concave side of the summit of the hyperbolic
brushes and on the concave side of the first ring round the point corresponding
to the optic axis at the part nearest the centre of the field.

Crystals of the monoclinic system have one axis of the ellipsoid of

polarisation fixed in direction, while the other two may have any directions at

right-angles to one another in the perpendicular plane the one plane of

symmetry of the system. In a few rare instances, as is the case with crystals

of Magnesium Ammonium Chromate, the fixed axis changes with the colour

of the light from the greatest to the mean or to the least axis of the ellipsoid,

but we need only consider the more ordinary cases, in which for all colours

the fixed axis is (1) the first mean-line, (2) the second mean-line, (3) the

intermediate axis of the ellipsoid of polarisation.

(1) When the first mean-line is in the direction of the fixed axis, the

dispersion affects the angle between the optic axes and, if the position of the

second mean-line vary in the plane of symmetry of the system, the plane in

which the optic axes lie. This is known as " crossed dispersion," of which

Borax affords an example, and is recognised by a symmetrical distribution of

colour in the interference pattern with respect to the centre alone.

(2) If the fixed axis determine the second mean-line, and the position of

the first mean-line in the perpendicular plane be dependent upon the colour,

the optic axes for the different colours are in planes that intersect in the

normal to the plane of symmetry. We then have dispersion of the optic axes

accompanied with dispersion of the mean-line in the perpendicular direction,

with respect to which the colour of the fringes is symmetrical. This is called

" horizontal dispersion
"
and is exhibited by Adularia.

(3)
" Inclined dispersion

"
occurs when the intermediate axis of the

ellipsoid of polarisation is given by the fixed direction, while the other axes

change their direction in the perpendicular plane. The plane of the optic
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axes is then the same for all colours, but there is dispersion of the mean-line

in this plane. This variety of dispersion is shown by Gypsurn, Diopside and

Sphene : it results in a symmetrical distribution of colour with respect to the

trace of the plane of the optic axes on the plane of the interference pattern.

In crystals of the anorthic system none of the axes of the ellipsoid has a

prescribed direction and nothing can be inferred a priori respecting the

character of the dispersion of the optic axes.

188. The rings and brushes obtained with crystalline plates undergo
considerable alteration and even entirely change their character, if the light

employed be elliptically or circularly polarised and be subsequently either

plane, circularly or elliptically analysed.

All varieties of polarisation from plane to circular may be obtained by

associating an ordinary polariser with a plate of crystal of such a thickness

that a relative retardation of A./4 is introduced between the components, into

which it divides a stream of polarised light. Such plates are termed quarter-

wave plates and are usually of mica or selenite, on account of the facility with

which these crystals can be split into extremely thin laminae.

In the case of mica, which is a negative biaxal crystal, the laminae are

perpendicular to the plane of the optic axes and the stream polarised in this

plane is less retarded than that polarised in the perpendicular plane : while

with selenite, a positive biaxal crystal, the plates are parallel to the optic axes

and the stream polarised in a plane parallel to the first mean-line is the one

that is least retarded.

Let us then suppose that we place before a plate of crystal an ordinary

polariser followed by a quarter-wave plate and that the light after passing

through the crystal traverses a second quarter-wave plate and an analyser :

we will further assume that though the light converges on the plate of crystal,

it is so nearly parallel during its passage through the polariser, quarter-wave

plates and analyser, that the polarisations may be regarded as constant over

the whole beam for each of these portions of its course.

Let a be the angle between the primitive plane of polarisation and the

plane of least retardation of the first quarter-wave plate,

^ the angle between this plane and the plane of polarisation of the

quicker wave in the plate of crystal,

T/r2
the angle between this plane of polarisation and the plane of least

retardation of the second quarter-wave plate, and finally

ft the angle between this plane and the final plane of analysation.

Then resolving in turn along directions parallel and perpendicular to the

planes of polarisation of the quicker waves in the successive plates and
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remembering that a retardation of A/4 is introduced by a factor i
,
the light

emergent from the analyser is represented by the vector

a [{cos fa (cos a cos fa + i sin a sin fa)

+ sin fa ( cos a sin fa + i sin a cos fa) e^ l*s
}
cos ft

+ i {sin fa (cos a cos fa + i sin a sin fa)

cos -^2 ( cos a sin ^x 4- 1 sin a cos
A/T,) e~

tKS

]
sin /3] e cn#

= a [A + Bt + Ce-"s + iDe~lltS

}
e tnt

, (say),

where A = cos a cos ft cos fa cos fa sin a sin ft sin^ sin \lrQ ,

B = cos a sin ft cos
>/r1

sin
i/r2 + sin a cos /3 sin fa cos i^,,

C = cos a cos /3 sin fa sin
i/r2

4- sin a sin /3 cos^ cos fa,

D = cos a sin ft sin -^i cos fa + sin a cos ft cos T^ sin fa.

Whence the intensity, obtained by multiplying this by its conjugate ex-

pression, is

I=a*{A- + B
n- + C n-+D 2 +2(AC + BD)cos K8 + 2(AD-BC)sm fc8}

sn2

= a3 (4 + C)
2 + (5 + D)

2 - 4 (AC 4-

l

4 / A T\ r>/-\ 'R'O TTO]+ 4 (AD - BC) sin cos -

[A A, J

= a2

jcos
2

(a
-

/3) cos2 (^ + ^2) + sin2

(a

*7T"O

(sin 2a sin 2/3 cos 2a cos 2/5 sin 2-^ sin
2-^r,) sin

2

A,

CX J\

+ (cos 2a sin 2/S sin 2^ + sin 2a cos 2/3 sin 2i|r) sin cos I ...... (17),
A, X

J

in which expression the first two terms represent the intensity when the plate

of crystal is removed.

We have then, as in the case of plane polarisation and analysation, prin-

cipal curves of constant retardation 8 = riX, along which the intensity is the

same as before the introduction of the plate, but there are in general no

principal lines of like polarisation. The intensity is a maximum or a mini-

mum when

8 cos 2a sin 2/3 sin 2-^, + sin 2a cos 2/3 sin 2-vJr,
t~f\n Vcrp _ __*_._, -_--.-.. _*_ _

A,
"

sin 2a sin 2/3 cos 2a cos 2/3 sin 2-^j sin 2^r2

'

having then the values

a2

/= {1 + cos 2a cos 2/3 cos 2^ cos 2^,

- cos2 2a cos2

2^) (1
- cos2

2/3 cos2 2

w. 19
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189. The above equations contain the solution of all the cases that may
arise, but the most interesting ones are those in which either the coefficient of

sin2

(TT/X) or that of sin (27rS/X) in equation (17) vanishes*.

The coefficient of sin2

(-TrS/X) is zero, when a = 77/4, ft
= or 7T/2, and

when a = or Tr/2, ft
=

Tr/4.

In the first case the light is plane analysed and circularly polarised in

a right- or left-handed direction according as a = + ?r/4 or =
Tr/4 ; and

calling ty the angle between the plane of polarisation of the least retarded

stream in the crystalline plate and the final plane of polarisation, the intensity

is in the two cases

7 = ^ {1 sin 2i/r sin (27rS/X)}.
-

tt

In the second case the light is plane polarised and circularly analysed in

a right- or left-handed direction, according as /3
= + 7r/4 or =

?r/4, if we
understand by a right-handed circular analyser one that permits the trans-

mission of a right-handed circularly polarised stream, in other words a com-

bination of a quarter-wave plate and a plane analyser that, used as a polariser,

produces a right-handed circularly polarised stream. Calling >// the angle
between the original plane of polarisation and the plane of polarisation of

the quicker wave in the plate of crystal, the intensity is

I = -1{1 sin 2^' sin (27rS/X)},

according as the circular analysation is right- or left-handed.

Let us suppose the light to be plane polarised and circularly analysed in

a right-handed direction, then 7 and rj being the angles that the primitive

plane of polarisation and the plane of polarisation of the quicker wave in the

plate make respectively with a fixed plane in the crystal, the intensity is

given by

7 = ^- jl + sin 2 (77
-

7) sin 2-7T

*
I A.J

Hence the illumination is the same as before the insertion of the plate along

the curves of constant retardation S = nX/2 and along the principal lines of

like polarisation 77
=

7, 77
=

Tr/2 + 7 : while in the region for which

7 < 77 < 7T/2 + 7

the dark curves are given by

the absolute minima occurring on the line 77
= 7 + ?r/4, and outside this

region the curves
S = (n + 1/4) X, n = 0, 1, 2...

*
Bertin, Ann. de Ch. et de Phy. (3) LVII. 257 (1859); (5) xvm. 495 (1879).
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are dark, the absolute minima being on the line
77
= y + 37T/4. Thus the

interposition of the quarter-wave plate has had the effect of pushing the

bands outwards by a quarter of an interval in the first region and pulling
them in by the same amount in the remainder of the field.

Similar results are obtained when the analysation is left-handed, and
when the polarisation is circular and the analysation plane.

In order to fix our ideas, let us assume that the primitive and final planes
of polarisation are at right angles ;

then the principal lines of like polarisation

are determined by these planes and the dark curves are expanded in the

region bounded by these lines that contains the line of like polarisation, for

which the plane of polarisation of the quicker wave in the crystalline plate is

parallel to that of the quicker wave in the quarter-wave plate.

Moreover we see that there is a distinction between the behaviour of

positive and negative crystals ;
for

ij being the angle between the fixed plane
and the plane of polarisation of the least retarded stream in the crystalline

plate, the region for which 7 < r\ < y + ?r/2 in the case of a positive plate is

that for which 7 + Tr/2 < 77 < 7 + TT for a similarly orientated negative plate

and vice versa, so that on passing from the one case to the other the parts of

the field, in which contraction and expansion occur, are interchanged.

Now in the case of a positive uniaxai crystal the stream polarised in the

principal section is the least retarded : hence with a plate perpendicular to

the optic axis, the primitive and final planes of polarisation being crossed,

expansion or contraction of the rings will occur in the quadrants that contain

the plane of least retardation of the quarter-wave plate, according as the

crystal is positive or negative.

Turning now to the case of a biaxal plate cut perpendicularly to the first

mean line, let us again suppose the primitive and final planes of polarisation

to be at right angles, and the plate placed in the diagonal position, so that

the plane of least retardation of the quarter-wave plate is either parallel or

perpendicular to the plane of the optic axes of the biaxal plate under con-

sideration. Then the principal line of like polarisation is a rectangular

hyperbola with its asymptotes inclined at 45 to the trace of the plane of the

optic axes and the contraction of the rings will occur in the region of the

field bounded by this hyperbola that contains the line of like polarisation, for

which the plane of polarisation of the quicker wave in the crystal is perpen-

dicular to the plane of least retardation of the quarter-wave plate.

Now if the biaxal crystal be positive, the greatest axis of the ellipsoid of

polarisation coincides with the first mean line, and it follows that corresponding

to points on the trace of the plane of the optic axes lying on the concave side

of the hyperbola, the plane of polarisation of the quicker wave is parallel to the

plane of the optic axes, while it is perpendicular to this plane for the other

192
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points of this trace and for points on the line perpendicular to it through the

centre of the field. Hence with a positive plate, expansion or contraction of

the rings will occur on the concave side of the hyperbola according as the

plane of the optic axes of the biaxal plate is parallel or perpendicular to the

plane of polarisation of the least retarded stream in the quarter-wave plate,

the reverse being the case with a negative biaxal plate.

190. The coefficient of sin(27rS/A,) in equation (17) vanishes when

(1) a = or 7T/2 and = or w/2,

(2) a = 7T/4 and /3
=

ir/4>,

(3) A/TJ + ^2
= and @ = a or a + Tr/2,

or ^i + ^2
=

""/2 and {3
= a or a 4 Tr/2.

The first of these three cases need not concern us further, as the light is then

plane polarised and plane analysed.

In the second case the polarisation and analysation are both circular, the

direction being the same if a = /3
= + 7r/4 and opposite if a = ft

=
7r/4, and

the corresponding intensities are

I = a- cos2

(7r8/X) and / = a" sin2

(frB/X).

There are then no principal lines of like polarisation and the dark curves are

continuous; circles with uniaxal plates perpendicular to the optic axis and

Cassini's ovals with biaxal plates normal to the first mean line.

In the third case the light is polarised and analysed elliptically, the

quarter-wave plates being parallel if^ +
-\Jr2

= and crossed if^ + ^2
=

?r/2.

The character of elliptic polarisation is determined by the ellipse traced

out by the extremity of the polarisation-vector that characterises the stream,

and two elliptic polarisers are similar, if the ellipses be similar for the streams

that they produce ; they have the same sign, if the ellipses be traversed in

the same direction
;
and the angle between them is that included between

the planes of maximum polarisation of the emergent streams. An elliptic

analyser is defined by the nature of the polarisation produced, when its

position being retained the light is transmitted through it in the opposite

direction and the position of the observer is reversed.

With these definitions we see that the polariser and analyser are similar,

parallel and of the same sign, when i/rx + ^r2
=

0, /3
= a and when ^1 + i/r2

=
?r/2,

ft
=

7T/2 a
;

that they are similar, crossed and of opposite sign, when

-^ + -^2
= 0, /3

= 7T/2 -I- a and when ^ +-
i/r.2

=
Tr/2, /3

= a.

The intensity in the first case is

I = a- {1 (1 cos2 2a cos2 2^) sin2

(7r8/\)},

and in the second case

/ = a4

(1
- cos2 2a cos2

2^} sin2

(irBI\).
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As these two expressions are complementary, we need only consider the

phenomenon represented by the second. The principal curves of constant

retardation are given by 8 = nX and these curves are black, the curves

8 = nX/2 being bright : there are no principal lines of like polarisation, since

the expression 1 cos2 2a cos2 2^ is never zero, but the intensity of the bright
curves is a minimum where they are cut by the lines ^ =

0, fa = ?r/2, that is

by the lines for which the plane of polarisation of the quicker wave in the

plate is parallel or perpendicular to the planes of polarisation of the least

retarded streams in the quarter-wave plates, and the intensity is a maximum

along the -lines ^ = ?r/4, ^ =
37T/4.

191. When a conical pencil of polarised light passes through a com-

bination of two crystalline plates and is subsequently analysed, the intensity

at any point of the field is given by (8) and since the angles ^ and ^ as

well as the retardations Sa and &2 in general vary over the extent of the field,

the interference pattern in monochromatic light becomes very complicated.

Thus writing the equation in the form

/= a*\ cos2
(/3 a) sin 2 (ik a) sin 2 (^ /3) sin

2 -

L x

. 7TO2
sin 2

(i|r2 a) sin 2 (-^2 /S) sin 2 - -
X

TTOi . TTOo
2 sin 2 (^TJ a) sin 2 (^.2 ft) sin sm -~

X X

f TrS-, TrSn . . . TTOj . 7TO2
x

{
cos -

. cos - cos 2 (-uTj ~YI) sm ~r~ sin ~T"(XX X A,

We see that when the polariser and analyser are crossed (/3 a = 7r/2) the

intensity is zero only if

o/i v TT&l -o/i V *^sm 2
(I/TJ a) sin - = sin 2

(a/r2 a) sm - -

,
TTOj 7T6, _ .

, ,
. . 7TO] . 7T02 _ n

cos ^ cos cos 2 (iK -Jrj) sin - sin - = + 1XX XX
so that there are no longer continuous dark curves, but only isolated dark

spots given by the intersection of the systems of curves (18)*.

192. When however the field is very small or when the primitive light

is white, so that the interference is visible only for small retardations, the

problem may in many cases be reduced to one of much less complexity by

*
Cf. Langberg, Fogg. Ann. Erg.-Bd. i. 529 (1842). Ohm, Abhandl. Bayer. Akad. vn. 43,

265 (1855). Van der Willigen, Arch, du musee Teyler, in. 241 (1873). Bertin, Ann. de Ch. et de

Phys. (6) n. 485 (1884). Pockels, Gott. Nachr. (1890) 259. Hecht, N. Jahrb. fiir Min. Beil.-Bd.

xi. 318 (1898).
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the possibility of regarding the polarisations of the streams within the com-

pound plate as constant over the part considered.

As an instance of this simplification of the investigation, let us consider

the case of a Savart's plate, which consists of two plates of an uniaxal crystal

of equal thickness, cut at the same inclination about 45 to the optic axis

and superposed with their principal sections at right angles.

Taking as the fixed plane of reference the principal section of the first

plate and regarding the polarisations of the streams within the plate as

invariable over the field, the expression for the intensity reduces to

C
s _ ^ i

/ = a2

1
cos2

(/3 a) sin 2a sin 2/3 sin2
TT -^-

-[
.

I *
J.

Hence the interference pattern depends upon the single system of curves of

constant retardation &j &2
= const., and the principal curves of constant

retardation are given by ^ B2
= n\, and these are bright, black or of inter-

mediate intensity, according as the polariser and analyser are parallel, crossed

or inclined at some other angle.

To determine the form of the curves, we have from 181

. a .
, . . fa a-c-\ ,/.sm" e sm~
l + Hn

"
w) cos~ e sm~

where % is the angle that the optic axis makes with the normal to the plate

and d2 = a2 cos2

% + c
2 sin2

y^ ;
while 8, ig obtained from this expression by

writing 6 90 for 6. Hence the principal curves of constant retardation are

given by

m\ (a- c2) sin y cos v ,
,,

. ,,, . .=
., (cos

- sin 6} sm i
1 a- cos2

% + c
2 sin2 x

c2 (a- c
2
} sin

2 y ^ n .
, m . .

A- ra (cos- 6 - sm2

6) sm2
1.

2U (a
2 cos2

x + c sm2

%)
f

The curves are thus equilateral hyperbolas seen at a considerable distance

from their vertices, with asymptotes parallel to the bisectors of the angles

between the principal sections of the plates. They appear as a system of

parallel straight lines bisecting the angle between the principal sections that

is related in the same manner to the directions of the optic axes of the two

plates.

The terms of the first order attain their maximum importance when

cos 2^ = (a
2

c
2

)/(a
2 + c

2

),
which corresponds to an inclination of the optic

axes of nearly 45 and in this case the bands are very close together.
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193. Returning to the general formula (8), let us consider the inter-

ference phenomena exhibited by a twin uniaxal plate*.

Taking the principal section of the plate as the fixed plane of reference,

let OL represent the normal to the plate,

OJ.], OA 2 the optic axes of the first and

second constituents respectively, OM the

direction of the wave-normal in the

plates, neglecting as we have done in

obtaining (8) the effect of the refraction

at the twin plane : then we have

sin^ = sin r sin #/sin A 1 M,

sin
i/r2

= sin r sin 6/sin A 2M,

and

cos A^M= cos r cos % + sin r sin ^ cos 6,

cos A 2M= cos r cos ^ sin r sin ^ cos 9.

The character of the interference pattern depends upon the four systems
of curves of constant retardation

B1
= const., &2

=
const., Sj -f S2

= const., ^ 82
= const.,

of which the first two are called the primary curves of the first and second

kind
;
while the last two may be termed the secondary curves of the first and

second kind respectively. There are in general no principal lines of like

polarisation.

The primary curves of the first kind are given by the equation

a-c-fa
r
-

\n
cos" sm"

a c .
,

. , .~ sin " * sm~
*

+
c
2 /n n\
sin 2y cos # sin i + 2 -r =

/v \ " ajd a

where jTj is the thickness of the first plate, and those of the second kind are

given by an equation obtained from this by changing T^ into T2 and writing

6 TT for 6. Hence the equations of the secondary curves of the first and

second kind are given by

a-c'-
cos2 # sin2

i + I TT

sin 2v cos 6 sin i + 2 HrA
n n

,

I

the upper and lower signs referring to the curves of the first and second kind

respectively.
*

Pockels, loc. cit.
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Thus in general the curves of the four systems differ from one another

only in their dimensions and in the positions of their centres in the trace of

the principal section of the plate on the screen of observation. If the plates

have the same thickness, the secondary curves of the second kind become a

system of straight lines perpendicular to the principal section
;
those of the

first kind have their centre at the middle point of the field and when the

primary curves are parabolas, become straight lines parallel to the principal

section.

Let us now suppose that the planes of polarisation and analysation are

crossed and parallel and perpendicular to the principal section of the plate

the so-called normal position. Then the expression for the intensity becomes

/ = a2
-I aj sin2 ----1 + a2 sin

2 - + a3 sin
2

-M.
(^

X A, A
sm2

where

= sin 2^ cos 2i^r2 sin 2 (^ -\|r2),
a2
= cos 2^z sin 2^2 sin 2

= sn sn cos2 = sn sn sn2 ir

Even in this case the equation is too complicated for general treatment

and it is necessary to obtain an idea of the principal features of the inter-

ference pattern by considering different parts of the field, at which one or

other of the four systems of curves attains a primary importance.

(a) Along the trace of the principal section of the plate, ^ = or TT,

-^r2
= 7T or and a1} a2 ,

as ,
a4 are all zero: hence through the centre of the

field and parallel to the principal section there is a black brush, that has

its greatest width near the centre, where the increase in the value of the

coefficients is slowest.

Fig. 45.

(6) On lines perpendicular to the principal section through the points

corresponding to the optic axes, either fa = ?r/2 or ^ = + ?r/2 and in these

two cases respectively only ax
= sin2 2^ or a2

= sin2

2-\Jr2
differ from zero. Con-

sequently on these lines the primary curves of the first or second kind are
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alone visible, and the intensity of the bright curves of these systems increases

with their distance from the axial points, while near these points there is a

short dark brush perpendicular to the principal section, sin 2-^j and sin
2i|r2

being there very small.

(c) On the circle having the line joining the axial points as diameter,

"^i ^2 = + 7>"/2 and all the coefficients vanish except a4
= sin2

2-^j, so that on

this circle the secondary curves of the second kind alone appear ;
but in no

part of the field are the secondary curves of the first kind isolated, since the

case, in which all the coefficients except a3 are zero, cannot occur.

(d) For points near the black brush in the centre of the field,

-^2
=

(IT
-

e), -^i
=

e,

where e is a small angle, and neglecting powers of e above the second

(
X X

the maximum value of which is Im = 16e2a2
,
whence

I= Im -U sin2
"*

+ \ sin2 ""- -
J sin2 ~XX X

When 8, + 8,
= (2n + 1) X/2

/= /

and thus the secondary curves of the first kind are here of uniform intensity

and will appear relatively dark, as their intensity is only one-fourth of the

maximum.

On the secondary curves of the first kind between these dark curves,

81 +8a
= nX and for n even, / = Im sin2

{TT (8,
- 8a)/(2X)} while for n odd

7=/m cos2

{7r(S1 -S2)/(2X)}. Hence on these curves the intensity varies

between and Im , and the parts for which < I < \Im have the same width

as those for which \Im < I< Im ,
so that since the parts appear bright when

I= ^Im , the dark parts of these curves are narrower than the bright.

When 8,
-

8,
= nX, 7 = / sin4

{TT (8, + 8a)/(2X)}

or

according as n is even or odd and consequently the portions of the secondary

curves of the second kind cut off by the curves of constant intensity

are alternately bright of intensity between /m/4 and /m and dark of intensity

between and Im /4>.

Hence the general appearance near the centre of the field will be relatively

dark continuous curves of the secondary system of the first kind and between
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these dark spots arranged in chess-board fashion in a direction perpendicular

(the plates having equal thickness) to the principal section of the plate.

Fig. 46.

(e) For points near the circle through the axial points, we may write

^2
-
ti = ("V'2 + )>

whence

ctj
= + e sin 4^ + 4e2 sin2 2^ , 2

= + e sin 4^ + 4e2 cos2 2^ ,

a3
= - e2 sin2

2-fj , a, = sin2

2-^ + e sin 4-^
- 3e2 sin2

2i/r, ,

and

/ = a2

[fsin
2

2-f! e sin 4^ - 3e2 sin2

2^) sin2 ZL^LZJ^

(TTOi
. 7TOo\

sm2 sm2 -

A A /

/ TrS,
+ e

2
( 4 sm2 2^ sm2 + 4 cos2 2^ sin

sin2 2^ sin2 ~-
A

TTOj . 7TO-2 . 7r(Oi+Oo) . 7T (dj 6) , ,

But sin- sin2 - = sin - - sin - ^ -
,
and hence on the

A A, X A

secondary curves of the second kind Sj S.2
= n\ the intensity is given by the

term containing e2 as a factor, which is very small throughout the region in

question. Hence these curves will appear dark for a certain distance on each

side of the circle on the line joining the axial points as diameter.

(/) In order to determine the nature of the transition from the chess-

board pattern (d) to the dark secondary curves of the second kind in the

vicinity of the circle through the axial points, let us consider the part of the

field for which

We hate in this case

and

+ sin 2^ -
I sin2

^A^Al + 1 sin 2^^>
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Hence for

^ 4- 8, = (2w + 1) \/2, 1= ia'

and these curves, instead of being continuous and dark, have an intensity

varying between 2

/4 and a2

/2 and thus appear less marked.

Further for BI + B2
= n\

I = c? sin 2 "&-*) Ji + cos2
?r%^i when is even,

/A,
(^

2X
)

7- 9 1 2 i , j 2 , ,,7 = a2 cos2 -
Q J 1 + sin*-

v *

^f when w is odd
;

ZA.
(

ZA,
J

hence on passing along the curve Sj + 2
= n\ from a dark spot the intensity

increases more rapidly than in the former case (d), so that the dark portions

of these curves in the direction of the secondary curves of the second kind

are narrower than they are near the centre of the field.

Finally for 81 B2 = ?iX,

T . . 7T (Sx + S2) , . T Tr^ + Sz) , JJ/ = a- sm4 ^~r---
,
when n is even, I = a2 cos4 - - when n is odd,

A, _X

and hence the changes of intensity on the secondary curves of the second

kind follow the same law as before.

The result of this is that in the region under consideration, the main

features are isolated portions of the secondary curves of the second kind.

(g) For -^ = -7 ,
or + -p and i^2 nearly TT, the coefficient at is the most

j$ T?

O

important, and for fa = j or + - - and ^ very small, the principal co-
4) 4

efficient is a2 ;
hence the primary curves of the first and second kind occur

most strongly near the first and second axial point respectively in the middle

of the sectors between the arms of the black brushes.



CHAPTER XV.

THE STUDY OF POLARISED LIGHT.

194. WE have assumed in what precedes the possibility of obtaining
a stream of polarised light without giving any definite specification of the

means by which this may be effected. It has, however, been shown in the

CQurse of our investigations that the light reflected at the polarising angle
from the surface of an isotropic medium is at any rate nearly plane polarised,

and that the polarisation of the stream transmitted by a pile of transparent

isotropic plates tends to become perfect as the number of the plates is

indefinitely increased and when the angle of incidence on the pile approximates
to the polarising angle.

Certain crystals, conspicuous among which is Tourmaline, also polarise

the light that they transmit, a property that is due to the variation of the

absorption of light with the position of the plane of polarisation in the

crystal. Thus tourmaline absorbs light polarised in a plane parallel to

the optic axis more energetically than light polarised in the perpendicular

plane, and a moderate thickness of a plate, cut parallel to the axis, transmits

sensibly the extraordinary stream alone. The polarisation is however seldom

quite perfect and the intensity of the extraordinary stream is also much

weakened by absorption in its passage through the plate.

195. By far the most effectual mode of obtaining a plane polarised stream

of strong intensity is to separate a beam of common light into two oppositely

polarised streams by double refraction and to subsequently isolate one of the

streams. This is done by what are termed polarising prisms, of which there

are two types; in the one such a lateral separation of the streams is produced,

that it is possible to block off one of the emergent pencils by a screen
;
in

the other the second stream is prevented from emerging by total reflection*.

Of the first class of polarising prisms there are three principal forms.

* For a discussion of polarising prisms, see Feussner, Zeitschr. f. Iwtrumkd. iv. 41 (1884).

Grosse, Die gebrauchlichen Polarisationxprismen, Clausthall, 1887; Verhandl. d. Ges. deutsch.

Naturf. xi. (2) 33 (1891).
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The earliest example is a polariser devised by Rochon* and exhibited to the

Paris Academy in 1777. This consists of two prisms of Iceland spar, having
the same angle and so cut that in the one the optic axis is perpendicular to

one of the faces, while in the other it is parallel to the refracting edge. The

prisms are mounted together with their edges in opposite directions, and in

such a way that the light is incident on the face that is normal to the optic

axis. The ordinary stream passes through the polariser without deviation

and is achromatic, while the extraordinary stream is deviated towards the

edge of the second prism by an amount dependent upon the colour of the

light.

For the second prism of Rochon's combination, Senarmont-f- substituted

a prism in which the optic axis is parallel to the face of emergence and

perpendicular to the refracting edge. The separation of the streams is less

than in Rochon's form, but the prism is easier to make and less costly of

material.

On the other hand in a combination due to WollastonJ there is a larger

angle between the emergent streams, but neither pencil is achromatic.

This polariser, as in Rochon's and Senarmont's forms, consists of two prisms
of equal angles;, but the optic axis is parallel to the face of entry and

perpendicular to the edge of the first prism, and parallel to the refracting

edge of the second prism. Both streams are deflected by their passage

through the polariser, the deviations being in opposite directions.

196. Polarisers that depend upon the total reflection of one of the

streams may be divided into two groups, according as it is the ordinary or

the extraordinary pencil that is prevented from passing.

In the prisms of the first group ,
which are modifications of a type

devised by Nicol, a prismatic piece of Iceland spar is divided into two halves

by a cut and the pieces are joined together again with a thin layer of some

medium between them, the refractive index of which is less than that

corresponding to the ordinary stream in the spar. If then the angle of

incidence on this layer be in excess of a certain value, the ordinary stream

* Recueil de Mem. sur la Mecanique et sur la Physique, Brest, 1783; Gilb. Ann. XL. 141

(1812); J. de Phys. LIII. 192 (1801); Acta nova Acad. Petropolitance, vr. Part i. 37 (1788).

t Ann. de Ch. et de Phys. (3) L. 480 (1857).

J Phil. Trans, ex. 126 (1820).

Nicol, Edin. New Phil. Journ. vr. 83 (1828); xxvn. 332 (1839). Spassky, Pogg. Ann. XLIV.

168 (1838). Kadicke, ibid. L. 25 (1840). Hasert, ibid. cxm. 188 (1861). Potter, Phil. Mag. (4)

xiv. 452 (1857); xvi. 419 (1858). Foucault, C. E. XLV. 238 (1857); Pogg. Ann. en. 642 (1857).

Hartnack and Prazmowski, C. R. urn. 149 (1866) ; Pogg. Ann. cxxvn. 494 (1866); Carl Report,

i. 325 (1866); n. 217 (1867); Ann. de Ch. et de Phys. (4) vn. 181 (1866). Glan, Carl Report,

xvi. 570 (1880); xvn. 195 (1881). Glazebrook, Phil. Mag. (5) x. 247 (1880); xv. 352 (1883).

S. P. Thompson, ibid. (5) xn. 349 (1881); xv. 435 (1883); xxi. 476 (1886). Madan and Ahrens,

Nature, xxxi. 371 (1885).
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will be totally reflected and absorbed by the blackened sides of the spar, but

the extraordinary stream, the refractive index for which is in the case of spar

always less than that for the ordinary stream, will in general pass through

the layer and emerge from the prism.

Prisms of this class differ in the crystallographic orientation of the faces

and of the cut and in the medium placed between the two halves. In the

earliest form, devised by Nicol, a natural crystal of spar is taken, the length

of which is about 3^ times its breadth, and instead of the end faces, that

make an angle of about 70 52' with the side edges', new faces are cut

inclined to these edges at an angle of 68. The crystal is then cut in half

by a section perpendicular to these new faces and to the principal section of

the prism, that is to the shorter diagonal of the faces, and the two halves are

cemented together with Canada balsam.

Considering only the principal section of the prism, the total reflection

of the ordinary stream commences from a certain direction IK of the

incident light, that of the extraordinary stream from the direction JL of

the incident pencil.

For light incident in intermediate directions, only the extraordinary

stream is transmitted and the angle between IK and JL defines the field of

the prism.

Looking at an uniformly illuminated surface along the axis of the prism,

so that the cut slopes away from the eye from left to right, the appearance
is as follows : on the left is a black space bounded by a violet edge, then

a bright space due to the extraordinary stream alone, and lastly on the right
a space illuminated by both streams, terminated on the left by an orange
border and traversed by coloured bands. These bands are fringes of

transmission analogous to Herschel's bands in the neighbourhood of total

reflection. The blue border of the black space shows that the total reflection

of the extraordinary stream commences first for red light, which is explained

by the fact that the extraordinary dispersion of spar is less than that of the

balsam, so that the relative refractive index increases from violet to red.
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To determine the field of the prism, suppose that PQRS represents the

principal section and OK, OL the limiting wave-normals of the ordinary and

extraordinary streams. Let /AO) p.e be the principal refractive indices of the

spar and n the index of the balsam.

Then for the total reflection of the ordinary stream, if the angle POK = ft,

we have

cos/3 = n/f* ................................. (1),

and the corresponding angle of incidence i is given by

sin i =
JJLO

sin ft
= n tan ft ................. .' ...... (2).

For the extraordinary stream, if the angle POL =
y, and the optic axis

OA make an angle a with the cut, we have

cos7 = n/yu, .............................. (3),

where yu,"
2 =

/u
~- co*2

(7+ a) + /ie
~2 sin2

(7 + a) ....: .......... (4),

and the corresponding angle of incidence ie is found from

sin ie
=

[A sin 7 = n tan 7,

whence from (3) and (4)

n (/V /u,e
2
) sin a cos a + /i /ze V'/V cos2 a + p/ sin 2 a n-. . _

pg cos2 a -f fj,/ sin2 a

The optic axis makes an angle of about 45 23' 30" with the original

end faces of the rhomb, so that for the Nicol described above we have

a = 41
c
44'30" nearly. Hence taking w = 1-548, /*= 1 '65846, fj,e

= 1 '48654,

we obtain

i = 36 31' 30", 7 = 6 10' 0", ie
= 9 37' 40".

Thus the field of polarised light is 26 53' 50", and the ratio of the length
to the breadth of the prism, which is nearly the cotangent of the angle
between OL and the axis of the prism, is 3'53.

Without discussing the various forms that have been suggested for

a Nicol's prism, let us determine under what circumstances a prism on this

principle with its end faces at right angles to the axis has a maximum field

symmetrical with respect to the axis.

From equations (1) and (3) the field within the prism is

% = 0-y = cos" 1 cos- 1

{n v/i<r
2 + (/*"*

-
fr~-) sin2

6],
f^o

6 being the angle between the optic axis and the extraordinary wave-

normal at the limit of total reflection. For this to be as large as possible,

we must have

(1) 6 = 7T/2, x = cos
~1

(n/A*o)
- cos- 1

(n/fjtg).

(2) n = yu e ,
since for a greater value of n, ft decreases while 7 cannot

be less than zero, arid for a less value of n, ft increases less rapidly than 7.
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Thus the maximum field within the prism is

X = cos-1

(/*//io).

In order that the external field may be symmetrical with respect to the

axis of the prism, we must have

sin i = p.e sin <f>
=

/u sin (x <),

where
<j)

is the angle between the cut and the normal to the end faces.

This gives

tan<f>=
^ sin X - = " sin *

fj,e + fji
COS X fye

The field is then 2i and the ratio of the length to the breadth of the

prism is cot <. In the case of Iceland spar we have

x = 26 19' 10", </>
= 1353'30", 2z = 41 49',

the ratio of the length to the breadth is 4'04. Since the optic axis must be

at right-angles to the limiting extraordinary wave-normal, it can have one

of two directions : either it may be in the normal section of the prism at an

angle of 13 53' 30" to the end faces, or it may be perpendicular to the normal

section and parallel to the cut.

By selecting the second position for the optic axis, a prism is obtained in

which several defects of an ordinary Nicol's prism are considerably reduced.

In the first place it gives no lateral displacement of a stream of light directly

transmitted through it
; secondly a conical pencil incident directly on the

prism emerges with a polarisation that is more nearly constant over its whole

extent
;
and thirdly the error in the determination of the plane of polarisation

of a parallel pencil slightly inclined to the axis of rotation is reduced to

a minimum*.

197. The second group of prisms-f- depending upon the total reflection

of one of the polarised streams is made by fixing a thin crystalline plate

between the two equal prisms of glass, turned in opposite directions, by
means of a cement with a refractive index equal to that of the glass.

Considering only the normal section of the prisms, an investigation

similar to that of the last section shows that for the maximum field, the

refractive index of the glass and cement should be equal to the greatest

index of the plate, and that with a biaxal plate the mean axis of the ellipsoid

of polarisation should be parallel to its faces and the plate arranged so that

this axis is in the normal section of the prisms : while with uniaxal plates the

optic axis should be in a plane perpendicular to the normal section, which can

*
Glazebrook, Zoc. cit.

f This type of prism was first suggested by Sang in 1837: cf. Proc. R. S. Edin. xvm. 337

(1891). Jamin, C. R. LXVIII. 221 (1869); Pogg. Ann. cxxxvu. 174 (1869). Zenker, cf. Zeitschr.

/. Instrumkd. iv. 50 (1884). Bertrand, C. R. xcix. 538 (1884).
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always be managed with a plate of any crystallographic orientation by
turning it in its own plane. In order that the field may be symmetrical,
the angles of the glass prisms must be equal to

90 - A cos-1^,
PC

pa and fj,c being the least and the greatest indices of the plate.

With these prisms (considering only the normal section) light polarised
in a plane perpendicular to the greatest axis of the ellipsoid of polarisation

is totally reflected, when the inclination to the plate is less than cos"1

(pa/pc)
'

the angular field on emergence is 2^, where

sin x = PC sin
{J cos"1

((*a/t*c)}

and the ratio of the length to the breadth is cot
{

cos"1

(/ta//ic)j.

With a plate of Iceland spar, such prisms give a field of 44 22' and the

ratio of the length to the breadth is 4'28.

With a plate of sodium nitrate
(/JL

= 1'587, /j,e
= 1-336), the field is

increased to 53 and the ratio of the length to the breadth is reduced

to 3'42.

198. Any one of the above forms of polarisers may be employed as an

analyser and will work sufficiently well, provided the analysation merely
consists in bringing streams of light to a common plane of polarisation ; but

when it is a question of the exact determination of the plane of polarisation

of a stream of plane polarised light, an analyser that works by extinction has

not the required accuracy, as after the illumination has been reduced to

a small quantity, the eye is unable to perceive any further diminution in the

intensity and there is in consequence considerable uncertainty in the deter-

mination of the position of the analyser, at which the light is entirely

quenched.

A- delicate test of the existence of polarisation in a stream of light is

afforded by the rings and brushes obtained when a conical pencil of polarised

light traverses a crystalline plate and is subsequently analysed. This is the

principle of a sensitive analyser due to Savart*. It consists of a Savart's

plate ( 192) connected with a Nicol's prism, the principal section of which

bisects the angle between the principal sections of the double plate. We
have seen that when a slightly convergent stream of polarised light is viewed

through this combination, a series of parallel straight bands is in general

perceived, but it is clear that these bands will vanish, when the analyser is

so turned that the plane of polarisation of the incident light is coincident

with either of the principal sections of the plate, as then there is no

separation of the light into two oppositely polarised streams and consequently

no interference.
*

Pogg. Ann. XLIX. 292 (1840).

W. 20
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199. A still more sensitive plan is that adopted in the '"half-shade"

analysers* which depend upon the readiness with which the eye can compare
the intensities of two streams seen in juxtaposition, when the illumination

is slight.

Suppose that the field of view is divided along a straight line into two

parts of equal intensity by some apparatus that introduces a small angle
between the planes of polarisation of the two halves, so that the plane of

polarisation of the one is parallel to OP, that of the other is parallel to OP'.

Then if the field be viewed through a Nicol's prism, the whole will appear

uniformly illuminated only when the principal section of the Nicol is the

interior or exterior bisector of the angle POP'. Conversely the apparatus
that produces this difference in the polarisations of the two halves of the

field may be employed as an analyser, and if it be turned until the whole

field has the same illumination, the plane of polarisation of the incident light

will then bisect the interior or the exterior angle between the planes of

polarisation of the analyser. When however the plane of polarisation of the

incident light bisects the acute angle between the planes of polarisation of

the analyser, the two parts of the field are too bright to admit of an accurate

comparison of the intensities.

The first analyser of this type was devised by Jellett. A long rhomb of

spar is taken and the ends are cut off by planes perpendicular to the

longitudinal edges : the prism thus obtained is then divided into two by
a plane perpendicular to its ends and making a small angle with the longer

diagonals of these faces, and the parts are joined together along the plane of

section after one of the halves has been reversed.

Suppose now that a cylindrical stream of polarised light falls normally on

the end face of the prism, so as to be equally divided by the plane of section :

on entry into the prism the extraordinary streams in the two parts will be

deviated and if the prism have a sufficient length, can be blocked by
a diaphragm, but the ordinary streams will pass undeviated and the planes

of polarisation of the two halves of the emergent pencil will make equal

small angles with the normal to the plane of section. Hence in order to

render the two halves of the field equally dark, the prism must be turned

until the plane of section coincides with the primitive plane of polarisation

of the light.

A similar result is obtained with Cornu's analyser. A Nicol's prism is

*
Jellett, B. A. Report, 1860, n. 13; Proc. Ir. Acad. vm. 279 (1863). Cornu, Bull. Soc. Ghem.

(2) xiv. 140 (1870). Bighi, Mem. delV Ace. R. di Bologna, (4) vi. 599 (1885). Lippich, Zeitschr.

/. Instrumkd. n. 167 (1882); xii. 333 (1892); Wien. Ber. LXXXV. (2) 268 (1882); xci. (2) 1059

(1885); xcix. (2) 695 (1890). Laurent, Dingier Polytechnisches Journal, ccxxra. 608; J. de

Phys. in. 183 (1874); C. R. LXXVIII. 349 (1874). Dufet, J. de Phys. (2) i. 552 (1882). Poynting,

Phtl. Mag. (5) x. 18 (1880). Mac6 de Lepinay, J. de Phys. (3) ix. 585 (1900); C. R. cxxxi. 832

41900).
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cut in half by a plane through the short diagonals of its end faces : and

a wedge-shaped piece is removed from one half, its edge being parallel to the

length of the prism and its angle about 3. The two parts are then re-united,

forming a prism that consists of two half-Nicols with their principal sections

inclined to one another at a small angle.

A different method of obtaining a half-shade analyser has been adopted

by Laurent. This depends upon the action of a half-wave plate of quartz
cut parallel to the axis, in traversing which a stream of plane polarised light

has its polarisation changed, the new plane of polarisation being inclined

to the principal section at the same angle as the primitive plane, but on the

opposite side of the axis. Half the field of view is covered by the plate, to

which is attached a Nicol's prism with its principal section inclined at

a small angle to that of the plate. In examining a stream of light the eye

looking through the Nicol's prism is focussed on the edge of the plate, and

the instrument is rotated until both halves of the field are equally dark :

when this is the case, the principal section of the plate is parallel to the

plane of polarisation of the stream.

200. Half-shade analysers present the same appearance when the light

examined is partially or elliptically polarised, as when it is plane polarised,

the direction determined in these two cases being the plane of partial

polarisation and that of maximum polarisation. An ellipticity, even though

slight, in the polarisation of a stream of white light may however be readily

detected by means of a Bravais' plate* ( 176).

Let us suppose that a stream of elliptically polarised light traverses the

plate and is subsequently analysed in a plane inclined at an angle 7 to the

principal section of one of its halves. We may represent any one of the con-

stituents of the primitive composite stream by its components polarised in

planes parallel and perpendicular to this principal section with the polari-

sation-vectors

aeint and bei(nt+ *\

respectively, and if 8 be the relative retardation of phase introduced by the

plate; the polarisation-vector for the stream emerging from the analyser will

be for the one half of the field

{a cos 7 + 6 sin ye
l(
*-*>} e"

u
,

and for the other

(a cos rye~
iS + b sin ye '*} e int

,

giving as the intensity in the two cases

A + 8

(a cos 7 + b sin y)
2 2ab sin 27 sin 2

^

* Ann. de Ch. et de Phys. (3) XLIII. 129 (1855). Quincke, Pogg. Ann. cxxvn. 199 (1866).
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and for the intensity of the composite stream

2 (a cos j+b sin y)
2 2 sin 2y2a& siri

2 -
.

m

When the incident light is plane polarised, A = 0, and the two halves of

the field have the same colour, and this is the sensitive tint, if the analyser

be set for extinction of the light, when the plate is away. If however the

initial stream be elliptically polarised, the tint of one half is raised and that

of the other is lowered and under no circumstances can these be made

alike, unless the analyser be set so as to render the whole field free from

colour.

201. Before proceeding to the study of the means employed for the

investigation of an elliptically polarised stream, we will first consider

a method of representing geometrically the state of polarisation of a train

of waves of light*.

Taking the axis of z in the direction of propagation, a stream of polarised

light may be represented by its components polarised in planes parallel

respectively to the axes of x and y with the polarisation-vectors

= ae int
, rj

= be int
,

wherein a and b are in general complex, and their ratio

b/a = (b/a) e^' = (b/a) cos A' + 1 (b/a) sin A' = u + vi, say,

a and b being the amplitudes of the components, and A' the acceleration of

phase of the second relatively to that of the first.

This ratio defines the form and the orientation of the elliptic vibration of

the extremity of the polarisation-vector of the stream
;
and we may therefore

represent the state of polarisation by a point on a plane, for which the

abscissa is u and the ordinate is v, the length of the radius-vector to the

representative point giving the ratio of the amplitudes and the angle that

it makes with the axis of abscissae being the difference of phase. Since the

polarisation is right- or left-handed according as A' lies between and ?r or

between TT and 2?r, the vibrations in the stream will be right- or left-handed

according as the representative point is above or below the axis of u.

When the point is on the axis of u, the stream is plane polarised in an

azimuth tan"1 u with respect to the plane of xz
;

if the point be on the axis

of v, the difference of phase is Tr/2 and the planes of maximum and minimum

polarisation are parallel to the axes of x and y.

Points p, p' on the axis of ordinates at unit distance from the origin

represent circular polarisation.

Now if be the angle that the planes of maximum and minimum

*
Poincar^, Theorie Math, de la Lumiere, n. p. 276.
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polarisation make with the coordinate axes, tan/8 be the ratio of the axes of
the elliptic vibrations and tan er = b/a, we have

tan 20 = cos A' tan 2o-, sin 2/3 = sin A' sin 2<j,

which give, since

u = cos A' tan <r, v = sin A' tan <r,

u- + v- + 2u cot 20 - 1 = 0, u- + v- - 2v cosec 2/3 + 1=0.

Fig. 48.

Thus if 6 be constant, the points representing the different states of

polarisation lie on a circle through p and p', and if the ratio of the axes

of the elliptic vibrations be constant, the points corresponding to different

orientations of the axes are on a circle cutting the first system of circles

orthogonally.

Any point is the intersection of a circle of the one (6) system With

a circle of the second (/3) system : the distance from the origin of the point,

in which the circle of the first (6) system cuts the axis of u, is the tangent

of the angle that the plane of maximum or of minimum polarisation makes

with the axis of x, according as the representative point is within or without

the circle of radius equal to unity with its centre at the origin.

The polarisation-vectors of the component streams being

77
=
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referred to the axes of x and y, let the polarisation-vectors of the components
polarised in the planes of maximum and minimum polarisation be

then the angle between and
'

being 6

c cos /3e
te = a cos 6 + b sin 0e tA/

, ic sin /3e
te = a sin + 6 cos 0e tA

',

whence

c cos ft sine = b sin sin A ', c sin /3 cos e = b cos sin A',

and tan e = tan /3 tan 6 = On/Oq' = tan Oq'n,

n being the point in which the circle (6) cuts the axis of u and q' the point
furthest from the origin in which the circle (ft) intersects the axis of v. But

it is easy to show that the line q'n passes through the representative point

m, so that e is the angle Oq'm or the complement of the angle Onm.

The effect of changing from one set of rectangular axes to another is to

move the representative point along the circle (ft). Now the difference of

phase between the component streams polarised in planes parallel to the axes

is the angle that the line joining to the representative point makes with

the axis Ou : hence if Ot, Of be the tangents from to the circle (ft), the

difference of phase between any two rectangular components of the stream

lies between tOu and t'Ou. Now Ot = 1, Ok = cosec 2ft, where k is the centre

of the circle (ft) ;
therefore

sin tOu = cos tOk = Ot/Ok = sin 2/3 and tOu = 2ft,

so that the difference of phase varies between 2/3 and TT 2ft.

It is now easy to represent the etfect on the polarisation that is produced

by passing the stream normally through a crystalline plate. Let a be the

angle between the plane of xz and the plane of polarisation of the most retarded

stream in the plate, A the relative retardation of phase that the plate intro-

duces
;
then we have first to find the polarisation-vectors of the components

polarised in planes parallel to those of the streams in the plate ; secondly, to

introduce the difference of phase A between these components ;
and finally,

to determine the nature of the polarisation when the stream is again referred

to the original axes.

The primitive polarisation being represented by the point m of the circles

(6) and (ft), the final state of polarisation of the stream is, therefore, found

by the following successive operations : Firstly, a motion of m along the

circle (B) to the point m' in which it cuts the circle (0 a); secondly, a rota-

tion of Om' through the angle A, bringing m' to m", the point of intersection

(say) of the circles (#') and (ft') ; thirdly, a motion of m" along the circle

(ft') to the point in which it intersects the circle (6' + a).
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202. The final polarisation may, however, be determined in a far more

simple fashion by another method of representation that is derived from the

foregoing by a stereographic projection.

Describe a sphere of unit diameter touching the plane of uv at the

origin of the coordinates, and let the points of the plane be projected on the

surface of this sphere by joining them to 0', the extremity of the diameter of

the sphere through 0.

Fig. 49.

Then the axes of u and v project into great circles at right-angles to one

another, the former of which may be called the equator ;
the points p> p

become the poles ;
the circles (6) will be represented by the meridians 26 and

the circles (/3) by the parallels of latitude 2/3 ;
and if tan a- be the length of

the radius-vector Om and the angle mO'u A', the point m will be projected

into M, where the arc OM = 2cr and the angle MOO' = A'.

Thus any point on the sphere will represent the state of polarisation of a

stream of light, the azimuth of its plane of maximum polarisation being half

the longitude, and the ratio of the axes of the elliptic vibrations being the

tangent of half the latitude of the point ;
and the polarisation is right- or left-

handed according as the point is in the northern or the southern hemisphere.

This being the case, the effect of the transmission through a crystalline

plate is represented by three successive rotations : (1) round the polar axis

PP' through an angle 2a, (2) round the diameter 00' in a left-handed

direction through the angle A, (3) round the polar axis through an angle 2<z
;

and these three operations are clearly equivalent to a single rotation in a

left-handed direction through an angle A round an equatorial diameter AA'

where the arc A = 2a.

203. The investigation of a stream of elliptically polarised light consists

in determining the elliptic path traced by the extremity of the polarisation-

vector, and this may be done in two ways :
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(1) by finding the ratio of the amplitudes and the difference of phase
of the vibrations of the polarisation-vectors of the component streams polar-

ised in two rectangular directions
;

(2) by determining the ratio of the axes of the ellipse, their position

with respect to some given line and the direction in which the path is

traversed.

The principle adopted in both cases is the same and consists in the

reduction of the pencil of light to a plane polarised stream and the subse-

quent determination of the plane of polarisation of the pencil.

204. In the first of these methods of studying a stream of elliptically

polarised light, the reduction to plane polarisation is effected by means of a

compensator, which introduces an adjustable relative retardation between

the rectangular components of the stream. Compensators are of two kinds :

the first class of instruments introduces a retardation that is variable over

the whole extent of the field and gives rise to interference fringes that are

localised on the surface of the compensator ;
in the second class, the retarda-

tion introduced is the same for the whole field, which is of uniform colour or

intensity according as the light is white or monochromatic.

The compensator of the first type, known as Babinet's compensator,
consists of two prisms of quartz having the same very small angle, mounted

together to form a plate and cut so that the outer surfaces are parallel

to the optic axis of the crystal, which is in one prism perpendicular and in

the other parallel to the refracting edge. One of the prisms is fixed, while

the other can be moved over it by means of a micrometer screw, and the

prisms should be so arranged that the one with its edge perpendicular to the

optic axis receives the incident light.

When this is the case, a stream of light falling normally on the compen-
sator traverses the first prism with a speed n//* ,

and the second with a

speed fl/fjke ,
if it be polarised in a plane perpendicular to the edge, while

these speeds will be interchanged in the case of polarisation in a plane

parallel to the edge : consequently passage through the compensator will

retard the second stream relatively to the first by an amount (fie //. ) (dl d^)

measured in length in air, where di, d2 are the distances traversed in the first

and second prisms respectively, since, the phenomenon under consideration

being localised at the compensator, these distances may be regarded as

sensibly the same for the two streams.

Thus the retardation, that is introduced, is the same along each line

parallel to the edges of the prisms, but is different along the length of the

compensator: hence if a stream of light polarised in an azimuth a with

respect to the principal section of the first prism fall normally on the instru-
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ment and be subsequently analysed, a series of coloured bands will be seen,
when the light is white, and a set of bright and dark bands, when it is

monochromatic.

Since the difference of phase is not constant along the whole compensator,
it is necessary to confine the attention to a small portion of the field, within
which the relative retardation may be regarded as practically constant.

This is marked off by two spider-lines parallel to the edges of the prisms.
If the prisms be of equal thickness at the place thus indicated, the emergent
light is plane polarised in the same azimuth a as the incident stream, since

the changes of phase and amplitude due to passage into or out of each prism
are sensibly the same for both component streams. On moving one of the

prisms over the other a varying retardation is introduced: the emergent
light is elliptically polarised and cannot be quenched by a rotation of the

analyser, though for two positions the intensity becomes a maximum and
a minimum respectively. By a further motion of the prism the relative

retardation becomes + X/2 and the light is again plane polarised in an azimuth

of TT a : if the distance that the prism has to be shifted between the two

positions that give plane polarised light be w, then a shift of w from the

initial position of zero-retardation gives a relative retardation of ^ ,~ w2
and the compensator is thus graduated.

Before using the compensator it has to be ascertained which of the two

prisms is the one that can be moved, and which is the direction of its motion

that increases or diminishes its thickness at the point between the spider-

lines. We must also find out whether the prism, that receives the incident

light, has its edge perpendicular or parallel to the optic axis, as in the latter

case the sign of the retardation is the opposite to that given above.

This may be determined in the following manner* : Light from a slit

parallel to the edges of the prisms falls on a Billet's divided lens arranged to

give two real images of the slit on the surface of the compensator at the part

opposite the spider-lines, and the compensator is set so that the prisms have

the same thickness at this place. The light from these images after traversing

the compensator gives rise to two systems of interference fringes polarised

in perpendicular planes, and these can be separated from one another by

examining them with a double-image prism. Now it is easy to see that of

these systems of fringes the one that has its centre nearest the edge of the

first prism is due to light polarised in the principal section of that prism :

and hence the edge of the first prism will be parallel or perpendicular to the

optic axis, according as the system of bands nearest to or furthest from it is

due to light polarised in the parallel plane.

*
Quincke, Pogg. Ann. cxxvn. 211 (1866).
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205. Suppose now that a stream of elliptically polarised light falls

normally upon the compensator, arranged so that the light enters by the

prism that has its edge perpendicular to the optic axis, this also being
the prism that can be moved. Then starting from the zero position of the

instrument, in which d^d-i at the place marked out by the spider-lines,

the micrometer screw is turned in one direction or the other until the least

motion is found that renders the light, emergent between the lines, plane

polarised, and the azimuth a of its plane of polarisation with respect to the

plane at right-angles to the edges of the prisms is observed.

Now the polarisation-vectors of the components of the incident light

polarised in planes perpendicular and parallel respectively to the edges of

the prisms may be represented by

f = cos nt, r)
= b cos (nt + A),

the polarisation of the stream being right-handed if A be between and TT,

or between TT and 2?r, and left-handed when A is between TT and 2?r or

between and TT.

Suppose that the phase of the second component is retarded relatively

to that of the first in its passage through the compensator by an amount

A', this being positive or negative according as the motion of the prism
has increased or diminished d^, and being in all cases less than TT. Then
on emergence from the compensator the components may be represented by

%=ka cos (nt + <), 77
= kb cos (nt + A A' + </>),

and hence the azimuth of the plane of polarisation a is tan-1 (6/a) or

TT tan"1

(b/a), according as A A' = + 2mr or + (2n + 1) TT.

Hence if a be less than Tr/2, the polarization is right- or left-handed

according as A' is positive or negative, and if a exceed 7r/2, the polarisation is

right- or left-handed, according as A' is negative or positive : thus the polar-

isation is right- or left-handed according as tan a sin A' is positive or negative.

Since the numerical value of tana gives the ratio of the amplitudes of

the polarisation-vectors of the component streams polarised in planes parallel

and perpendicular to the edges of the prisms, the elliptic polarisation is

completely determined.

206. Babinet's compensator may also be used for a direct determination

of the position and ratio of the axes of the elliptic vibrations in a stream

of light.

A beam of elliptically polarised light may be represented by the polar-

isation-vectors

= c cos y8 cos nt and
77
= c sin /3 sin nt

corresponding to the component streams polarised in the planes of maximum
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and minimum polarisation of the beam, /3 being less than ?r/4 and positive
or negative according as the polarisation is right- or left-handed.

Now suppose the compensator is so set that it retards the phase of the

stream polarised in a plane perpendicular to the edges of the prisms by an

amount ?r/2 relatively to that of the stream polarised in a plane parallel to

the edges, and let us first suppose that it is turned until the former of these

planes coincides with the plane of maximum polarisation of the incident

light, then the polarisation-vectors of the emergent streams will be

= kc cos /3 cos (nt + <), 77
= kc sin /3 sin ( nt +

<f>
+ ^}

= -kc sin ficos(nt +<}>),
\ */

and the emergent light will be plane polarised in an azimuth a with respect
to the plane perpendicular to the edges of the prisms, given by tan a = tan ft,

and tan a will be positive or negative according as the polarisation is left- or

right-handed.

Similarly if the compensator be so turned that the plane perpendicular
to the edges of the prisms coincides with the plane of minimum polarisation

of the incident light, the azimuth a of the plane of polarisation of the

emergent stream, measured from this plane, is given by tan a = cot /9.

Hence when the emergent light is plane polarised, the plane perpendicular

to the edges of the prisms will give the plane of maximum or minimum

polarisation of the stream according as tana is numerically less or greater

than unity ;
its numerical value is the ratio of the axes of the elliptic vibra-

tion
;
and the polarisation is left- or right-handed according as tan a. is positive

or negative.

207. The chief objection to the use of Babinet's compensator is that the

fringes are localised at the instrument*, and it is therefore necessary to

focus the eye on its surface, which renders it difficult to fix the direction

of the stream of light that is studied. This disadvantage is overcome by

employing a compensator of the second kind, that introduces the same relative

retardation over the whole field.

An instrument of this type was devised by Biot, and consists of a plate

of quartz cut parallel to the optic axis, followed by a second plate of adjust-

able thickness also parallel to the optic axis, and so placed that its axis is at

right-angles to that of the first plate : in order that the thickness of the

second plate may be capable of adjustment it is formed of two quartz wedges

with the edges parallel to the optic axis, one of which can be moved over the

other by means of a micrometer screw.

208. Instead of using the compensator in the second of the two methods

described above, it is perhaps more convenient to employ a quarter-wave

*
Schmidt, Wied. Ann. xxxv. 360 (1888). Mace de Lepinay, J. de Phys. (2) x. 204 (1891).
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plate for the determination of the elements of the elliptic polarisation.

Unfortunately it is difficult to obtain quarter-wave plates that are absolutely

correct, and if perfect for one wave-length, they are of necessity imperfect
for light of a different frequency. It is, however, possible to use an imperfect

plate for the investigation of the polarisation*, provided the relative retarda-

tion of phase that it introduces lies between 2$ and TT 2/2, the limiting
differences of phase between the rectangular components of the stream of

elliptically polarised light.

Let the point M, representative of the polarisation of the stream to be

investigated, be determined by its longitude ON =20 and its latitude

NM= 2/3 : then the effect of transmission through the plate is given by a

rotation through an angle A round the axis AA' in the plane of the equator,

where A is the relative retardation of phase introduced by the plate and

OA is twice the angle that the plane of polarisation of the most retarded

stream in the plate makes with the plane of reference. If the resulting

polarisation be plane, this rotation must bring M into the equator to the

point M', say, and the arc AM' is twice the angle a that the resulting plane
of polarisation makes with that of the most retarded stream in the plate.

If the arc NA = 20, the spherical triangle ANM, in which

gives sin 20 = tan 2/3 cot A ............................. (6),

cos 2<r = cos 2/3 cos 20 ........................... (7),

cos A = tan 20 cot 2<r ........................... (8).

Whence it follows that there are two possible positions of the axis A A', BB',

such that NA + NB =
TT, and that the values of <r corresponding to these

positions are complementary to one another. If the polarisation be right-

*
MacCullagh, Proc. R. I. Acad. n. 384 (1843); Collected Works, pp. 238242. Stokes,

B. A. Report, 1851, Part n. 14; Math, and Phys. Papers, in. 197.
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handed, A will lie within or without the arc ON, according as A is greater
or less than ?r/2 ;

the reverse being the case if the polarisation be left-handed.

If then Xi and 90
C + ^2 be the azimuths, measured from a fixed plane of

reference in a direction from right to left, of the plane of polarisation of the

most retarded stream in the crystalline plate, when the emergent light is

plane polarised, and if 6 be the azimuth of the plane of maximum or of

minimum polarisation of the primitive stream, we have

%!
= 04>, %,= + 4>,

and =
(xi + Xa)/2, <=06~%2)/2 (9).

Again if o-j and <r.2 be the azimuths of the plane of polarisation of the

stream emerging from the plate in its first and second positions, measured

from right to left from a plane of reference fixed in the plate, (o-j + <r2)/2 gives

a direction inclined at 45
C

to the plane of polarisation of the most retarded

stream in the plate, and 0%, ~ o-j
=

7r/2 + 2cr, whence

cos 2/3 = sin (o-2
~

<TI) sec (^ - ^) (10).

Further it is easy to see that tan (o-2 o-j) and tan (fo ^) have the same or

opposite signs according as A is less or greater than ?r/2, and therefore

cos A = tan (<r2 o-j) tan (%2 %i) (11).

To complete the specification of the state of polarisation of the primitive

stream, we require to know the azimuths of the resulting plane of polarisation

measured from the plane of polarisation of the most retarded stream in the

crystalline plate. If <r/ and ov/ be these azimuths measured in a left-handed

direction, the stream is right- or left-handed, according as cr/ and o-2

'

are

greater or less than Tr/2, and the angle 6 gives the plane of maximum or

of minimum polarisation according as sin 0%,' is greater or less than sin o-/.

209. We have seen in Chapter II that a stream of light may be one of

seven different types: it is possible to have (1) common light, (2) polarised

light, which may be either (a) elliptically, (6) circularly or (c) plane polarised,

and (3) partially polarised light, the partial polarisation being (a) elliptical,

or (b) circular, or (c) plane.

A stream of common light, when examined with a Nicol's prism, appears

of constant intensity for all positions of the prism and it retains this

characteristic 'after transmission through a quarter-wave plate, whatever

may be its orientation.

Circularly polarised light resembles common light when it is viewed

through an analyser, but after transmission through a quarter-wave plate

it can be extinguished by a rotation of the analyser.

Elliptically polarised light, when observed through a Nicol, has an

intensity dependent upon the orientation of the analyser, but in no case

is the light entirely quenched.
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Plane polarised light, when similarly investigated, can be entirely

extinguished by rotating the analyser.

Partially plane polarised light resembles elliptically polarised light, when

examined with a Nicol's prism, but the two kinds of light are distinguished

by the fact that elliptically polarised light is converted into plane polarised

light by transmission through a quarter-wave plate with its principal plane
in the plane of maximum or of minimum polarisation of the stream.

Partially elliptically polarised light resembles partially plane polarised

light, but may be differentiated from it in either of two ways: (1) by

transmitting the stream through a quarter-wave plate with its principal

plane in the plane of partial polarisation, then the light will be partially

plane or partially elliptically polarised, according as the plane of partial

polarisation remains the % same or is altered : (2) by placing the quarter-wave

plate with its principal plane at 45 to the plane of partial polarisation,

then in the case of partial plane polarisation all traces of polarisation

will disappear.

Partially circularly polarised light appears like common light, but is

distinguished from it by transmission through a quarter-wave plate, which

reduces it to partially plane polarised light*.

*
Beer, Hohere Optik, 2nd ed. p. 176.



CHAPTER XVI.

ABSORBING MEDIA.

210. THE characteristic property of absorbing media is that they reduce

the intensity of a stream of light in its progress through them by an amount
that increases with the distance traversed, and it therefore follows that in

these media the polarisation-vector of a train of plane waves of light must

have a varying amplitude, so that, if we represent its components by the real

parts of

one at least of the quantities I, W>, n must be complex.

Now in the case of a transparent isotropic medium, I, m, n are connected

by the relation

I* + m? + n*

where H is the propagational speed of light in the medium, and we can only

retain this relation in the case of absorbing media, if we assume that H2 then

becomes a complex quantity. We are therefore led to extend the differential

equations and hence also the boundary conditions obtained in Chapter XIII,

so as to include absorbing anisotropic media, by assigning to 4> the value

2<l> = auw
a + a^v"- + a33w- + 2awvw + 2a31wu + 2aKuv ......... (1),

where an ... are complex quantities.

If we write a^

we have 5

where 2<E> = anu
z +a^ + a^w2 + ^a^vw + 2a3lwu + 2alzuv ......... (2),

2<' = an'u
2 + a^'v* + a^'w

2 + 2a<,3'viv + 2a31'wu + 2aK'uv ...... (3),

and by a proper choice of axes, we can bring either <I> into the form

23> = a2M2 + Z>V + c2w2 .............................. (4),

or <!>' into the form

23>' = a/a
** + bV + c'W ........................... (5);
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in the first case the axes are termed the polarisation-axes, a, b, c being the

principal polarisation-constants, and in the second case the axes are called

the absorption-axes, a', b', c being the principal constants of absorption.

In a crystal of the anorthic system the two sets of axes are independent
of one another, and taking the axes in the direction of the polarisation-axes,

the medium is characterised by nine constants : this number is reduced to

seven in the case of a monoclinic crystal, as then one of the polarisation-axes

is coincident with one of the absorption-axes. In crystals of the prismatic

system, the two sets of axes are identical and there are six constants : these

are reduced to four in the case of crystals of the tetragonal and hexagonal

systems, while crystals of the cubic system and isotropic media possess only
two constants*.

211. In order to determine the general characteristics of the propagation
of light in absorbing media, let us take the axis of z in the direction of the

wave-normal
;
then w = and u, v are functions of z and t alone, so that the

differential equations become

(6).

Let (u, v)
= (A, B)De (

z-st}
(7),

where A-+B 2 =
~L,

=
/c(l iv\ o> =&>/(! ti/);

then these equations give

(o>
2

(in) A =aJ2 B, (or 0^2) B = dl2A (8),

whence (o>
2 an ) (w

2
a^) = 12

2
(9),

,
-O C^u tt-22 -O _

and _ H ^ 1=0 (10).
4 2 a12 ^1

Equation (9) determines two values of or and therefore two values of o> and

v, while (10) gives the corresponding values of the complex ratio B/A ;

denoting these by the suffixes (1), (2), we have

A.A. + B.B^O (11).

Since the ratio B/A is complex, it follows that the two waves thus

determined are elliptically polarised. Now by a proper choice of the origin

of time we can arrange that

AD = c (cos ft cos a i sin ft sin a), BD = c (cos ft sin a + t sin ft cos a),

where tan ft is the ratio of the axes of the elliptic path of the end of the

*
Drude, Wied. Ann. xxxn. 584 (1887); XL. 665 (1890). Winkelmann, Handb. der Physik,

n. 807819. Voigt, Wied. Ann. xxm. 577 (1884); Komp. der theor. Physik, n. 708725.
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polarisation-vector and a is the angle that these axes make with the coordinate

axes: whence (11) gives the two equations

cos (/92 + &) cos (03 aO 0, sin ($, &) sin (02 ax)
= 0,

which are satisfied only if

a2 =a1 + 7r/2 and /32
= &,

or 2
=

i and /32
=

-rr/2 & ,

both of which conditions express that in the two waves the ellipses are

similar and traversed in the same direction, while their major axes are at

right-angles.

212. Unless the polarisation-axes and the absorption-axes are coincident,

it is impossible to bring <l> and <J>' simultaneously into the forms (4) and (5)

and by no real transformation of the coordinate axes can <l> be made to

assume the form

but this may be effected by the employment of a complex system of

coordinates x, y, z.

Let the scheme of transformation be
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h = 1, 2, 3 and xl
= a,x2

= b,x3
= c: and from these equations we obtain

**""" Ju ^12 ^31

i

^""
vCf Cvoo

=
(14),

the three roots of which give the values of a2
,
62

,
c2

,
and these being known,

equations (13) give the values of ah , /3A , yh .

213. The differential equations now become

, /9<f> 9<l> 9<l>\

(u, v, w) = V 2

^ , -^ , 5
\du dv dw/

d<& d 9<l>

i du dy dv

+u du dv div
with 5" + o"+^~=0 (16),ox dy dz

where 2O = a2w2 + 6V + c2w2
.............................. (17).

Writing (u, v, w) = (A, B, G) De*(i*+y+-*v .................. (18),

where A 2 + B2 + O2 = 1 and , w, n are the complex direction-cosines of the

wave-normal, determined by

I = aj, + ySjWi 4- jjH, m = aj> + J32m + y2w, n = a3l + /33m + y3n ...... (19),

these equations give

(a
z -v*)A = (cFAl + b*Bm + c*Cn)l ..................(20),

and two similar equations, with

+ Cn = Q .............................. (21).

72 ^.2 552

Whence -+_ -+- - = ....... . .............(22),- o>
2

.(23).

Separating (22) into its real and imaginary parts we obtain two simultaneous

equations involving o and v. The results are very complicated, but it is

clear that Fresnel's laws for transparent crystalline media no longer hold.

214. A notable simplification of the problem however occurs when we

can regard the absorption as slight, and in that case the propagation is

determined in accordance with Fresnel's laws.

Let us take the polarisation-axes as the coordinate axes, then

= id
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and regarding a\k as a small quantity of the first order, we have from (14)
by neglecting terms of the second order

(au -

which gives as the values of a?

a2 + ia u ,

whence, writing

*h

we obtain from (13)

- &) = 0,

+ ici'v , c- + la'^ ;

- a2

)^ + a'^ =

a i + a'aft + (a'a,
-

a'n) 7j -f (c
2 - a2

) 7l
' = (24),

.(25),

and a'ufii + a'^ =

a'^i + (a'*
- a'n ) /8/

-
(6

2 - a2

)& + a'^' =

a'na/ + a'as/S/ + (a'ss
- a'u) 7/ - (c

2 - a2
) 7l

=

!

2 +A2 + 7i
2 ~ /

2 - A'2 -
7i'

2 = 1

which are satisfied as far as terms of the first order by

.,-1, A-O, 7,
= 0, V-0, A'-^jj, 7.'

=^,
and

flt-s, /32 ,
... 73' are obtained from these by a cyclical change of letters and

subscripts. With these values we obtain

' = m + i [ n

(

'

1
^1

V d^*

.(26),

n =n + in =n +

and thence, since eo
2 = w2

(1 + 2iv),

v V* v L_ _L,V- --r^- *-**,. .

ft) tt ft)

Hence separating the real and imaginary parts, equation (22) gives

and

(27),

(a
2 - w2

)
2

(6
2 - w2

)
2
~

(c
2 - a)

2

)
2

= a 11

(a
2 -

2a/31

212
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Now, if A = A+ iA', B=B+i,B',C=C + l C',

A:B:C:: l/(a
2 - o>

2
) : m/(6

2 - <y
2

) : n/(c
2 - <o

2
),

and therefore

2z>o>
2 = a'u cos2

0j + a^ cos2 #2 + a's-, cos
2 #3

+ 2a'23 cos #2 cos 3 + 2a'31 cos 3 cos ^ + 2a'ia cos Bl cos #2

= a'8 cosa
fl/ + 6'

8 cos8
a

' + c/a cos8
s

'

.................................(29),

where Blt BZt 3 and #/, #/, 3

'

are the angles that the major axis of the

elliptic vibrations makes with the polarisation- and the absorption-axes

respectively and a', b', c' are the principal constants of absorption.

215. When the polarisation- and the absorption-axes coincide, as is the

case with prismatic crystals, a further simplification occurs, as then

a's = a'3l = a'12 = 0,

and writing a'
2
, b'

2
,
c'

2 for a'u , a'&, a'^ respectively we have

2i/w2 = a
/M 1

2 + 6/2
JB1

2 + c'
2
C'1

2
........................(30).

This may be expressed in terms of the angles ^, % that the wave-normal

makes with the optic axes. Through the centre of a sphere of unit radius,

let us draw lines parallel to the optic axes, the wave-normal and the vectors

(A lt B!, CT) and (A 2 ,
B2 ,

C2) and let these meet the surface of the sphere in

the points A, A', N, a>l} a>2 respectively : then if 1
, 0, n

9 be the direction -

cosines of the optic axes and i be the angle ANA',

sin % sin i'/2
= cos (w^A) = AJ, + CX> ,

sin ^' sin i/2
= cos (w^A'} = AJ + C^,

_i_
' ' *

whence Ajl = sin ^ cos *-jr2t sin -
,

_ 2i 2>

dw = cos % X sin X X
sin

|
,

and similarly AJ, = cos % ^ sin - ^ cos ^ ,

y-C2n = sin ^ ^ cos ^ ^ cos -= .

Z 2

Also if 2"^ be the angle between the optic axes

cos 2^ = cos ^ cos ^' + sin ^ sin ^
'

cos i,

whence

sin % sin y/ sin2 - = cos2 ^ ^ - cosa^ = sin2 ^ sin2 ^ ^
Z 2 L

t Y "4" Y' Y -f" Y'
sin x sm % cos2

^ = cos2 Mf - cos2 A ^ = sm2 A A sin2 "^F.
- 22
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Making these substitutions we obtain

=
(c

2 - a2
) sin

2*X Cog2 X+2C. (a _

a'2 sin2 cos2 - c'
2 cos2 sin2

2 2

-..(31),

and &>
2 = a2 -

(a
2 - c

2

) sin
2

When the wave-normal is very nearly coincident with one of the optic

axes, so that %, say, is very small, we may proceed to a further simplification*;
for if

i/r
be the angle A'AN, we have approximately

whence

A,= cos V cos ^r/2, A = sin
->|r/2, C^ = - sin cos -

-4 2
= - cos sin

i|r/2, 52
= cos

i/r/2,
C2
= sin "^ sin i/r/2,

and (30) gives

2z/! 6
2 =

(a'
2 cos2^ + c'

2 sin2

V) cos2 + 6'
2 sin2 ^ I

2
.........(32).\ /

2v2 b
2 =

(of* cos
2 ^ + c'

2 sin2

) sin
2 ^ + t'

2 cos2

Â'

When the wave-normal coincides with the optic axis, these formula

become indeterminate, but we obtain from (30)

2i//6
2 = 6'

2
,
when the plane of polarisation is parallel to the plane of

the optic axes, and

2i/2'6
2 = a'2 cos2^ 4- c'

2 sin2 ^ for the stream polarised in the perpendicular

plane.

There are two types of biaxal absorbing crystals: in those of the first

type, such as Andalusite, Hornblende, Titanite, v2
' > j/,', while in those of the

second type, of which Cordierite, Epidote, Axinite are examples, z// > i/2'.

Similarly with uniaxal crystals: in those of the first type (Magnesium

platino-cyanide) v < ve ,
in those of the second type (Tourmaline) v > ve .

In traversing unit distance in the direction of the wave-normal, the

amplitude of the vibrations is diminished in the proportion exp {1-jrvl(r(a}} : 1.

If then we draw through a given point vectors equal to the absorption-

coefficients VI/M! and i>2/&>2 , we shall obtain a surface of two sheets that has

a certain analogy with the surface of wave-quickness. The sheets of this

*
Voigt, Wied. Ann. xxm. 595 (1884).



326 The Analytical Theory of Light [OH. xvi

surface intersect, not in definite points but along portions of curves, that in

the case of anorthic and monoclinic crystals are unsymmetrical with respect

to the planes of optical symmetry and do not in general pass through the

optic axes. Thus in weakly absorbing crystals, while there are at most

two directions of equal wave-velocity, there is a series of axes of equal

absorption *.

216. We are now in a position to consider the interference phenomena
exhibited by plates of weakly absorbing crystals f.

Let a, ft, f] be the angles that the primitive and final planes of polarisation

and the plane of polarisation of the quicker wave within the plate make

respectively with some fixed plane of reference : then neglecting the ellipticity

of the polarisation of the streams within the crystal, as this is very slight in

the case of weak absorption, and making the same assumptions as in

Chapter XIV, the polarisation-vectors of the streams emergent from the

plate may be represented by

a cos (a 77) g-'Vi e'(<-i) and a sin (atj)e -**'* e l (nt- s
>\

where a = 2,TrT/(rca cos r), T being the thickness of the plate and r the angle
of entry ;

and that of the stream leaving the analyser will be

a (cos (a 77) cos (ft 77) e~
v^ e~ 1"** + sin (a 17) sin (0 77) e~

Vtfr* e~ tK

**\
&nt

,

and the intensity is

I = a? (cos
2
(a
-

77) cos
2
(ft
-

77) e~
2v^ + sin2

(a
-

77) sin
2

(ft
-

77) e~
Zv^

+ 2 sin (a
-

77) cos (a
-

77) sin (ft
-

if) cos (ft
-

77) e-("ii+wJ cos *}...(33),

where & is the relative retardation of the streams as determined in

Chapter XIV.

If the incident light be unpolarised, we may replace it by two independent
streams of equal intensity polarised in any two rectangular planes, and the

final intensity will be the sum of the final intensities of these streams : hence

/ = ^ {cos
2
(ft
-

77) e-*w + sin2

(ft
-

77) e'
2
"^} (34).

2

When the light is neither polarised nor analysed, the intensity is

7=|!(
e -2.vr1 + e-*vr2

) (35).

217. Let us first apply these formula? to the case of an uniaxal plate

perpendicular to the optic axis placed in convergent light between crossed

Nicol's prisms. The intensity then is

I=r sin2 2 (a
-

t)){e-
2v< + e'2"^ - 2 e -<w*+") cos

tc8] (36),
TP

*
Drude, Wied. Ann. XL. 676 (1890).

t Voigt, Wied. Ann. xxm. 587 (1884); N. Jahrb. fur Min. (1885) r. 119. Drude, Lehrb. der

Optik, pp. 345351. Liebisch, Phys. Kryst. pp. 527533.
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where 2, = 2y - a* ** * + *' <rin> *

In the direction of the optic. axis i/ = i>e ,
o- = <re ,

B = 0, whence 7=0, and
the intensity also vanishes when 77

= a or a + w/2, so that there is a black

cross with its arms parallel to the principal planes of the Nicol's prisms. The
second factor in (36) equated to zero gives a series of dark rings round the

optic axis, but these are only completely black if v cr = ve<re .

The rings become less conspicuous the stronger the absorption, since the

factor exp { (ivo + vea-e)}
becomes vanishingly small, and

a2

/ = sin2

(a
-

77) (e-
2"<*ro + e ~^v

^).
~r

Thus in crystals of the first type, such. as magnesium platino-cyanide, for

which a' is small and c is large, the field is bright except for the dark cross
;

in crystals of the second type, such as tourmaline, for which a is large and c'

is small, the whole field is dark.

When the incident light is unpolarised

a2

/ = -
{cos

2
(/3
-

17)
z

and in the direction of the optic axis

Thus with crystals of the first type, there is a dark brush perpendicular

to the plane of analysation interrupted by a bright spot at the centre
;
while

with crystals of the second type, the brush is parallel to the plane of

analysation and is continuous.

When the light is neither polarised nor analysed

and in crystals of the first type there is a bright spot surrounded by a dark

field
;
with those of the second type there is a dark spot in the centre of

a lighter field.

218. As a second example of the interference phenomena given by

absorbing crystals, we will consider the case of a biaxal plate cut in a

direction perpendicular to one of the optic axes.

Taking the plane of the optic axes as the plane of reference, we have for

small angles of incidence 77
=

-\Jr/2,
where ty is the azimuth of the plane of

incidence : hence if the planes of polarisation and analysation be crossed

/ = X sin2

(2a
-

^r){e~
2^ + e' 2"^ - 2e-(">+"'>

<r cos tc&]
...... (37),
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where o- = 27rT/(r6) and vl ,
i> 2 are given by (32), which formulae, though

strictly holding only for the cases of prismatic crystals, will afford with

sufficient accuracy a qualitative explanation of the phenomena observed

with crystals of other systems.

For the direction of the optic axis itself, we obtain by resolving the

incident light into streams polarised in planes parallel and perpendicular to

the plane of the optic axes

J =
^ sin 2a (e-"'

v -
e~">)

2
..................... (38),

where 2i// = b'*/b
2
,

2j/2
' =

(a'
2 cos2 + c'

2 sin2

)/6
2
............ (39).

The factor sin2

(2a ^) gives a principal line of like polarisation ty
= 2a,

which is black, but is interrupted by a brighter spot at the point corre-

sponding to the optic axis, unless a = or ?r/2. Since cos K& changes

periodically as the angle of incidence increases, the last factor in (37) will

give a series of dark rings. These however will be too faint to be observed,

if the plate be of a thickness for the absorption to be marked, as the factor

exp { (i/j + z/2) a} then is very small and the term in question becomes

J= e~ z"i<r + e~ tv^.

Now ^ = a- sin ^ (z/2

' -
Vl') (e~^ - e

- 2
"O,

and this is zero, if
i/r
= or TT, giving a maximum value of J, and if Vi = v2 or

^r
=

7T/2 corresponding to a minimum value of J. Thus in addition to the

black line of like polarisation ty
= 2a, there is a dark line perpendicular to

the plane of the optic axes.

If the planes of polarisation and analysation be parallel and the plate be

of sufficient thickness

= tf cos4 a - e- Zv^ + sinin
4

fa
- +

\ ^

and the phenomenon is essentially the same as when the light is unanalysed,

the intensity then being

/= a2

{cos
2

fa
- ^) e-^- + sin2

fa
- ^

( \ ^/ \ ^

Taking this last case and supposing a = 0, we have

/ = a2 cos2 j e- 2"'* + sin2 e"*
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Now

= 0, if
-\/r
= or TT, or if

i/r
= + Tr/2.

But for
T/T
= or TT, I = f1

= a2e~ 2y*'<r

,

for
i/r
= + 7T/2, / = /2

= a2
e-("''+^')<r

>

whence for crystals of the first type, for which i/a
'. > i//, 72 > /j and the dark

brush is in the plane of the optic axes and continues through the centre of

the field : with crystals of the second type, *// > i/a', II > 72 and there is a dark

brush perpendicular to the plane of the optic axes interrupted by a brighter
central spot. The reverse is the case when a =

Tr/2.

When the light is neither polarised nor analysed

This expression has already been discussed and it shows that there will

be a dark brush perpendicular to the plane of the optic axes with a brighter

spot at its centre.

219. Passing now to the problem of reflection and refraction* at the

interface of absorbing media, we may at once apply the formulae obtained

for transparent substances, provided we replace by complex quantities the

parameters that occur therein.

Thus in the first place the geometrical laws of the phenomenon follow

from the fact that the boundary conditions are linear, homogeneous relations

between the vectors characterising the incident, reflected and refracted

streams: for the interface being the plane of yz and the vectors being

proportional to

exp {iKh (fa* + mhy + hZ ^hi)},

where fetich *h<*>h

it follows that the quantities

must have the same value for each of the streams.

*
Drude, Wied. Ann. xxxii. 584 (1887); xxxiv. 489; xxxv. 508 (1888); xxxvi. 532, 865 (1889) ;

xxxrx. 481 (1890). Voigt, ibid. xxin. 104 (1884) ;
xxv. 95 (1885) ;

xxxi. 233 (1887) ;
xxxv. 76

1888) ; Komp. der theor. Physik, n. 730747.
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Let us as before adopt the light-vector rs as representative of the streams,

and let us suppose that the normal to the planes of constant amplitude of

the incident stream are in the plane of incidence, which we will take as the

plane of xz, then m = m = and therefore ra = and we may write

where
_ _ _ _ _

k = tan
</>,

D = cos
</>
A exp {IK (Ix + nz- tit)}

}

> .........

j

being the complex azimuth of the vector with respect to the plane of

incidence.

Since the vector w is independent of y, the differential equations give

-f-a.23-
9 ( _ 9^2 _

i
- - *

ra _ -\
ft12 -^ + C&22 1 o _

fa

9

12 ~^
02

o
oar

BJ2
= 5- < On -^ + a12 ( -5-^ ^

3

)
+ 3i -v-^r

9.2
( 9s \ oz ox J ox)

H~ ~r~ { ttsi "^ r (^23 1 ~5 5 I

*
33 "^

(41),

r dx J

whence, writing w/n = h, l/n = e, we obtain

(77
^2 i. 77 /2\ /77 ^2 _ 977 & -L. 77 . 7)2\ ^ ///

ix/22^
1 i^ ^v22 ** / V^'33^'

^^
^Lvgj v (^ ^'ll *^ /

~~
V 2

T ^ ft**

_
^2

ox] \

yTf SI /&

-a^^ + l) ...(42),

(43);

similar equations with b written for a applying to the second medium.

Now the incident stream being given, the value of h is known and

equation (42) determines the complex directions of the normals of the

reflected and refracted waves and (43) determines the azimuths of the light-

vectors. Care must be taken to select the values of e that correspond to

streams leaving the interface with amplitudes that decrease as the distance

therefrom increases.

Introducing now the surface conditions we obtain as in Chapter XIII,

2 1 cos $A = 2 ^i cos <>!B
2 cos <j>A

= S! cos faB

2 cos <f>A
= 2&! cos 0jB

K ( a3lkn + 0.33 + cLyJd) cos ^A
cos

.(44),

the suffix d) and the letter B referring to the second medium.
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If the first medium beisotropic, we have, denoting by F, G and F', G' the

amplitudes of the components of the light-vectors of the incident and reflected

streams perpendicular and parallel respectively to the plane of incidence

(G G) cos i = j cos <f>iB 1 + 12 cos <f>.2
B.2 \

(G + G) sin i = fij cos <f>1
Bl + n2 cos <j>zBz

- _
2

_ _
(

KM" (F F'} cos i = KI {(633 j 631 rij)
sin <^ + 623 cos ^x j

5
X

4- ic2 {(633^2 631 n^} sin
<J).2 + 623 cos <f>.2]

B2 I

where i is the complex angle of incidence.

220. Without proceeding to the further developments of these equations,

we will now take the more interesting case of metallic reflection, in which

both media are isotropic. Then f being the complex angle of refraction, we

have

(G G') cos i = G! cos r

(G + G') sin i = GI sin r

F + F' = FI

(F F') sin i cos i = Fl sin r cos r

T=. sin (i f) 7=: 7$ sin "i

.(46),

whence
sin (i + r)

tan(i-f) r,

sin (i -f r}

sin

G

(47).

G
tan (i + r) sin (i + r) cos (i r)

When the incident light is plane polarised and the first medium is trans-

parent F, G and i are real. Taking this case and writing the complex

refractive index

/Z
=

/A (1 vt)
= 0e~"

and /I
2 cos2 f = (Pe^* - sin2 i = Z7a -*"*,

we have /i
= #cose, v=tane (48),

U2 cos 2u = 2 cos 2e - sin2
i, U2 sin 2w = fr sin 2e (49),

which give

Whence

where

cot
/ mn ?\

e)
= cote cos (2 tan"1

^- j
(50),

tan (u 2e) = tan u cos (2 tan"1

:)
.................. (51).

\ sin ij

- Ue~ut

= tan <p, eAit~ui

cos

F fre-*" cos i + Ue

= cos (M
-

2e) sin 2 tan"1

tan Ax
= sin (M

-
2e) tan 2 tan"1

.(52) ;
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G cos i Ue~Ul

and T~ = : TT
= tan <p2 e

2t
,\

Or cos i + Ue~ut

where cos 2<f>2 = cos u sin
(
2 tan"1

.) V (53).
V cos i)

tan A2
= sin u tan [ 2 tan"1

COS

Also if the incident light be polarised at an azimuth of 45 to the plane of

incidence, we have

F' sinH'- Ucosie~u<-

(54),
G' sin2 i + U cos te"" 1

where A is the difference of phase between the components of the light-

vector of the reflected stream perpendicular and parallel to the plane of

incidence and tan
<f>

is the ratio of the amplitudes, and

cos
2<f>

= cos u sin
(
2 tan"1

(55).

tan A = sin u tan ( 2 tan"1 -
sin i tan i/

Now as i increases from to 90, A decreases from TT to : hence at

a certain angle of incidence /, called the principal angle of incidence, A = Tr/2

and if the corresponding value of < be /3, we have that when i = I

U= tan / sin /, u = 2/3.

The angles / and /3 having been determined, the values of 6 and e may be

obtained from (51) and (49), we have in fact

tan 2 (
-

e)
= tan 2/3 cos 27] / I\

= sin2 / tan2 / sin 4/3 cosec 2e[

and these being known, equations (49), (50) give the values of u and U for

any angle of incidence.

221. The simplest method of investigating the phenomenon of metallic

reflection is to directly measure A and tari< by means of Babinet's com-

pensator and an analysing prism, as described in 205*. Other methods

have however been employed. Thus Jaminf compared the intensity of the

light reflected from a metal with that reflected at the same angle from a glass

surface, when the light was polarised in planes parallel and perpendicular
to the plane of incidence, and determined the relative difference of phase
between these streams introduced by the metallic reflection by observations

of the angles of incidence, for which the reflected light was plane polarised

after 2, 4, 6... reflections at the surfaces of two mirrors of the metal

*
Quincke, Fogg. Ann. cxxvm. 541 (1866). Hennig, Gott. Nachr. (1887) 365.

t Ann. de Ch. et de Phys. (3) xix. 296 (1847).



220-222] Experimental Methods 333

placed parallel to one another, the primitive light being polarised in a plane
inclined to the plane of incidence.

The change of phase that metallic reflection introduces, when the light is

polarised in a plane either parallel or perpendicular to the plane of incidence,

may be compared with that caused by reflection at the surface of a trans-

parent substance by aid of the phenomenon of interference, such as that

produced by Fresnel's mirrors*, or by thin isotropic platesf. Of these

methods the most satisfactory is that employed by WernickeJ. A stream

of white light falls upon a thin film of some transparent substance, the

hinder surface of which is in part coated with the metal to be investigated,

and the reflected light is analysed with a spectroscope. A channelled spectrum
is thus obtained, and the relative difference of phase due to the metallic

reflection is determined from the shift of the bands in the part of the

spectrum given by the light reflected from the coated region of the film.

This method has been improved by Drude, who employed a wedge-shaped
film and monochromatic light.

222. It has been pointed out that the optical constants of a metal 6 and

e or
fj,
and v may be obtained from measures of the principal angle of incidence

/ and the principal azimuth /3, but Drude|| has shown that the most accurate

plan is to deduce these constants from a series of measures of ^>
and A for

angles of incidence near the principal incidence.

From equations (55) we have

tan u = sin A tan 2<f>, cos 2 tan"1
-. r- .

= cos A sin 2<f>,

\ sin i tan ij

whence u and U are determined from the various observations and e and 6

are then deduced from (51) and (49).

Now in most cases 6 =
//, J\ + v> is sufficiently large for powers of 1/0

above the second to be neglected, and if this be so

tf=0(l-^
and since

U* cos 2u B2 cos 2e sin2
i,

we have

Z7 sin ursine l+ ...(57).

*
Senarmont, Ann. de Ch. et de Phys. (2) LXXIH. 361 (1840). Quincke, Fogg. Ann. CXLII. 219

(1871).

t Quincke, ibid. CXLII. 380 (1871). Wiener, Wied. Ann. xxxi. 629 (1887).

J Berl. Monatsber. (1875) 673.

Wied. Ann. L. 595 (1893).

||
ibid, xxxix. 504 (1890).
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To a first approximation then U is a constant = 6, and denoting its mean
value deduced from the observations by S, we may use this value for 6 in the

small terms on the right-hand sides of equations (57) ;
whence the optical

constants may be calculated from the formulae

= cos e =
SCTcos

1 +
sin2

i

N
1 Ssin'i~~... 2 7" sin w

fj,v
= u sm e = ^

where N is the number of observations.

In this manner Drude has determined the optical constants of a number

of metals, some of his results being given in the following table.
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formula required for calculating the refractive index from the observations

is easily deduced from the geometrical laws of refraction at the surface of

absorbing media*.

Another interesting fact is that only in the cases of copper, lead and gold
is the dispersion normal : in all other cases the index for red light is greater

than that for sodium light.

The value of
/j.v,

on which the absorption depends, varies in the case of

sodium light from 2'62 for copper to 5'48 for zinc. Copper is thus the most

transparent of the metals, but even in this case the reduction of intensity in

traversing unit thickness, which is given by exp { 4>7Tfiv/\}, \ being the wave-

length in free ether, is considerable.

The larger the value of v, the greater is the intensity of the light reflected

at the surface of an absorbing medium. Hence when a mixed stream is

incident, the constituent that is most absorbed in the medium will have the

greater importance in the reflected pencil, and this predominance will be

increased at each subsequent reflection. In fact by repeated reflections it

has been found possible to separate out waves of very large wave-length.

Thus by five reflections at the surface of Sylvite, waves of length
-061 mm.

have been isolated f.

*
Voigt, Wied. Ann. xxiv. 144 (1885). Drnde, ibid. XLII. 666 (1891). H. A. Lorentz, ibid.

XLTI. 244 (1892).

t Eubens and Nichols, Wied. Ann. LX. 418 (1897). Kubens and Aschkinass, ibid. LXV. 241

(1898).



CHAPTER XVII.

DISPERSION.

223. WE have hitherto merely considered the propagation of trains of

waves of definite period without taking into account the fact that in material

media light travels in a given direction with a speed that depends upon the

frequency of the waves. The equations obtained may of course be made to

include the facts of dispersion by regarding the parameters of the medium as

functions of the period, but this procedure leaves unexplained the unequal
rate at which waves of different periods travel and gives no information

respecting the law that connects the speed with the frequency of the

luminous vibrations. Moreover it affords no explanation of the complex
values of the parameters, that we have been led to adopt, in order to explain
the phenomena presented by absorbing media.

Observations of Jupiter's satellites show that in free ether the velocity

of light is independent of the frequency, for were this not the case, the

satellites would appear to be coloured at the commencement and at the end

of an eclipse. It thus becomes natural to attribute dispersion to the influence

of the molecules of the material substance, and the fact that these occasion

the phenomenon may be ascribed to either of two causes : it may be that

the coarse-grainedness of the substance introduces " a geometrical dimension

in the ponderable matter which is comparable with the wave-length," or it

may be that there is "a definite interval of time somehow ingrained in the

constitution of the ponderable matter which is comparable with period*."

Now so far as ordinary dispersion is concerned, the first of these

hypotheses may be made to give a fairly satisfactory account of the facts,

but other allied phenomena and especially that of abnormal or anomalous

dispersion cannot be explained in this manner and it is therefore necessary
to regard the second of the above assumptions as giving the actual cause of

the influence of the molecules on the propagational speed of light.

* Lord Kelvin, Baltimore Lectures, p. 8, Camb. (1904).
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224. The coincidence of many of the Fraunhofer lines in the solar

spectrum with the bright lines of the spectra given with the same apparatus

by the vapours of certain elements, has been shown by Kirchhoff to be an

instance of a general law that may be enunciated as follows :

"
if a body

emits in a given direction a beam propagating certain vibrations, denned by
their period and their state of polarisation, it is capable of absorbing a beam

propagating the same vibrations in the opposite direction*."

This important result has been explained by Stokesf by the aid of the

well-known dynamical theorem that, if a system, capable of executing

vibrations, be acted on by a periodic force, the amplitudes of the forced

vibrations will be very large when the period and direction of the force are

identical or nearly so with the period and direction of the free vibrations of

the system. It follows then that if a stream, incident on a body, contain

constituents that have periods and polarisations in agreement with those in

the stream that the body emits, these components will excite within the

molecules of the substance vibrations that have a considerable amplitude,
and inasmuch as there can be no creation of energy, they must themselves

be gradually extinguished during the passage of the stream through the

medium.

Closely allied with intense selective absorption we have the phenomenon
of anomalous dispersion. In the case of most transparent bodies the re-

frangibility of a stream of light increases with the frequency of the vibrations,

so that when a stream of white light traverses a prism of the substance, the

red rays are the least deviated and the deviation increases continuously as

we pass from red to violet. With prisms formed of certain media however

the ordinary distribution of colours in the spectrum is largely departed from,

the least deviated being in some cases the green or the blue. This was first

observed by Fox Talbot* about the year 1840, but we owe the first published

account of the phenomenon to Leroux, who discovered in 1862 that vapour

of iodine, which absorbs all but the red and violet rays, refracts the latter

less powerfully than the former.

Later experimental investigations by Christiansen
||,
KundtU and others

have shown that there is an intimate connection between anomalous dis-

persion and the absorptive power of a substance, and have established the

law that the propagational speed in the medium is abnormally decreased for

waves of less frequency and abnormally increased for those of greater frequency

than those that are absorbed by the body.

*
Cotton, Astrophys. J. IK. 237 (1899).

t See Phil. Mag. (4) xx. 20 (1860). Lord Kelvin, Baltimore Lectures, p. 101, Camb. (1904).

J Proc. R. S. Edin. vn. 408 (1870).

C. E. LV. 126 (1862) : Phil. Mag. (4) xxrv. 245 (1862).

Fogg. Ann. CXLI. 479 ; CXLIII. 250 (1871) : Phil. Mag. (4) XLI. 244 (1871).

IT Pogg. Ann. CXLII. 163
; CXLIII. 149, 259 (1871) ;

CXLIV. 128; CXLV. 67, 164 (1872).

W. 22
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This relation between dispersion and absorption leads to the conclusion

that both must be attributed to the same cause, vibrations within the

molecules of the material medium excited by the vibrations in the stream

of light incident upon it.

225. It follows then that, in order to obtain the law of dispersion we

must introduce into our equations additional vectors dependent upon the

action of the molecules of the body and connected with the polarisation-

vector for the pure ether by relations that express that the vibrations of the

latter occasion forced vibrations of these new vectors*.

There are several ways, all a priori equally possible, in which these

additional vectors may be introduced into the equations, but perhaps the

most simple and natural is to retain the form of the equations that have

been deduced for the case of the free ether, regarding therein the polarisation-

vector for the material medium as the resultant of the vector d for the pure
ether and of the vectors dh , expressive of the action of the molecules of the

substance.

We then have Z) = curl-sr, nr=curle (1),

where D = d + '2dh (2),

and the components of the vector e are given by

'/, v, w being the components of d.

As regards the equations connecting the vectors d^ with the vector d,

these, if we take the coordinate axes in the direction of the axes of symmetry
of the medium, will have the form,

cth uh + ah
'

uh + ah
"
uh -u\

bh vh + bh
f

Vh + bh
"

vh = v h (4),

ChWk + Ch Wh + Ch'Wh = W I

UK, Vh> wh being the components of dh.

In the case of vibrations of frequency n, we then have

Uh (;t + t^Trnah 4nr-n2ah") = u (5)

and two similar equations : whence U, F, W being the components of D
U = u + SMA = u {1 + 2 (ah + t27rnah

' - 47r2w2aA")~
1

} (6),

and two similar equations, and introducing these values of u, v, w into

equations (1) we obtain

J[) = curl CT, sj = curl.Z? (7),

*
Voigt, Komp. der theor. Physik, u. 747.
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the components of E being

r dv> dw)(
a*u '~ +b* v ' +cn'w^ (8)>

where a2 = n2
-!l + 2

.(9).
1^

1

These equations are those that we have adopted to represent the case of

absorbing crystals, in which the axes of absorption coincide with those of

polarisation.

226. Taking the case of an isotropic medium, we have a = b = c and the

complex propagational speed is given by

1

ah-

where ah is written for 2<

7ra/l7a/t and nh is the frequency of the free un-

damped vibrations of the vector c?/t . Hence if
//.
be the refractive index and

v the coefficient of absorption

(11).,+ iahn n2

/nh
-

Let us first suppose that ah is very small: then provided that the

frequencies nh are well outside the limits of the visible spectrum, we may

neglect the term containing /t ,
in which case there is no absorption through-

out that part of the spectrum and

I/a*= 1 +
I - n-/n,r

I/av ~ ns llar

n-

(12),

where the subscripts v and r refer to the vectors dh that have their

frequencies beyond the violet and the red end of the spectrum respectively,

22_2
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Retaining only the first term of the second series, the formula connecting
the refractive index with the period r of the light is of the form

(13),

which is found to represent with considerable accuracy the law of dispersion

of transparent bodies.

227. Passing now to the case that we have reserved, we see that there

will be absorption when the frequency is near one of the critical frequencies
nh ,

even when 0^ = 0; for as n increases through this value p- passes from

so to x and when p? is negative the wave ceases to be transmitted and

absorption occurs. Also there is an abnormal increase of the refractive

index for frequencies less than nh and an. abnormal decrease for frequencies

greater than nh ,
so that the dispersion is anomalous.

We will however consider the more general case in which a^ though
small is not actually zero. Writing

so that HI, n.2 are the roots of the equation

n2
iOLft nft

- n n/i
2 = 0,

we have
**'* n*'a*"

1 M**?^.>VC llctVC .. \ / \
1 + iahn n-/nh

2

fa ?? 2) fa ) fa n,) fa n)

But when the frequency n is very nearly equal to nh ,
the absolute value

of ?ij n will be very small compared with that of n.2 n and we may write

approximately

_____ _
1 + iahn - na

/wA
a

fa - nz) fa - n) 2 (n -nh -%ahnh
*

i)

'

since ^ n2
= 2nh ,

?ix
= A A

2
1 + nh .

This expression attains its maximum value for n = nh and is relatively

small when the frequency differs in a marked degree from this critical value,

and we may, when the periods of the free undamped vibrations of the vectors

dh are not too close together, retain only the one term of the summation in

(10) and write
~l " 1

,

(14).

In order to determine the form of the curve of dispersion, let us write
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-, n*
^

5*
~

where N denotes on a scale of frequencies considerably magnified the distance
from the point n = nh .

-N

Fig. 51.

With centre 1 iA/2 and radius equal to A/2 describe a circle in the

plane representing the complex variable % + ir); then the line joining the

points 1 and (1 N) i will cut this circle in the point P that corresponds to

the complex number JT~. If then
/j,
= x yi, the absolute value of OP is

x- + y- and the abscissa SP of the point P is a? y*, and the values of 2/*
2 and

2/jb-v- corresponding to the given value of N are respectively the sum and

difference of the tensors of the vectors OP and SP. If then on the ordinate

through Q we take QR= OP and RT=RU=SP, the lengths Q^and QU
will represent the values of 2/*

2 and 2fj?v
2

corresponding to the value of O'Q
of N. In this manner the curves representing the values of these quantities

are constructed, and we see that the dispersion is anomalous, as the value of

/*
2 increases largely on approaching the region of absorption from the side of

frequencies less than the critical value and is abnormally decreased on the

other side of the absorption-band*.

228. Anomalous dispersion is most usually investigated by Newton's

arrangement of crossed prisms, and this was adopted by Kundt in his ex-

periments. A fine thread is stretched across the slit of a spectroscope and

the light from the collimator before entering the telescope is made to pass

through two prisms with their refracting edges at right angles, that of the

*
Kayser, Handb. der Spectroscopie, n. p. 652.
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first being parallel to the slit. When the dispersion of both prisms is normal,

the oblique spectrum thus obtained will be divided into two parts by a dark

line forming a continuous curve in the direction of the length of the spectrum :

if however the dispersion of the second prism be abnormal, this line will be

interrupted by the absorption-bands and on crossing these there occurs a

displacement of the line, that indicates an abrupt change of the refractive

index of the substance of the prism.

The disadvantage of this method is the great loss of light in traversing the

absorbing material, which necessitates the employment of prisms of very small

angle, and with liquid prisms capillarity may affect the concentration of the

liquid at different distances from the edge. Moreover it is by no means

certain that with prisms of very absorbing materials the refraction may not

be modified by changes of phase, that vary with the wave-length and are

dependent upon the thickness that is traversed.

A second method* is to employ an iriterferential apparatus, placing a thin

film of the substance in the path of one of the interfering streams. If white

light be allowed to pass and be subsequently analysed by a spectroscope with

its slit perpendicular to the direction of the fringes, the spectrum in the case

of normal dispersion will be traversed by dark bands spreading out like a fan

from the violet to the red : when however the dispersion is abnormal, these

dark lines will be broken by the absorption-bands into portions of distinct

curves, and if the absorption be not too vigorous, the separate parts will be

joined by rapidly curved pieces passing through the region of absorption.

Here again we are met by the difficulty that, even though the incidence be

normal, there may be a change of phase dependent upon the wave-length on

entering and traversing the film.

A third plan, free from the foregoing objections, is to employ the method

of total reflectionf. A right-angled glass prism is placed on the plate of a

spectroscope and its hypothenuse face is brought into optical contact with the

substance to be examined. The slit of the spectroscope is placed at right-

angles to the edge of the prism and the light internally reflected within the

prism passes through a direct-vision combination of prisms with their edges

parallel to the slit and then enters the telescope. When the dispersion of the

substance is normal and the pencil from the centre of the slit is incident

upon it at the critical angle for rays of mean period, the spectrum is divided

into a brighter and a darker region by a line corresponding to the limit of

total reflection, that traverses it obliquely from the red to the violet (fig. 52) \

but in the case of anomalous dispersion this line will consist of distinct-

branches. Thus in the case of a solution of fuchsine and a flint glass prism,

* Mach and Osnobischin, Anzeiger Wien Akad. xn. 51, 82 (1875) ; J. de Phys. v. 34 (1876)

Carl. Rep. xi. 178 (1875).

t Mach and Arbes, Wiei. Ann. xxvn. 436 (1886).
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the appearance is as represented in fig. 53, the dark baud at E corresponding

to rays for which the refractive indices of the fuchsine and the prism have

nearly the same value. In many cases the high reflecting power of the

Fig. 52.

substance exhibiting anomalous dispersion masks the division between the

partial and the total reflection, but in these cases the dividing line may be

rendered sharper by having recourse to multiple reflections.
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STRUCTURALLY ACTIVE MEDIA.

229. A PLATE of an uniaxal crystal cut perpendicularly to the optic axis

does not as a general rule modify in any way the polarisation of a stream of

plane polarised light that passes through it along the normal to its faces,

and the emergent light, when analysed by a double image prism, is divided

into two colourless beams, one of which can be made to vanish by placing the

principal plane of the prism either parallel or perpendicular to the plane of

polarisation of the original stream. With a plate of quartz this is no longer
the case, and for each position of the prism there are two emergent pencils,

exhibiting complementary colours that change in a marked manner as the

analysing prism is turned.

This phenomenon was discovered in 1811 by Arago*, who pointed out

that it could be explained by the supposition that each monochromatic

constituent of the stream remains plane polarised after its passage through
the quartz, but that its plane of polarisation has turned through an angle

dependent upon the wave-length.

The subject of rotary polarisation was next investigated with remarkable

skill and diligence by Biotf, who gave as the results of his experiments the

following general laws of the phenomenon :

(1) The rotation of the plane of polarisation produced by a plate of

quartz cut perpendicularly to the optic axis is proportional to the thickness

of the plate : it is the same for plates cut from different crystals and does

not change when the plate is reversed.

(2) Among crystals of quartz there are some that rotate the plane of

polarisation from the left to the right of an observer receiving the light,

while in the case of others the rotation is in the opposite direction: the

former are called right-handed, the latter left-handed crystals. Plates of

the two kinds of crystals that have the same thickness produce equal
rotations in opposite directions.

(3) The rotation of the plane of polarisation increases with the frequency
of the light and varies very nearly as the inverse square of the wave-length.

* Mem. de la prem. classe de VInst. xu. (1) 93 (1811) ;
(Euvres completes, x. 36.

t Mem. de la prem. classe de VInst. -s.ro.. (1) 218 (1813) ; Mem. de VAcad. des Sc. n. 41 (1818).
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230. Certain imiaxal crystals, such as cinnabar and the hyposulphates of

potassium, calcium, strontium and lead, possess the same property as quartz
in the direction of their axes, and a few cubic crystals, such as the chlorate

and the bromate of sodium, as well as some liquids and even vapours,

impress a rotation on the plane of polarisation of the light that traverses

them, whatever may be the direction of the stream.

Such substances are termed active media, and in all cases the rotation of

the plane of polarisation is proportional to the distance travelled in the

medium. The rotation produced by unit length of the medium is called the

rotary power of the substance.

From the fact that active liquids do not lose the rotary property, except
in degree, by dilution with inactive substances and retain it even in a state

of vapour, it was inferred by Biot that the property is inherent in the

ultimate molecules, whence the quotient of the rotary power by the density

of the active medium is sometimes called the molecular rotary power. If

then R be the rotation produced by a column of length I of a solution of the

active substance, the molecular rotary power is

where p, P are the masses of the active substance and of the inactive solvent

and 8 is the density of the solution. When there is no chemical action

between the substance and the solvent, the molecular rotary power is in

most cases constant.

For a mixture of active substances that have no chemical action on one

another, the total rotation is the algebraic sum of the separate rotations, so

that with a solution of density 8 containing a mass P of inactive solvent and

masses ^, p2 ... of active substances with molecular rotary powers [pj, [p2] ...

the rotation produced by a column of length I is

When however there is chemical action between the substances dissolved,

the molecular rotary powers are in general altered.

231. Shortly after Arago's discovery, Fresnel* showed that rotary

polarisation could be explained kinematically on the principles of the wave-

theory by the supposition that a stream of plane polarised light on entering

an active medium is divided into two oppositely circularly polarised streams

of half the intensity that traverse the medium with unequal speeds.

* Mem. de VAcad. des Sc. xx. 163 (1849), presented in 1818; Ann. de Ch. et de Phys. (2) xvn.

172 (1821) ; (Euvres completes, i. 655.



346 The Analytical Theory of Light [en. xvin

The incident stream of plane polarised light characterised by the vector

2-7T= a cos at,X

is equivalent to the two circularly polarised streams represented by the

vectors

a 2-7T a . 2-7T

& = 9
cos o>t, ??!

=
g
sin

~^~
**

a 2?r a . 27r
ana 52

=
o cos T~ w*> ^ = ~ o sin T" ***>
w A Z A,

of which the first is left- and the second is right-handed.

If these travel with the different speeds wl and o>2 ,
their retardations

(measured in length in air) will be on emergence

BI = (0T/&!, B.2
=

foT/a}2 ,

where T is the distance traversed, and the polarisation-vectors of the

emergent streams will be

fc
a 2?r , _ a . 2-7T , .

& =
jj

cos
x (w<

- v ^i
=

2
Sm T ' ~

^'

,
f.

a 27T,.., a.27r / ,o1Nand |2
= - cos (cat

- 6.2), tj.2
= - ~ sin (<wi

-
8,).Z Ai A

These are equivalent to a single stream of plane polarised light, for which

the components of the polarisation-vector ai'e

2?T7T ,*. 5,
. 2?T / != cos - (8.2

-
50 cos ( a>t - -

. 7T,. ,, 27T /
i + 2N

97
= a sm (o2 61) cos -

(wt
A, ^V * /

Thus the effect of the passage through the plate is to introduce a

retardation of phase 7r(8i+ 2)/X and to rotate the plane of polarisation

through an angle R = TT (&2 S^/X, which is to the right or left according as

81 is greater or less than 82 ,
that is according- as the right- or the left-handed

circularly polarised stream travels at the greater rate in the medium.

232. Fresnel* argued that, if this explanation be correct, it must be

possible to separate the two coincident circularly polarised streams by

limiting the medium, in which they travel, by a face oblique to their

direction of propagation ;
for since the streams have different velocities, they

must be differently refracted on emergence.

The amount of their divergence will indeed be exceedingly small, for

the difference of the refractive indices is
//,2 fr = ^RX/(7rT), where R is the

* Ann. dc Ch. et de Phys. (2) xxvni. 147 (1825) ; (Euvres completes, i. 731.
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rotation produced by a length T of the medium, and in the case of quartz,
a millimetre length of which gives a rotation of 21f with sodium light, the

difference of the indices is only about '00007. Fresnel however succeeded

in effecting the separation of the streams by a combination of left- and right-

handed prisms of quartz arranged so as to double the deviation.

This experiment has been regarded as a confirmation of Fresnel's views

on the cause of rotary polarisation, and in fact v. Fleischl* in 1885 employed
a similar arrangement for showing the existence of circular polarisation in

active liquids. A little consideration will however show that the result is

merely a consequence of the equivalence of a plane polarised stream and two

oppositely circularly polarised streams, and is independent of the state of

affairs within the active medium, provided this be such as to produce
a rotation of the plane of polarisation and a retardation of phase of the

transmitted stream, both of which are proportional to the distance traversed*^.

To make this clear, let us suppose that a prism of quartz has one of its

faces perpendicular to the optic axis, and that a train of plane waves polarised

in the normal section of the prism is incident normally on this face. Now
the experimental fact of rotary polarisation with which we have to deal is,

that on the face of emergence along any line parallel to the edge of the

prism the plane of polarisation of the emergent light has been turned

through an angle proportional to the distance of the line from the edge of

the prism and the retardation of phase of the stream is proportional to the

same quantity.

If then the polarisation-vector of the incident light be f = a cos 2-jrarf/X

the vector of the emergent stream along a line on the face of exit distant j

from the edge of the prism will have for its components

/2?r \ 2vr= a cos - kx sin A
)
cos (u)t Ix sin A )

\ A /A

. /27T 7
. A \ 2-7T ,

, j
.

A .

rj
= a sin - kx sin A cos (wt ix sm A)

\ A. /A
= a

sin ^{mt-(l- k) x sin A
}

-
\ sin {*-(*+ &) # sin A

}

2 A ^ A

where A is the angle of the prism and I, k are constants. That is, the

emergent light is equivalent to two trains of oppositely circularly polarised

plane waves that are inclined at angles sin"1

{(I + &) sin ^) to the face of

emergence, and these are precisely the directions of the emergent streams

on Fresnel's theory.

* Wied. Ann. xxiv. 127 (1885).

t Gouy, C. It. xc. 992 (1880).
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233. Fresnel suggested*, as a second method of verifying his conclusions,

an experiment depending upon the interference of the circularly polarised

streams emergent from an active substance.

A stream of white light from a slit passes through a polarising prism and

a plate of quartz cut perpendicularly to the optic axis and then falls upon
Fresnel's mirrors or other interferential apparatus giving two images, real or

virtual, of the slit. These images act as proximate sources of light, from

each of which according to Fresnel's view emanate two correlated streams of

light, that are circularly polarised in opposite directions, the right-hand
streams being relatively accelerated or retarded in phase according as the

plate of quartz is right- or left-handed.

Now the two pair of similarly polarised streams will give two coincident

systems of interference fringes situated at the centre of the field, but the

oppositely polarised streams are incapable of interfering unless the light is

passed through an analyser. When however an analyser is used, there will

appear on either side of the central fringes a system of lateral bands, which

are produced by the interference of the left-handed stream from the one

image and the right-handed stream from the other image, these streams

starting from the sources with an initial difference of phase.

The achromatic bands of these lateral systems will occur at the points,

where the retardation of phase is stationary for light of mean wave-length \ ,

that is at the points given by

d (2?r ex _ ) TTCX _ dR
-^~ T 2^ =

>
or -

X d

where c is the distance between the sources, d their distance from the screen

of observation and R is the rotation produced by the quartz.

Let # be the distance from the centre of the field of the point at which

the difference of phase of the interfering streams is zero for light of mean

wave-length X
;
then

c# - \i T> i \>
2 d dR X dR

~T = + ** and oc = - '-== # D ^.d TT IT c a\ R d\

Assuming that the rotary power is given by the law R = kT\~n we have

dR
Rs, -5

= n and x = nx .

According to Biot n = 2 and the achromatic fringes of the lateral systems
are at distances from the centre of the field that are double that of the

points at which the interfering streams have the same phase ;
but the value

?j= 2'13 gives results that are more in accord with the observed positions of

the bands f.
*

(Euvres, i. 657.

t Cornu, C. R. xcm. 809 (1881).
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It is however possible to explain this experiment of interference without

having recourse to the hypothesis of circularly polarised streams within the

quartz. When monochromatic light is employed, an extended system of
bands is obtained as in all cases of interference and these reach beyond the

regions occupied by the lateral systems of bands in Fresnel's experiment ;

when the light is white and no analyser is used, the visible interference
shrinks into a small central system, as the actual interference is quickly
masked by the superposition at each point of maxima and minima due to

streams of slightly different frequency. In the case of the polarised streams
that emerge from the quartz plate, the azimuth of the plane of polarisation
is a function of the wave-length, and when the light is passed through an

analyser, those constituents are suppressed that have their plane of polari-
sation nearly parallel to a given direction, so that the interference will again
become visible at two determined points where the maxima coincide for the

streams that still subsist.

On this explanation the function of the quartz plate and analyser is

simply to weed out the constituents of the composite stream that cause the

obliteration of the interference phenomenon and as Righi* has shown, the

appearance of the lateral systems may be brought about by employing other

methods of suppressing these constituents.

234. Fresnel's theory only applies, in the case of quartz and other

uniaxal active crystals, to streams propagated in the direction of the axis, but

Airyf- in 1831 generalised it to include the passage of waves in any direction

within the active media.

Starting from the hypothesis that streams travelling along the axis are

oppositely circularly polarised and observing that in a direction perpendicular

to the axis they are practically plane polarised in and perpendicular to the

principal section, he was led by principles of continuity to assume that in

intermediate cases the two streams that are propagated in the same direction

are oppositely elliptically polarised, their planes of maximum and minimum

polarisation being respectively parallel and perpendicular to the principal

plane of the waves.

Let us suppose that a stream of light, plane polarised in an azimuth i

with respect to the principal section, falls normally on a plate of quartz cut

obliquely to the optic axis.

The incident stream may be replaced by the elliptically polarised stream

represented by the polarisation-vector

=
! cos /&'<<+>, ^ = -*(?! sin e

l <*+ ">
(1),

* Hem. deW Accad. It. di Bologna (3) vm. 87 (1877) ; N. dm. (3) n. 181 (1877) ;
J. de Phys.

vn. 25 (1878).

t Camb.Phil. Trans, iv. Part 1, 79, 199 (1831).
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with its plane of maximum polarisation (8 being less than ?r/4) in the

principal section, together with the oppositely polarised stream represented

by the polarisation-vector

- I r* > /2 2 r-* \^/>

where de' 1
' = r (cos i cos /3 4- 1 sin i sin 8) }

} (3),
c.2e

f
-
1 = r( cos i sm (3 + i sin i cos /3) J

the polarisation-vector of the incident stream being rexp(mt).

According to Airy's generalisation of Fresnel's theory, these oppositely

polarised streams will traverse the plate with different speeds, and, emerging
with a relative retardation of phase S, will compound into an elliptically

polarised stream. Let

= c cos ye'(*
t+

'\ r] ic sin 76' (*+),

7 being less than ?r/4, be the polarisation-vector of the resultant stream and

let be the angle that its plane of maximum polarisation makes with

the principal section of the plate : then we must have

/ ,&\
t

( ,
\ / _ s>

c (cos 7 cos # + 4 sin 7 sin 6)e
l "

2 ' = CL cos f3e
' ^ ca sin/3e'

'
a

a
',

/ L S
\ (

&
\ i s \I I

] I , *p \^l"i / t, I .)
~ I

c (cos 7 sin t sm 7 cos 0) e \ *' = id sin 8e 2
tc2 cos8e

' 2
,

when substituting for deeit and c2e
eit from (3) and writing

^ A

tan .R =sin 2/3 tan ^ ,
tan ^ = cot 2/3 sin ^ (4),

we obtain

ce
l r+ 2 j (cos 7 cos + i sin 7 sin 0)

= r \ cos (i + R) cos _ + / cos i sin >
,

( * *)

ce
l

\ 2) (cos 7 sin 6 t sin 7 cos 6) = r \ sin (i + R) cos i sin t sin [ ,

( 1 2j
or

ce \ 2,Mcos7Cos t/ ^- +tsm7Sinl0 -^
[ \

'

*/ \

( . R\ ( A . A\= r cos
[
* + 1 1

cos + i sm
)

\ "/ \ ^ 2/
(5).^ ^ ^Mjos v sin I t/ I L sin n/ cos I

-
1 >(s\

( / 7?\ /7?rf
2) -I cos 7 sin

( j
t sin 7 cos

(
6 -

\ &/ \ 2,

R\f A .A= r sm U + I cos - - i sm
-^z / v _ _

The sum of the squares of these equations gives

cV (2e+S) cos 27 = r- (cos A + i cos (2i + R) sin A},

whence tan (2e + 8)
= cos (2i + R) tan A (6),
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and their ratio gives

00.700.
(J

-D +. rip 7 rig
(tf-3)

cos 7 sin (9 g )
t sin 7 cos -5-

\ */ \ 2 /

cos 27 sin (20-12) /. U\
whence 7 -% -^ %.

= cot z + cos A,
1 cos 2j cos (20 - R) \ 2 /

sin 7 /
.

T T^a
-

nT == c t *
1 - cos 27 cos (20- R) \

.

Sin-

and from these equations we find

tan (20 -R) = tan (2i + R} cos A
^

sin 27 = sin (2i + .R) sin A L ..................... (7).

tan2
7 = tan (i + 0) tan (t + # -

0)}

An investigation of the emergent elliptically polarised stream gives the

angles and 7 ;
hence if we know the angle i, we can determine the angles

R and A and then by equations (4) find the angles /3 and & that give

the ratio of the axes of the elliptic vibrations of the streams within the

crystal and their relative retardation produced by the passage through the

plate.

235. Airy assumed that in any direction within an active crystal two

streams can be propagated without alteration of their state of polarisation

and that these streams are oppositely polarised with their planes of maximum

polarisation in and perpendicular to the principal plane of the streams.

Gouy* on the other hand has proposed to deduce the existence of these

streams of permanent type from the hypothesis that the action of the

medium may be represented by a superposition of the effects of ordinary

double refraction and of an independent rotary power of the crystal.

Adopting the geometrical representation of the state of polarisation of

a stream of light given in 202, the result of normal passage through unit

thickness of a plate of an active crystal is given on Gouy's hypothesis by

a rotation through an angle K (^ ^) round the axis CA corresponding to

the principal section of the plate, C being the centre of the sphere, together

with a rotation 2/> round the polar axis CP, where K= 2ir/\, /^ and /i2 are

the refractive indices of streams polarised in and perpendicularly to the

principal section of the plate, supposed devoid of rotary power.

Regarding these rotations as small and neglecting small quantities of the

second order, the resultant rotation is represented by the sum of the vectors

*
J. de Phys. (2) iv. 149 (1885). Letebre, ibid. (3) i. 121 (1892). Beaulard, ibid. (3) n. 393

(1393).
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obtained by taking along CA, CP lengths proportional to the rotations round

these axes, and is therefore a rotation

round the axis CM, where

Fig. 54.

Since the point M and the diametrically opposite point M' remain fixed,

they represent the polarisations of streams of permanent type, and we see

that these streams are oppositely polarised with their planes of maximum

polarisation respectively in and perpendicular to the principal section, and

that the ratio tan /3 of the axes of the elliptic vibrations of the ends of their

polarisation-vectors is given by

tan 2/3= 2/9/j* (y^-y^)) ........................... (8).

In the case of quartz and other positive crystals, /*2 > ^ and the stream with

its plane of maximum polarisation in the principal section of the plate, is

left- or right-handed according as p is positive or negative, that is according
as the crystal is left- or right-handed.

In traversing unit thickness the phase of the vibrations in the right-

handed stream is retarded relatively to that of the left-handed vibrations by
an amount

-
//')

= /e
2

fa -^ + 4p
2
........................ (9),

the upper or lower sign being taken, according as p is positive or negative.

If we wish to obtain the actual retardations of phase tcp and /*" of the

streams, we require to know the value of K (// + /*"). In order to determine

this*, let a stream of permanent type be replaced by its components polarised

in planes parallel and perpendicular to the principal section with the polarisa-

tion-vectors

% = Ae Lnt
, f]

= Be tnt
,

*
Poincare, Theorie Math, de a Lumiere, n. p. 299.
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and suppose that after traversing unit thickness these become

A' = aA+/3B, Bf = JA + 8B,

where a, /3, 7, 8 are constants depending upon the nature of the plate.

But the stream being of permanent type, we have

where KX is the retardation of phase ;
hence

(a
-

e-**) A+@B = 0, yA + (8- e~"*) 5 = 0,

and = 0.--*,
7, 8 - e~ lKX

The roots of this equation give the values of e~ lKI
*', e~ ilc

*", and their

product is

But according to Gouy's hypothesis

a/cos p = - /3/sin p = e~ llc

^, 7/sin p = 8/cos p = e~ ">,

whence aS /37
= e~ l/e (w+ *>)

and
fjt + p" = fr + /i2 (10).

236. The theories hitherto considered are merely kinematical equivalents

of the phenomenon of rotary polarisation and give no account of the physical

character of the active substance : the case is otherwise with a theory
elaborated by Mallard*.

This theory is based on some experiments made by Reusch in 1869^ on

the optical properties of combinations of thin mica plates, in which it was

found that a series of p identical parallel plates, arranged so that each was

turned through an angle irjp with respect to the former plate, possessed

a rotary power just as a plate of quartz cut perpendicularly to the

optic axis.

Such a combination of crystalline plates is called by Mallard a packet,

and the packet is said to be symmetrical when all the plates are identical

and the angles of combination are the same: a symmetrical packet ofp plates

is closed, if the common angle of combination be tr\p. The superposition of

a number of packets constitutes a pile.

* Ann. des Mines (7) x. 60 (1876) ;
xix. 256 (1881) : C. E. xcn. 1155 (1881) : J. de Phys. x.

479 (1881) : Traite de Crist, n. 262. Sohncke, Pogg. Ann. Ergb. vm. 16 (1878) : Math. Ann. ix.

504 (1876): Zeitschr. f. Kryst. xni. 229 (1888). Poincar6, Theorie Math, de la Lumiere, n. ch. 12.

t Pogg. Ann. cxxxvm. 628 (1869): Berl. Monatsber. (1869) 530.

W. 23
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237. We will first take the case of a closed symmetrical packet.

Adopting the geometrical representation of the state of polarisation by

points on a sphere, the effect of the passage of a stream of polarised light

through the packet is given by the resultant of successive rotations about

axes CA lt CA 2 , ... in the plane of the equator through an angle B, where C is

the centre of the sphere, B the relative retardation of phase introduced by
each plate, and A^ = A 2A 3

= ... =27r/p,p being the number of plates in

the packet.

If then Aw denote a rotation 8 round the axis CA n and Sp a rotation 2ir/p

round the polar axis CP, the combined rotation is

A! . A2 . A3 ... Ap = A! . S_p&iSp . $_2p Ai/^j, .... $_(p_;i)p Ajfi^Dp,

but 8(p^l)p
. Sp = Sp.p

= Sv = 1 or S(p-i)p
= S-p ,

whence Aj . A2 . A3 . . . Ap
=

(Al(SLp)P ;

or the effect of the p successive rotations is the same as p times the resultant

of the rotations A x and S-p .

To determine this resultant, we must draw through A! a great circle

making an angle B/2 with AP in a direction

opposite to the rotation round CA 1} and through
P a great circle making with PA^ an angle

TT/P in the same direction as the rotation round

CP; then if these circles intersect in the point

M, the resultant of the two successive rotations

is a rotation round CM through an angle equal
to ZAiMP.

Now since AP =
7r/2, we have

Fig. 55.

if B be small : also

Cv

tan PM = tan - cosec - or PM = - cosec
p p

tfrt B 7T
cos A^MP = cos - cos ,

2 p
whence if A rMP =ir/p + a), we have neglecting &>

2
,

S2
,TT

ft) = -^ COt
,

o p
and the resultant rotation (Aj/SLp)

1*

is a rotation round CjHf through an angle

'27T/27T B2 ^ 7T\ . 82
^ 7T

+ cot - x p = 2?r +cr- cot - .

\p 4 p) 4 p
Hence if B be very small, the effect of the packet is very nearly to move the

representative point along a parallel of latitude to a meridian differing from

the original meridian by an angle

4 p
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the rotation being in a direction opposite to that in which the angle of
combination of the plates is measured.

Thus in traversing a packet the plane of maximum polarisation of a
stream of polarised light is turned through an angle R, the form of the
vibrations of the extremity of the polarisation-vector remaining unchanged.
The rotation produced by a pile of n packets is nR, and the factor wpS

2
is

proportional to the thickness of the pile and very nearly to the inverse square
of the wave-length, which represents very approximately the rotary power of

quartz.

238. In the general case of an open unsymmetrical packet, if 8lt &,, . ,

the relative retardations of phase introduced

by the constituent plates, and 1} 62 ,
... be the ^___A^

successive angles of combination, we want to "\A,

find the effect of successive rotations 81} 8.,, ...

round the equatorial radii CA lt CA^, ... where

be

Fig. 56.

These rotations may be replaced by a rotation

& round some axis CA in the plane of the

equator, together with a rotation 2p round

the polar axis CP, and we have to determine

these rotations, or what comes to the same

thing, the two rotations that will bring the

representative point to its primitive position

after the successive rotations have been performed.

Let us take a polyhedral angle* GBB
l ... Bp) such that the dihedral

angle CBn = TT 8n and the angle BnCBn+1
= AnCAn+i

= 20n and let us roll

this angle on the equator, starting with the face BCBl in this plane and GBl

coincident with CA 1 : then the edges CB.2 ,

CB3 ,
... will in turn occupy the positions

CA 9 ,
CA 3 ,

... until finally the edges CBP ,
CB

coincide respectively with CAP , CA, and in

order to bring the pyramid and with it the

representative point (supposed rigidly at-

tached to the pyramid) back to its primitive

position, we must rotate it round CA

through an angle 8, where the dihedral

angle CB is TT 8, thus bringing C^ to

CAS and then turn it about an axis per-

pendicular to the plane of the equator Fig 57

through an angle A l'CA 1
= 2p which is the

excess of 2?r over the sum of the faces of the polyhedral angle.

*
Poincar6, loc. cit. p. 296.

232
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The axis GA represents the principal section of the packet, 8 is its doubly

refracting power and p is its rotary power.

If a sphere be described with unit radius round the vertex of the

polyhedral angle as centre, the faces of the angle will intersect the sphere in

a spherical polygon, and the polar polygon 66j ... bpb is such that

&&! = ,, b&=$a,...b1J>
=

$, Z &&!&.,= 77-
-

20, ,
Z 6,6^3 = TT - 202 , ...,

and the sum of the angles of the polar polygon is

p7r-2(0l + s + ...)=j*7r-(27r-2/>),

so that 2p is the area of the polygon.

When the rotations S1} 82 ,
... are very small, the polar polygon becomes

Fig. 58.

practically plane aud the properties of the packet are found by drawing the

line bbj)2 ...bp ,
of which the successive parts bb1} bj).2 ,

. . . are parallel to the axes

GA l ,
GA Z ,

... and represent the. rotations round these axes: then bbp is parallel

to the equatorial radius that corresponds to the principal section of the

packet and its length gives the relative retardation of phase due to the

double refraction and the area of the polygon is on the same scale twice the

rotary power of the packet. These quantities being known, the streams of

permanent type and the relative retardation of phase produced by their

passage through the packet may be determined as in 235.

To find the actual retardations of phase K/J,', K/J," of the streams of

permanent type, we may notice that ( 235) exp {
K (// + /*")} is equal

to the determinant of the linear substitutions that give the coefficients of

vibration of the polarisation-vector on emergence in terms of the original

coefficients. Now in the case of a packet this determinant is the product of

the determinants of the linear substitutions relative to each plate of the

packet, and these are respectively

exp {
-

tc (fji\ + /'j)}, exp {

- AC O'2 + //'2)} . . .
,
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where //n , Kp!'n are the retardations of phase due to the nth constituent

plate. Hence

K (ft + //')
= 2, K

(fJ,'n + fjb"n).
1

239. In obtaining the differential equations that relate to ponderable

media, the assumption was made (Chapter XVII.) that the forced vibrations

of the auxiliary vectors dh at a given point are determined by the value

thereat of the polarisation-vector d relating to the pure ether: this is

equivalent to neglecting the linear dimensions of the molecules in comparison
with the wave-length of light. If however the molecules are of finite extent,

the intra-molecular vibrations will depend not only on the value of d at

a given point but also on its values in the vicinity and we must introduce on

the right-hand side of equations (4) in 225 the differential coefficients of

u, v, w with respect to the coordinates. We shall then have three equations

of the form *

, . .. du du du
ahuh + a huh + a huh u + pn =- + />12

~- + p13 ^-

dv

dw

If the active substance be isotropic, the equations must remain unaltered

when the coordinate axes are turned as a whole, but must change their form

when one axis alone is reversed : the equation connecting dh and d then

becomes

ahdh + a'hdh + a"hdh = d + ph curl d .....................(12).

In the case of vibrations of frequency n, writing

ah + t^Trna'h 4nr-n?a"h = Ah ,

this gives
dh = A,r l d + phA h

~l curl d,

whence D = (l + 2^/T1

) d + 2phA h
-1 curl d

= ad + pcnrld (say) .................................(13),

and since p is in all cases very small

d = a"1 D - a-' curl D.............................. (14).

Hence the fundamental equations
s

i) = curl r,
CT = curie ........................(15),

take the form
............ (16),

Drude, Physik det sEthers, p. 535.
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the components of E being given by

where 2$ = ( U 2 + F2 + TF2

). . . ...(18).a

The equations for the case of crystalline active media may be deduced

from (11); but in view of the smallness of the rotary power and the weak

double refraction of all known crystals, we shall obtain a sufficiently accurate

result by assuming that the rotary terms in the differential equations have

the same form as in the case of isotropic bodies, and the equations for active

crystals will then be (16) and (17) with

Taking the plane x = as the interface between two media that have

different optical properties, the boundary conditions given by (15) are the

continuity of r2 ,
ts.A ,

e2 ,
es to which maybe added the continuity of U and sr1 .

In terms of the vector D these become the continuity of

TT
93> fdU 3TF\

-

9< /9F dU\
V \ UZ 000 J u W \ 000 v1l Ju

240. Eliminating -57 between equations (16) we have

J) = V 2E-VdivE- o-V 2 curl D,

of which the Cartesian equivalents are

d_ __ ,

'
+

_ 97 dU_dW 9F_a
(dy dz' ~dz dx' 3x dy

Let ( U, V, W) = (a, J3, 7) A exp {IK (las + my + nz - tot)}
......(21) ;

then these represent the components of the polarisation-vector of a stream of

elliptically polarised light, so long as the ratio a : /? : 7 is not real, and if we

so choose the origin of time that

aA = aL - ia'L', $A = $L- i/3'L', ^A = yL- cy'L' ...... (22),

then a, /3, 7 and of, /3', 7' are the direction-cosines of the axes of the ellipse

traced by the extremity of the polarisation-vector and L, U are the lengths of

the axes in these directions.

Taking the axes of symmetry as the coordinate axes
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and substituting the values (21) in equations (20) we obtain

(a
2 - w2

) a + la-tcn/H
-

to-ferny
- Fl =0

(b
2 w2

) J3 + lo-tely
- Pm =

urtclft + (c
2

&>
2
) 7 Fn =

where F = a?la + 62
m/3 + c

2

ny,

and since div D =

Eliminating a,

359

(23),

/3, 7> F between (23) and (24), we obtain
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which are the direction-cosines of the optic axes of the medium supposed to

be deprived of its activity*.

If %, x be the angles that the wave-normal makes with these directions,

equation (26) gives

2&)2 = a- + c
2 + (a

2 - c
2

) cos % cos %' V(a
2 - c2)

2 sin2

% sin2

^' + 4<rV . . .(27).

241. Now a, (3, 7 and a', ft', 7' and I, m, n being the direction-cosines of

three vectors at right-angles to one another we have

' = ym ftn, ft' an yl, 7'
=

ftl am,

a =- (ry'm
-

ft'n\
= -

(ct'n
-

7'$), 7 = - (ft'l
-

a'ro),

whence i (my nft) A = (tLy + L'y') m (iL/3 +Lft) n

= L'a + iLx'.

Hence separating real and imaginary parts, equations (23) give the six

equations

(a?-tf + <TK^]*= Fl, (b'-co" + o-fc~}/3 = Fm, (c
2 - to

2 + a* ^} 7 = Fn
*

V L) \ **/ V L J

(a?
- co- + CTK f-A a!=F'l, (b- -CO-+CTK^ ) &= F'm, (c

2 - <w
2 + CTK j-, } y = F'n

\

V L) V L J \ L / >

(28),

where F= a-la + b-m/3 + c-ny, F' = tfla! + b'
2

m/3' + c2

ny'.

Multiplying these equations by a, /3, 7 and a', ft', y' respectively, and adding,
we obtain

CTK (-= + -f-}
= 2&)2 - a2

(a
2 + a' 2

)
- 62

(/3
2 + /3

/2

)
- c

2
(7

2 + 7
'2

)\L Lj

= 2o2
Wi

2
&>2

2

(29),

where ^ and <02 are the wave-velocities in the direction (I, m, n).

Hence using the subscripts Q, (2) to refer to the quicker and the slower

wave respectively, we have

fLJ L2 \
(TK (

~ + -H/ I
= <i

a
2
" = CTK ( -f- + rA

,

' -t>9 /

Now the solution L^jL^ = LI/L! expresses that the streams are of

opposite rotations with their planes of maximum polarisation coincident and

must therefore be rejected on account of the continuity between active and

*
Cf. Clebsch, Crelle's J. LVII. 319 (1860). Weder, N. Jahrb.f. Min. Beil.-Bd. xi. 1 (1898).
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inactive media. We therefore have L2/L,'
= -

,'/ or the polarisations of

the streams propagated in a given direction are opposite. From the specifi-
cation of U, V, W it follows that a positive value of L'/L denotes a left-handed

stream, and hence the quicker wave is left- or right-handed according as a- is

positive or negative.

Introducing the angles %, ^' that the wave-normal makes with the optic

axes, we have

2<T/c -=4 = 2<r/c ~ =
(a- c

2

) sin % sin ^'
A/! X/2

-f V(a
2 - c2) sin2 x sin2 X + 4<r2*2

-..(30).

242. The interference patterns obtained with plates of quartz cut at

right-angles to the optic axis present certain notable characteristics that

serve to distinguish them from similar plates of an inactive crystal. These

peculiarities were first observed by Airy and were explained by him with

the aid of the hypotheses considered in 234*.

In order to obtain a result that will be useful to us later, we will first

obtain an expression for the intensity, when a pencil of elliptically polarised

light falls upon a plate of quartz and after traversing the same is transmitted

through a plane analyser.

Let the primitive stream be replaced by its components polarised in

planes parallel and perpendicular to its plane of maximum polarisation with

the polarisation-vectors

= cos ft'e
int

, 77
= - 1 sin ft'e

int
,

where ft' is numerically less than ?r/4 and positive or negative according as

the stream is left- or right-handed.

On entering the plate the primitive stream is replaced by two oppositely

polarised streams with their planes of maximum polarisation respectively

parallel and perpendicular to the principal section and the polarisation-vectors

of these streams may be represented by the components

= d cos j3e
int

, % =
iCi sin fte

int
,

and >
= c2 sin fte

int
, rj2

= tc2 cos fte
int

,

where ft is numerically less than Tr/4 and positive or negative according as

the plate is left- or right-handed. Whence if a be the angle that the plane

of maximum polarisation of the primitive stream makes with the principal

section

Cx cos @ -f c2 sin /3
= cos a cos ft' + 1 sin a sin f?,

d sin /3 c2 cos ft
= cos a sin ft + i sin a cos ft,

or d = cos a cos (ft -j3') + i sin a sin (ft + ft'),

Cj
= cos a sin (ft

-
ft')

- 1 sin a cos (ft + ft').

*
loc. cit.
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In passing through the plate, the phase of the vibrations in the second

stream is retarded relatively to the phase of the vibrations in the first by
an amount 8, where 8 is a positive quantity, and if the plane of analysation

make an angle 7 with the principal section, the polarisation-vector of the

stream emergent from the analyser may be represented by
H =

{(G! cos /3 + c2 sin /3e~'
8
) cos 7 i (cx sin /3 c2 cos /3e

-l8
) sin 7} e i <Mf

-",

and the intensity, obtained by multiplying this by the conjugate expression, is

I = |dd' cos2
/3 + c2 c.2

'

sin2
/3 4- (c^V8

4- c/ C2e~'
8
) sin /3 cos /3| cos2

7

4- {cj d' sin2
/3 4 C2c2

'

cos2
/3 (dc2V8

4- c/Cog"'
8
) sin /3 cos /3]

sin2 7
(, (CiGt<6P d/c2^~

t8

) sin 7 cos 7,

where d'> C2
'

are conjugate to d, c2 respectively.

But

dd' = cos2
a. cos2

(/3
-

/3') 4 sin2 a sin 2

(/3 4 /3'),

C2c/ = cos2 a sin2

(/3 /3') 4 sin2 a cos2

(/3 4 /3'),

dc2

' = cos2 a sin (/3 /3') cos (/3 /3') sin2 a sin (/3 4 /3') cos (/3 4 /3')

4 t sin a cos a cos 2/3',

d'c2 = cos2 a sin (/3 /3') cos (/3 /3') sin2 a sin (/3 4 /3') cos (/3 + /3')

t sin a cos a cos 2/3'j

whence

/ = cos2 a cos2

/3' 4 sin2 a sin2
/3' sin 2a cos 2/3' sin 2/3 sin - cos -=

L

{cos
2 a sin 2 (/3 /3') sin2 a sin 2 (/3 4 /3'))

sin 2/3 sin2 - cos2

7

4 cos2 a sin2
/3' 4 sin2 a cos2

/3' 4 sin 2a cos 2/3' sin 2/3 sin ^ cos -
^

+ {cos
2 a sin 2 (/3 /3') sin2 a sin 2 (/3 4- /3')}

sin 2/3 sin2

^
sin2

7

4 sin 2a cos 2/3' 4 2 {cos
2 a sin 2 (/3

-
/3')

- sin2 a sin 2 (/3 4 /3')}
sin = cos

-^

2 sin 2a cos 2/3' sin2 - sin 7 cos 7

= cos2
/3' cos

2

(7 a) 4 sin2
/3' sin 2

(7 a)

4- cos 2/3' jsin 2/3 sin 2 (7 a) sin -= cos
^

\

(cos 2a cos 27 sin2
2/3 4 sin 2a sin 27) sin2

^ j

4 sin 2/3' cos 2/3 -I cos 27 sin 2/3 sin2 - sin 27 sin ^ cos -=

(
L Z

= sin2
/3' 4 cos 2/3' Icos (7

-
a) cos -=. 4 sin (7

-
a) sin 2/3 sin -

LI L

4 cos2

(7 4 a) cos2

2/3 sin2 -

4 sin 2/3' cos 2/3 (cos 27
sin 2/3 sin2

-= sin 27 sin
^
cos

^J (31).
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This expression with the same limitations as in Chapter XIV. may be

applied to the case in which the pencil of light incident on the plate is

conical.

243. Let us first suppose that the incident light is plane polarised, then

/3'
= and

( C^N a

/ =
|
cos (7

-
a) cos -= + sin (7

-
a) sin 2j3 sin J- + cos'-' (7 + a) cos2 2 sin2

1&
) 2

= ( cos
i/r

cos - + sin^ sin 2/3 sin -
J
+ cos2

(27 - -^) cos2
2/3 sin

2 - .......(32),

where
-\/r

is the angle between the final and the primitive plane of polarisation
of the stream.

When the planes of polarisation and analysation are crossed ty
=

7r/2, and
*

/ = (sin- 2/3 + cos2
2/3 sin2

2y) sin2 = .................. (33).
25

The intensity is thus a minimum when 7 = or 90 or 180 or 270 and
there are therefore dark brushes parallel and perpendicular to the primitive

plane of polarisation, but these will be insensible near the centre of the field,

since in the vicinity of the axis {3 is approximately Tr/4.

In addition to these we have the dark curves of constant retardation

given by S = 2mr. Now if the crystal were inactive, we should have

~ T ~
- sn 2

where T is the thickness of the plate and i the angle of incidence, whence if

the angle of incidence be small, we may take in the case of an active plate

X
(

(Id) TT\)

where pT\~- is the rotation of the plane of polarisation when the light passes

through in the direction of the axis. The dark curves are therefore circles

and the difference of the squares of the sines of their angular radii is con-

stant for small angles of incidence.

When the planes of polarisation and analysation are parallel
*

7=1 -(sin
2
2/3 + cos2

2/3 sin2
27) sin'-^ (34),

25

and the interference pattern is complementary to the above.

If the planes of polarisation and analysation be neither parallel nor

crossed,
/S \ 8

I = (cos
2

-v/r + sin2

i/r
sin2

2/3) cos2 (-%) + cos2

(27 i/r)
cos2 20 sm 2 -

. . .(3o)

where tan % = sin 2/3 tan
i/r.



364 The Analytical Theory of Light [CH. xvm

Now if we suppose that the different points of a given curve of retardation

are not at very different distances from the centre, we may regard /3 as

sensibly constant for all points of this curve, and we obtain the approximate

equation of the curves of maximum and of minimum intensity by equating
to zero the derivative of / with respect to 8, regarding /3 as constant. This

gives

cos2

i|r + sin2

i/r
sin2 2/3 + cos2 2

3T Ytan (S
- %)

= sin 2/3 tan
cos

+^ ^^ _^^^ (2

= tan w (say) ...................................................... (36),

and therefore 8 exceeds % or ^ + TT. . . by the angle dependent upon the

angle 7. If the angle of incidence be small, so that tan /3 does not differ

greatly from unity and if ^ be less than ?r/2, taneo is always positive and

attains its maximum value when 7 = -vJr/2 + mr/2 and its minimum value

when 7=-\Jr/2 + (2n + l)7r/4. Hence to obtain the form of the dark curves,

it is necessary to describe a circle of radius OC and to increase the radii of

this circle by amounts variable with their direction, that attain their maximum
value along the internal and external bisectors of the angle between the

primitive and final planes of polarisation and their minimum value along
directions inclined at 45 to the former. The result is a kind of square with

rounded corners, known as a "
quadratic curve." On the other hand, if

i/r
be

greater than Tr/2, o> is then negative and the greatest contractions from the

circular form occur when 27 = mr + ty and the least contractions when

It follows then if the primitive plane of polarisation be vertical, the highest
corner of the quadratic curve is to the left of this plane (fig. 59).

Fig. 59. Fig. 60.

With a right-handed plate, /3 is negative and consequently o> is positive

or negative according as
>/r

is greater or less than ?r/2. Consequently in this

case the highest corner of the curve is to the right of the vertical plane

(fig. 60).



243, 244] Incident Light Circularly Polarised 365

The intensity on one of the dark quadratic curves is

/= i [cos
2

y* + sin2

TJr
sin2

2/8 + cos2

(27
-

i|r)
cos2

2/8

- y {cos
2

i/r
- sin2

TJT
sin2 2 - cos2

(2y
-

ijr)
cos2

2/3}* -f sin* 2/9 sin
3

2i|r]

which is a maximum or a minimum according as

2y = mr + ^ or = (2n + 1) Tr/2 + ^ ;

hence the greatest intensity on the curve occurs at the corners or at the

centres of the sides according as ty is less or greater than Tr/2.

At the centre of the field ft
=

?r/4 and the intensity is cos2

(8/2 i/r): this

is zero, if ty
=

Tr/2 + p, where p is the rotation of the plane of polarisation

produced by passage through the plate in the direction of the optic axis, and

in this case the first term in (35) is very small for points near the centre and

the intensity is approximately given by

g
/ = cos- (27 i/r)

cos2
2/3 sin'- -

,

25

which is a maximum or a minimum according as

27 = -fy + mr or =
-vjr
+ (2n + 1) ir/2.

The central spot will then be dark and extended in the direction of the

diagonals of the quadratic curves, as a kind of rectangular cross.

244. When the primitive light is circularly polarised, ft'
= +

?r/4, the

upper or lower sign being taken according as the stream is left- or right-

handed. Hence in this case

(/ B &\}
1 + 2 cos 2/9 (cos 27 sin 2/3 sin2

^
- sin 27 sin ^ cos ^ ) [

\ & &1 }

=
(1 cos 27 sin 20 cos 2/8

+ cos 2/8 v/sin
2
ty + cos2 27 sin2 20 cos (8

-
%)} (37),

where tan ^ = tan 27/sin 2/8.

Taking the upper sign, the dark curves are determined by

and writing as a first approximation sin 2/3
= 1, we have for the dark curves

8 = 2mr + 27, nearly.

Consequently 8, and hence also i, increases continually as 7 increases and

this shows that the dark curves are two mutually inwrapping spirals, that are

right-handed, since 7 is measured from the principal section to the plane of

analysation in a counter-clockwise direction. At the centre these spirals

touch the line OQ that makes an angle R with the plane of analysation on
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the right-hand side of it, R being the rotation of the plane of polarisation

produced by passage through the plate in the direction of the axis.

Fig. 61.

The actual curves are however not so simple, for % is only equal to 27,

when 7 = ?ft7r/4,
and is in excess or defect of this quantity according as 7 is

between m-Tr/2 and (2m + l)7r/4 or between (2w+l)7r/4 and (m + l)7r/2:

hence 8 and therefore also i is, in the odd octants, counted to the right from

the plane of analysation, too great and in the even octants too small for an

uniform spiral, and the dark curves consequently have the form of quadratic

spirals.

If the primitive stream be right-handed, we must take the lower sign in

(37) and the dark curves are given by 8 = (2w + 1) TT + ^ ;
that is we have the

same curves as before, but they are turned through a right-angle.

On the other hand if the plate be right-handed, /3 is negative and the

spirals are left-handed.

245. An interesting case treated by Airy is that in which a conical

pencil of plane polarised light passes in succession through two plates of

quartz perpendicular to the axis, of opposite sign and equal thickness, and is

subsequently analysed.

Taking the first plate as left-handed, the light emergent from it consists

of the two oppositely polarised streams with the polarisation-vectors

where

= d cos fa
l (nf~e)

, T?!
= -

tCj sin fa
' (nt

~
f)

,

= c2 sin fa
l (n'-e-5)

, 77,
=

ic, cos /3e
l (nt-e~S}

,

d = cos a cos ft + t sin a sin /3,

c2 = cos a sin /3 i sin a cos /9,
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a being the angle that the primitive plane of polarisation makes with the

principal section and the first stream having its plane of maximum

polarisation parallel to the principal section.

In the second plate on the other hand it is the right-handed stream that

has its plane of maximum polarisation in the principal section, and therefore

on entry into the plate, the pencil is divided into two streams with the

polarisation-vectors

/ = &! cos (3e
l(nt~e}

, rji
= iki sin /3e

l(nt~e}

,

/ = fa sin fte
' (nt

~
e)

, %' = - ik2 cos fte
1 <*->

,

where &i cos /3 + k2 sin ft
= d cos ft + c2 sin (3e~

lS
,

&! sin ft k2 cos /3
= d sin /3 + c2 cos /3e~

lS
,

or &i = dcos 2/3 + C2 sin2/8e~'
s

,

k.2
=

GI sin 2/3 c2 cos 2/8e~'
5

.

In traversing the plate the phase of the vibrations in the second stream

is relatively retarded by an amount S, and if 7 be the azimuth of the plane

of analysation with respect to the principal section, the polarisation-vector of

the final plane polarised stream is

H =
{(ki cos ft + & sin /3e~'

s
) cos 7 + 1 (fcx

sin /3
- &2 cos @e~

tS

) sin 7} e i(nt
-

e}
,

giving as the intensity

/= \kjci cos2
/3 + kjc.2

'

sin2
/3 + (k}

k.2'e^ + k^k^~
L&

) sin ft cos /3} cos2

7

+ (kjcf sin2
ft + kjcj cos2

ft
-
(kjce

l6 + h'ktfr
1

*) sin ft cos ft} sin2
7

+ i (kjcje
1* - kfkjT*) sin 7 cos 7,

where A;/, Ar2

'

are the expressions conjugate to klt k3 respectively.

Now

lejcl
= dCi cos2

2/3 + c3c2
'
sin2

2/3 + (dc/e
15 + c/c2e-

t5
) sin 2/3 cos 2/3

= cos2 a cos2
ft + sin2 a sin2

ft sin 2a sin 4/3 sin
^
cos

^

*

cos 2a sin 2/3 sin 4/3 sin2
5 ,

JcJcJ
= dd' sin2

2/3 + c2c/ cos2
2/3

-
(dc2Vs + c/c^-'

s
) sin 2/9 cos 2/3

= cos2 a sin2
/3 + sin2 a cos2

/8 + sin 2a sin 4/3 sin
^
cos

^

+ cos 2a sin 2/3 sin 4/8 sin2
^

.



368 The Analytical Theory of Light [OH. xvm
7/ 7-* '/iiS i 7* 'I* ^ 15
A'^n/2 ^ 'l **/l *^2^

= 2 (dd'
- c2c2') sin 2/3 cos 2/3 cos S - (dd'e'

2* + c/c^-'
2

*) cos
2

2/3

+ (dc2

'

4- d'c.) sin2 2/3

8 $ & 8

(8
$ & 8

sin p. cos ~ 2 sin3 - cos -22 2 2

/ 8 \
+ 2 cos 2a cos 2/3 sin 4/3 (

sin2 - - 2 sin4

^ ) ,

\ " 2y

12 " '

1 ''2^

= 2i (dd'
- C2c2') sin 2/3 cos 2/3 sin 8 - (dc/e

125 - d'c^-'
2
*) cos- 2/3

-
(c^'

- d'c2) si

= t ( sin 2a 8 sin 2a cos2

2/8 sin'- = cos2 -

4 cos 2a cos 2/3 sin 4/3 sin3

^
cos ^ )';

hence

/ = -{cos
2 a 2 sin 2a cos 2/3 sin 4/3 sins

^ cos

S)
cos 2a sin 2

4/3 sin4

^ [
cos2

7
^J

( . 88
+ xsin2 a + 2 sin 2a cos 2/3 sin 4y3 sin3

^ cos
-j.

(
2 2

&)
+ cos 2a sin2

4/3 sin4

^ I sin2

7
^J

f5 8
sin a cos a 4 sin 2a cos2

2/3 sin2

^ cos2

^

g *\

2 cos 2a cos 2/3 sin 4/3 sin3

^ cos - 1 sin 7 cos 7

= cos2
(7 a) 4 cos2

2/3 sin
2

^ jsin
2a sin 27 cos2 =

\

+ sin 2 (7 + a) sin 2/3 sin ^ cos ^ + cos 2a cos 27 sin2

2/3 sin
2 -

[

(38).

If the planes of polarisation and analysation be crossed, so that

7 = a + 7T/2,

f\ ( $\ f\)

7=4 cos2
2/3 sin2 - K sin 2a cos -? + cos 2a sin 2/3 sin -2(2 zj

S /& \= 4 (sin
2 2a + cos2 2a sin2

2/3) cos2
2/3 sin

2

^ sin2

(
+ % )

......(39),2 \Z /

where tan % = tan 2a/sin 2/3.
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In this case the expression for the intensity vanishes, when & = 2mr,
which gives a series of dark circles as in the case of a single plate : it also

vanishes when 8 = 2mr 2%, and writing as a first approximation sin 2$ = 1,

this corresponds to a second system of dark curves given by

B = 2ri7r 4a, nearly.

Now a is measured from the primitive plane of polarisation to the

principal section in a clockwise direction, and since from the above 8 and

consequently i increases as a diminishes, it follows that this second system of

dark curves consists of four similar left-handed spirals, each of which is

turned through 90 from the position of that adjacent to it. At the centre

these spirals touch the lines COG, G'OC' inclined at an angle R/2 to the

planes of polarisation and analysation on the left-hand side, where R is the

rotation of the plane of polarisation produced by normal passage through
either of the plates.

Since sin2

8/2 and sin2
(S/2 + %) have the same value when a= mr/2, the

points in which the spirals intersect the circles lie in directions parallel and

perpendicular to the primitive plane of polarisation, but as ^ is in excess or

defect of 2a, according as a lies between mr/Z and (2n + l)?r/4 or between

(2w + l)7r/4 and (w + l)7r/2, the spirals intersect the circles at angles

somewhat greater than those at which an uniform spiral would cut them.

When is very small, the intensity is a minimum when a = m?r/2 ;
hence

at a distance from the centre there will be faint brushes parallel and per-

pendicular to the primitive plane of polarisation.

c'

Fig. 62. Fig. 63.

When the plate that receives the incident light is right-handed,

negative : this changes the sign of % and the spirals will be right-handed.

s

w. 24



CHAPTER XIX.

MAGNETICALLY ACTIVE MEDIA.

246. IN the course of a series of experiments instituted with the view of

establishing a relation between electric and magnetic phenomena and those

of light Faraday* in 1845 discovered, that a transparent body in itself

inactive acquires the property of rotating the plane of polarisation of a stream

of light, when it is placed in a magnetic field, the effect being a maximum
when the stream traverses the medium in the direction of the lines of force of

the field and nil when the magnetic force is at right-angles to the pencil of

rays. The list of magnetically active media is now known to include a large

number of solids and liquidsf, in fact most diamagnetic substances and even

gases and vapours J.

The distinguishing features of the magnetic rotation of the plane of

polarisation are:

(1) that the activity is temporary, appearing and disappearing simul-

taneously with the magnetic force that produces the field
;

(2) that the direction of rotation is changed with respect to the observer,

when the direction of propagation is reversed : in other words, the direction

of rotation in space is the same whether the light travels along or in a

direction opposite to the lines of force, whereas in structurally active media

reversal of the stream involves a change in the direction of rotation in space.

It follows then that if a pencil of polarised light, after passing through the

substance, be reflected by a mirror so as to be sent through it again in the

opposite direction, the rotation is doubled when it results from magnetic
action and is annulled if the medium be structurally active.

The direction of rotation is thus determined by that of the magnetic force

and in the case of most diamagnetic substances is the same as that in which

* Phil Trans, cxxxvi. 1 (1846) : Exp. Res. xixth series, 26, Arts. 21462242.

t Matthiessen, C. R. xxiv. 969 ; xxv. 20, 173 (1847). Bertin, Ann. de Ch. et de Phys. (3)

xxin. 5 (1848). Ed. Becquerel, ibid. (3) xxvm. 334 (1850).

H. Becquerel, J. de Phys. vm. 198 (1879) ;
ix. 265 (1880). Bichat, ibid. vra. 204 (1879) ;

ix. 275 (1880).

Bichat and Blondlot, J. de Phys. (2) i. 364 (1882).
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a positive current must circulate round the stream, in order to produce the

magnetic field that actually exists. There are however notable exceptions to

this rule that the rotation is positive for diamagnetic and negative for ferro-

magnetic media
;

for oxide of manganese and the salts of nickel and cobalt,

though magnetic, give a positive rotation, while the diamagnetic chromate of

potash and bichloride of titanium produce a negative rotation*.

The angle through which the plane of polarisation is turned in passing

through a magnetically active medium is found to be proportional to :

(1) the distance within the medium over which the light travels;

(2) the intensity of the resolved part of the magnetic force in the direction

of propagation of the stream f.

These laws may clearly be replaced by the single general statement that

the angular rotation between two points is proportional to the difference of

their magnetic potentials.

The coefficient of proportionality is a physical constant as characteristic of

the substance as its refractive index and is known as
"
Verdet's constant

"
: in

c.G.s. units it is the rotation of the plane of polarisation between two points,

one centimetre apart, the magnetic potentials of which differ by a c.G.s. unit.

In the case of thin transparent plates of iron, nickel and cobalt the above

statement has to be modified, for as the intensity of the magnetic force is

increased, the rotation produced by these metals rises to a maximum and

then remains sensibly constant. The law of magnetic rotation, as given by
Du Bois, is in the case of these metals that the angular rotation between two

points is proportional to the difference of their potentials of magnetisation.

In all three metals the rotation is positive and extraordinarily great : the

theoretical value of the maximum rotation of red light produced by a plate of

the thickness of 1 cm. is in the case of nickel 89,000, of cobalt 198,000 and

of iron 200,000{.

In a transparent medium the rotations of the plane of polarisation of

streams of different frequencies vary approximately as the inverse square of

the period : but this law is not exact, as the product of the rotation by the

square of the period increases with the frequency of the light, the substances

for which this increase is most marked being those that have the greater

dispersive power. Absorbing media however form exceptions to these rules,

*
Verdet, C. R, XLIV. 1209 (1857) : (Euvres, 1. 168 : Ann. de Ch. et de Phys. (3) LII. 129 (1858) :

(Euvres, i. 176.

t Wiedemann, Fogg. Ann. LXXXII. 215 (1851). Verdet, C. E. xxxvin. 613 ;
xxxix. 548 (1854) :

Ann. de Ch. et de Phys. (3) XLI. 370 (1854); XLIII. 37 (1855): (Euvres, i. 107, 112, 152, 155.

Cornu and Potier, C. E. en. 385 (1886).

J Kundt, Wied. Ann. xxm. 228 (1884) ; xxvn. 191 (1886). Du Bois, ibid. xxxi. 941 (1887).

Ed. Becquerel, Ann. de Ch. et de Phys. (3) xvn. 437 (1846). Wiedemann, Fogg. Ann.

LXXXII. 215 (1851). Verdet, C. E. LVI. 630; LVII. 670 (1863): Ann. de Ch. et de Phys. (3) LXIX.

415 (1863) : (Euvres, i. 205, 209, 214.

242
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as indeed might be expected from the fact that near and within the region of

absorption the refractive index experiences abnormal variations.

H. Becquerel* has from theoretical considerations stated as the law of

magnetic rotary dispersion that the magnetic rotary power varies as \ (d^jd\}
and has shown that this formula holds in the case of creosote and carbon

bisulphide, while it gives in general a good approximation to the observed

order of magnitude ;
but there is at present no experimental proof that this

relation is true in the case of absorbing media -f.

Attempts have been made without much success to find a relation between

the magnetic rotary power of a substance and its refractive index. De la RiveJ

advanced the statement, to a great extent confirmed by Bertin's experiments^,
that the magnetic rotation ought to increase with the refractive index of the

medium, but Verdet's experiments |

have conclusively shown that, though
substances with a high refractive index have in general a large rotary power
when placed in a magnetic field, there is no constant relation between these

quantities.

247. Another action of magnetism on light has been discovered by KerrlT,

who found that when plane polarised light is reflected from the polished pole

of an electromagnet, the plane of polarisation of the reflected light is in

certain cases altered when the magnet is excited. The following results have

been obtained by Kerr and have been confirmed by later investigations**.

When the mirror is magnetised normally, light polarised in one of the

principal azimuths gives at normal or at oblique incidence a reflected stream

that is slightly elliptically polarised with the plane of maximum polarisation

rotated from the primitive plane of polarisation in a direction opposite to that

of the current exciting the pole. For light polarised in a plane perpendicular
to the plane of incidence the rotation is a maximum for an angle of incidence

between 44 and 68 : in the case of light polarised in the plane of incidence

the rotation decreases continuously as the angle of incidence increases.

In the case of tangential magnetisation of the mirror, no change is pro-
duced either at normal incidence or when the plane of incidence is perpen-
dicular to the lines of magnetic force : but when the lines of force are in the

plane of incidence and the incidence is oblique, the reflected light is elliptically

* C. R. cxxv. 679 (1897).

t Of. Cotton, Le PMnomene de Zeeman, Scientia, No. 5, p. 81.

Traite de VElectricite, i. 505 (1854).

loc. cit.

||
C. R. XLIII. 529 (1856) : Ann. de Ch. et de Phys. (3) in. 129 (1858) : (Euvres, i. 163, 176.

H Phil. Mag. (5) HI. 321 (1877) ; v. 161 (1878).
**

Bighi, Ann. de Ch. et de Phys. (6) iv. 433 (1885) ; ix. 65 (1886) ; x. 200 (1887) : Mem. R.

Accad. Lincei (4) i. 367 ;
in. 14, 562 (1885-6). Kundt, Wied. Ann. xxin. 228 (1884) ; xxvn. 191

(1886). Du Bois, ibid, xxxix. 25 (1890). Sissingh, ibid. XLII. 115 (1891) ; Arch. N6erl. xxvu.

173 (1894). Zeeman, ibid, xxvii. 252 (1894) ; (2) i. 354, 376 (1897).
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polarised, and if the primitive plane of polarisation coincide with the plane of

incidence, the plane of maximum polarisation of the reflected light is rotated
from the primitive plane in all cases in a direction opposite to that of the
current that would produce a field of the same sign as the magnet ;

if the licrht

be polarised at right-angles to the plane of incidence, the rotation is in the
same direction as the current for angles of incidence between and from 75*

to 80, and in the opposite direction for larger angles of incidence.

248. In 1896 Zeeman* discovered the remarkable effect produced on the

character of the radiations by placing the source of light in an uniform

magnetic field.

Earlier investigators^ had indeed observed that the insertion of a Geissler's

tube between the poles of an electromagnet influenced the colour and the

spectrum of the light issuing from it and FievezJ found that the aspect of the

sodium lines was modified, when the source emitting these radiations was

placed in a magnetic field. These earlier discoveries however have character-

istics that distinguish them from the phenomenon known as
" the Zeeman

effect
" and are most probably to be attributed in the one case to chemical

action within the tube and in the second case to a change in the form of the

flame produced by a lack of uniformity in the magnetic field.

It has already been stated that a rotation of the molecules of a source as

wholes will affect the character of the radiations emitted therefrom, and in

this manner it is possible to give an account of the main features of the

Zeeman effect. Whatever be the nature of the vibrations within a radiating

molecule, they may in the case of strictly monochromatic light be represented

by a vector, the extremity of which executes in general elliptic vibrations :

this vector may be replaced by a component vibrating in the direction along

which the radiation is considered, together with a component with elliptic

vibrations in the perpendicular plane, this latter component giving rise to an

elliptically polarised stream of definite frequency. If now we impress upon

the vector an uniform rotation round the direction of propagation as axis, this

elliptically polarised stream will be replaced by two oppositely circularly

polarised streams with frequencies in excess and defect respectively of the

primitive frequency by an amount equal to the number of revolutions per

*
Zittingsversl. Kon. Akad. v. Wet. Amsterdam, v. 181, 242 (1896) ;

vi. 13, 99, 260, 408 (1897);

vn. 122 (1898) ; vm. 328 (1899) : Arch. Neerl. (2) i. 44, 217, 383 (1897) ; v. 237 (1900) : Phil.

Mag. (5) XLIII. 226
;
XLIV. 55, 255 (1897) ;

XLV. 197 (1898) : Astrophys. J. v. 332 (1897) ; ix. 47

(1899).

t Pliicker, Fogg. Ann. civ. 113 (1858). Tr&ve, C. R. LXX. 36 (1870). Angstrom, Pogg. Ann.

CXLIV. 300 (1872) : C. R. LXXIII. 369 (1871) : Phil. Mag. (4)
XLII. 398 (1871). Daniel, C. R. LXX.

183 (1870). Secchi, ibid. LXX. 431 (1870). Chautard, ibid. LXXIX. 1123 (1874); LXXX. 1161;

LXXXI. 75 (1875) ;
LXXXII. 272 (1876). Van Aubel, J. de Phy. (3) vn. 408 (1898). Thenard, C. R.

LXXXIX. 298 (1879) ; xci. 387 (1880).

I Bull. Acad. Bruxelles (3) ix. 327, 381 (1885) ;
xn. 30
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second of the impressed rotation. When a single molecule is considered, the

intensities of the two streams will be unequal, but since the elliptic vibrations

of the vectors corresponding to the different molecules of the source must be

supposed to have all possible orientations, the two circularly polarised streams

will in the aggregate be of the same intensity, provided we suppose the

rotation to be the same for all molecules. Again in a direction perpendicular
to the axis of rotation, we shall have two streams polarised in the same plane
with the same frequencies as the two circularly polarised streams, and a

stream polarised in the perpendicular plane of the primitive frequency.

These are the characteristics of the simplest form of the Zeeman effect.

When a luminous source is placed in a strong uniform magnetic field and the

radiation in the direction of the lines of force is examined with a spectroscope

of considerable resolving power, it is found that a spectral line is replaced by
a doublet, the constituents of which have equal intensities and on a scale of

frequencies are symmetrically placed on either side of the primitive line with

a distance between them proportional to the strength of the field : these two

components are circularly polarised in opposite directions, that with the

higher frequency having the direction of the current that produces the field.

The constituents of the doublet are in general complex, which may be

accounted for by the fact that the original radiation is itself complex and

that the magnetic field may not exercise the same influence on all the

molecules of the source.

In a direction perpendicular to the lines of force, the radiations may be

divided into two groups, that are polarised respectively in planes parallel and

perpendicular to the magnetic force. The constituents of the group with

polarisation parallel to the lines of force agree in all cases with the doublet

observed in the direction of the field : but in the case of the second group
several variations are observed. The simplest phenomenon is that of a single

line coinciding in position with the primitive line, but sometimes there is

a doublet with constituents symmetrically placed with respect to the original

line, and a triplet and even a more complicated system has been obtained*.

* For the above and other results, and for modifications of the normal type of the Zeeman

effect, see : Cotton, Le PMnomene de Zeeman, Scientia, No. 5 (1899). Zeeman, lac. cit. Cornu,

C. E. cxxv. 555 (1897) ; cxxvi. 181, 300 (1898) : J. de Phys. (3) vi. 673 (1897). Preston, Dublin

Trans. (2) vi. 385 (1897) ; vn. 7 (1898) : Proc. R. S. LXIII. 26 (1898) : Phil. Mag. (5) XLV. 325

(1899) ; xLvn. 165 (1899) : Nature, LVII. 173 (1897) ;
LIX. 224, 248, 485, 605 (1899) ;

LX. 175

(1899) ;
LXI. 11 (1899). Konig, Wied. Ann. LXII. 240; LXIH. 268 (1897). Becquerel, C. R. cxxv.

679 (1897) : J. de Phys. (3) vi. 681 (1897). Becquerel and Deslaudres, C. R. cxxvi. 997; cxxvii.

18 (1898). Lodge and Davies, Proc. R. S. LX. 513 (1897) ; LXI. 413 (1897). Ames, Echart and

Eeese, Astrophys. J. vm. 48 (1898). Beese, ibid. xn. 120 (1900): Phil. Mag. (5) XLVIII. 317

(1899). Michelson, Phil. Mag. (5) XLIV. 109 (1897) ; XLV. 348 (1898): Astrophys. J. vi. 48 (1897);

vn. 131 (1898) : Nature, LIX. 440 (1899). Bighi, Rend. Lincei (5) vn. [1] 295 (1898) : N. dm. (4)

x. 20 (1899) ; xi. 177 (1900) : Phys. Zeitschr. i. 329 (1900) : Mem. R. Accad. Bologna (5) vm. 263

(1900). Blythswood and Marchant, Phil. Mag. (5) XLIX. 384 (1900). Blythswood and Allen,

Nature, LXV. 79 (1901). Kent, Astrophys. J. xni. 289 (1901). Bunge, Phys. Zeitschr. HI. 441
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These more complicated phenomena may possibly indicate a longitudinal
effect on the vibrating molecules produced by the action of the magnetic
field.

Egoroff and Ge'orgiewsky*, observing without a spectroscope, found that
in a direction perpendicular to the lines of force the light from a sodium
flame placed in a magnetic field is partially polarised in a plane parallel to

the lines of force. This appears to imply that the sum of the intensities of

the two components polarised in this direction exceeds that of the stream

polarised in the perpendicular plane, a fact that is unaccounted for by the

elementary explanation given above. This result may however be attributed

either to an orientation of the molecules of the source by the fieldf or to an

inequality in the absorption of light polarised in the two azimuths in

traversing the outer mantle of the flame
J.

The phenomenon of absorption can, by Kirchhoffs principle, be employed
for exhibiting and studying the influence of the magnetic field on the

radiations from a luminous source; but Macaluso and Corbino|| have shown

that, when a sodium flame is placed in a magnetic field and a stream of

polarised light passes through it along the lines of force, it is necessary to

take account not only of the fact that absorption of light of a given period

has been replaced by absorption of two streams of circularly polarised light of

opposite signs and of periods in excess and defect respectively of the natural

period, but also of the fact that the plane of polarisation of the light is rotated

during the passage through the flame. This rotation, though generally very

small in the case of a gas or a vapour, becomes of primary importance when

the period of the light is near that corresponding to an absorption-bandH.

(1902). Eunge and Paschen, ibid, i. 480 (1900) : Astrophys. J. xv. 235, 333 (1902). Shedd, Phys.

Zeitschr. i. 270 (1900) ;
n. 278 (1901). Gray and Stewart, Nature, LXV. 54 (1901). For Lorentz'

theory of the Zeeman effect see Lorentz, Wied. Ann. LXIII. 278 (1897) : Arch. Nterl. (2) n. 1. 412

(1899) ; vn. 299 (1902) : Phys. Zeitschr. i. 39, 498, 514 (1900) : Eapp. pres. an Congr. Intern, de

Phys. HI. 1 (1900). Cotton, Eel. Elect, xiv. 311 (1898). Voigt, Phys. Zeitschr. i. 116, 128, 138

(1899).
*

C. R. cxxiv. 748, 949 ; cxxv. 16 (1897).

t Cf. Voigt, Gott. Nachr. (1901) 169.

t Lorentz, Zittingsversl. Kon. Akad. v. Wet. Amsterdam, vi. 193 (1897) : Arch. Ne"erl. (2) n. 1.

412 (1899) : Rapp. pres. au Congr. Intern, de Phys. m. 28 (1900). Voigt, Wied. Ann. LXIX. 290

(1899).

Cotton, C. R. cxxv. 865 (1897). Konig, Wied. Ann. LXH. 240 (1897) ; LXIII. 268 (1897).

Bighi, Rend. Lincei (5) vn. [2] 41 (1898) : N. dm. (4) vm. 102 (1898) : C. R. cxxvii. 216 (1898) ;

cxxvin. 45 (1899).

||
C. R. cxxvn. 548, 951 (1898) : Rend. Lincei (5) vn. [2] 293 (1898) ;

vm. [1] 38, 116, 250

(1899).

H H. Becquerel, C. R. cxxvn. 647, 899, 953 (1898) ; cxxvin. 145 (1899). For the anomalous

dispersion of sodium vapour see Kuudt, Wied. Ann. x. 321 (1880) ; Winkelmann, ibid. xxxn. 439

(1887). Eotation of the plane of polarisation within the absorption-band has been observed by

Schmauss, Drude's Ann. n. 280 (1900) ; vm. 842 (1902) and Corbino, Rend. Lincei (5) x. [2] 137

(1901) : N. dm. (5) in. 121 (1902). Zeeman, Astrophys. J. xvi. 106 (1902) : Arch. Ne"erl. (2 vn

465 (1902) ; Rend. Lincei (5) xi. [1] 470 (1902).
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Again when the light traverses the flame in a direction perpendicular to

the magnetic field, the phenomenon of rotation does not intervene but the

sodium vapour becomes doubly-refracting and this fact has to be considered

as well as the change in the absorption produced by the field*.

249. We have seen that the facts of dispersion and absorption can be

represented by taking as the differential equations applicable to ponderable
media

= -CurUr, -ar=Curle (1),

D = d + 2dh (2),

where d is the polarisation-vector of the pure ether, d^ a vector repre-

sentative of the intra-molecular vibrations and the components of e are

given by

d and dh being connected by the relations

tthUh + ClhUh + tth'Uh = U\

7 . 7 t . 7 // 1 /Q\

ChWh + Ch'wh + Ch'wh = WJ

It is now necessary to extend these equations, so as to render an account

of the phenomena that have just been describedf.

If we limit ourselves to linear functions of A, B, G the components of the

intensity of the magnetic field H, the symmetry of equations (3) leads us to

represent the action of the magnetic force by the addition of a vector at

right-angles to the vectors H and <4 and proportional to their vector product.
We then have in place of (3)

fl'(Cvh -Bwh)= u\

lwh -Cuh)
= vl (3'),

Ch'wh + ch"wh + eh
'

(Biih
- Avh)

= w)

where e^ is the constant of the magneto-optic effect J ;
or in the case of an

isotropic medium, taking the ^-axis in the direction of the lines of force

ahuh + ah'uh + ah"uh + eh'Hvh = u '

&hVh + ahVh + ah"iJh &hHU)i = V

ahwh + ah'wh + ah"wh = w.

(3").

*
Cotton, C. R. cxxvn. 953, 1256 (1898) ; cxxvm. 294 (1899). Voigt, Gott. Nachr. (1898) 329,

355 : Wied. Ann. LXVII. 345 (1899) : Drude's Ann. vm. 872 (1902) : Rend. Lincei (5) xi. [1] 459

(1902). H. Becquerel, C. R. cxxvin. 145 (1899).

t Voigt, Gott. Nachr. (1898), 329, 349, 355: Wied. Ann. LXVII. 345; LXVHI. 352; LXIX. 290

(1899) : Drude's Ann. vi. 784 (1901).

J These equations assume that the medium, though crystalline, is magnetically isotropic ; of.

Larmor, Matter and ^Ether, p. 198.
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250. Let us first consider the propagation of plane homogeneous waves

along the lines of force of the field : then all the vectors are dependent upon
t and z alone and may be taken proportional to Exp {2irn(t zjw) i}, where
6> = o>/(l iv), co being the real propagational speed of the waves and v the

index of absorption.

The equations then give

Z7=--Brs/S, V=*r1/<3, TF=0

(aA + 1 . 27maA
/

47r2n2
a/i") WA + i . ehH^Trnv^ = u

\

(a/i + i 2?rnaA
/

and we have

(4),

whence, writing

27rnh = \iah/ah", ah = 27rnh
2ah'/ah ,

eh = 2Trnh
2eh'/ah , eA = nh/ah ,

we obtain

(O/w)
2

(w tv)
= C/"tF

=
[1
- SeA% (n

2 - nf - n (iah ehH)}-*} (um) ......... (6).

Hence, either

u-iv = and (fl/w)
2 = 1 - 2eAnA {n

2 -nf-n (iah+ ehH}}~
1
......(7),

or u + iv = and (O/&))
2 = 1 - 2eAwA {n

2 - nhz - n (mh
- ehH)}-

1
...... (8).

In the first case we have a circularly polarised stream, of the same sign as

the current that would produce the field, having a complex velocity w+ given

by (7) ;
and in the second case the circularly polarised stream has the opposite

sign and its complex velocity w_ is determined from (8). The rotation of

the plane of polarisation of a stream of plane polarised light produced by

traversing a length I of the medium in the direction of the lines of force is

/QX
...............(9),

where &> is a mean velocity given by %<a<r
l = a)-"1 + o>+

~1
.

If the medium be transparent, ah = and

- nh
* + ehH . n}~\

whence It =

nheheh
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if 6hH be small compared with n n^, that is, when the frequency of the

light is not near one of the critical frequencies.

To the same approximation, &> is the propagational speed before the field

is established and is given by

whence //. (d/j, /dn)
= wS%e^ (n

2
r^

2

)"
2

.

Hence if the intra-molecular vibrations have a single period

R = klHn (dfa/dn),

in accordance with Becquerel's law, where A; is a constant for the given
medium.

When the frequency of the light is nearly the same as one of the critical

frequencies n^, we may simplify the expressions for the complex wave-

velocities as in Chapter XVII, and we obtain

(Clfay = l-eh {2(n-nh)*ehH-Mh}-
1
................ (11).

This equation only differs from that obtained when the medium is removed

from the magnetic field by having n T ^-ff/2 written in place of n : it therefore

follows that the curves of dispersion and absorption for each of the circularly

polarised streams have the same form as those of the medium when un-

influenced by the magnetic force : the curves for the positive stream being
obtained by a displacement parallel to the axis of abscissae by an amount

BhH/2, and those for the negative stream by an equal displacement in the

opposite direction. Thus the effect of the field is to resolve a single

absorption-band into two symmetrically placed with' respect to the original

band*.

Writing
2 (n

- nh)/ah = A, ehHjah
= P, eh ah = A

and separating real and imaginary parts we have

whence if v be very small

and at a moderate distance from the region of absorption

H 2A2
"

412
(n-ntf'

*
If there be two vectors dh for which the frequencies are the same, while the magneto-optic

parameters are different, the application of the magnetic force will resolve a single band into

four ; and so on.



250] Rotation within an Absorption-band 379

Comparing this expression with (10) which to the same degree of approximation

may be taken as the rotation for frequencies differing widely from a critical

frequency, we see that the rotation, though imperceptible in other parts of

the spectrum, may attain measurable dimensions as an absorption-band is

approached.

Within the region of absorption, we may write

A-f-l
jr

'

where //0) K may be regarded as constant, yu, being a mean refractive index

and K = 7rnlA/l. The rotation vanishes when A = + VP2 + 1, and is a

maximum or a minimum when A = and when

A 2 = P2 + 1 2\/P2TT ..................

its value then being given by

(14),

and pR=K {VP
2 + 1 + 1}/(4P),

respectively.

If P be less than V3, only the upper sign in (14) gives a real value of A

and then

(/i E)j
= KP/(P* + 1) is a minimum value,

(fj, R)z
= K{JP* + 1 - 1}/(4P) is a maximum value

;

on the other hand when P exceeds \/3, both signs correspond to real values

of A and

)j
= KPI(P* + 1) is a maximum value,

"l + 1}/(4P) is a minimum value,(/vR)2
= -K

-
1}/(4P) is a maximum value.

P=l

P=3

Fig. 64.

The curves in figure (64) represent the values of fiji when P = 1 and

P= 3, the unit for A being f cm., that for ^R 1* cm. : the vertical dotted

lines give the approximate places of the maximum of absorption.
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251. When the light travels in a direction perpendicular to that of the

field, or parallel, say, to the axis of x, the vectors are proportional to

and we then have

U= 0, V= -
tSTs/S, W =

OTl = r = nM;S, isr,
= -

with

n2

) uh + iehHnvh
= nh hu'

- n2
) vh

- iehHnuh = nhehv

(%2 + iahn n2

) Wh = n^hW

whence U=0, F = (H/o>)
2
v,

(Uk iVh) (%2 + iothn n2

BhHn) = nAeA (u iv),

and + (fl/ft))
2
vi = {1 SwA A (n

2 n + e^Hn ta^w)"
1

} (u

.(16);

- hh -
h
-

h
'"^

Hence, if w ^ 0, we have

(a/)
2 = l-SwAeA (n

2 -wA
2 -taAw)-

1

(18),

and with this value of <o, the first of equations (17) is only satisfied by
u = v = 0. This then is the case of plane polarised light with its polarisation-

vector parallel to the lines of force, and we see that the absorption and the

propagational-speed are unaffected by the magnetic force*.

If on the other hand w = 0, then

i

where p = 1 ^n^eh (w
2 %2 + e^ Hn ta^n)^,

whence ( 1 ) ( ) =2,
\p+ p-l \caj

v nh h (n
2 -nh

2 - iah n)

Hn
**

nh eh (n
2 - nh* - iahn)

-(Wi-njk
_

j

In this case the polarisation-vector is perpendicular to the direction of the

* In order to explain the resolution of this absorption-band by the action of the magnetic

force, Voigt introduces on the left-hand side of the third of equations (3") a termfkwh', where

A^+ fcWft' + fc' -^~
+ Ph" -^r-

=

and/h is a function of H, that vanishes when H=0.
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field, and the application of the magnetic force has the effect of altering the

speed of the waves and also of resolving each absorption-band into two

components*.

Hence in a direction perpendicular to the lines of force there are two

streams of permanent type propagated with different velocities. The medium
thus becomes doubly refracting under the influence of the magnetic force, but

in general the difference in the speeds of the two waves will only become

marked when their frequency is near one of the critical values.

As the formulas in their general form are too complicated to be of any

special interest, we will consider only the case in which there is a single

vector dh dependent upon the intra-molecular vibrations and consequently

only a single absorption-band, when the medium is removed from the

magnetic field.

Using the subscripts (y) and (z) to distinguish between the streams that

have their polarisation-vectors perpendicular and parallel respectively to the

lines of force, we have

nh eh (n
2 nhz nh eh

whence

(20);

/ON 2 nhh (n
2-nh

2
)

also , (*
~~ vz> = i ~~

v'z/

/fly nh eh ahn

The difference of phase between these two streams produced by a passage

through a length I of the medium is

where &> ig a mean velocity given by 2a)
~l = w^1 + o>y

~l
. Hence if the

indices of absorption be very small, we obtain from the above formulae

re
_nft (n*-nff-nh eh (n

2-nh2)-efHW- ah*n*}
- <*h

2 **
{
2(w

2-
fe

2
)
- nh eh

(n*-n)- eh'H* ri*- ah
*

/i'f+ ak*n> (2 (w
2-

')
-

.........(22);

See note on page 378.
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when the frequency of the light is near the critical value nh ,
this reduces to

(23).

A further simplification is introduced, when ah is very small, as (22) and

(23) then become

*H2n2

(24),

(25).

(n
2 - nh

2

) {(n
2 - nh2)

2- nh eh(n
2 - nh

2

)
- eh

2H
nh eh eh2H2

2 (
- nh) {4 (n

- nh)
2 - 2eA (n

- nh) - eh
2H2

}

Now (24) may be written

8 =

-nh*)
* 22 ' ' ' { ' '

but in the case of a glowing vapour that has, when there is no magnetic field,

a refractive index nearly equal to unity for frequencies not too close to that

of the light absorbed, the first of equations (21) shows that n^Ch is very
small compared with n2 nh*, whence if ehH be not nearly equal to n n^,

we have

fl2 (n
2 - nh*) {(n

2 -

holding for parts of the spectrum at a considerable distance from the

absorption-band : on the other hand at a moderate distance from the region

of absorption

f) =
2 (n

- nh) {4 (n
- nA)

2 - eh
*

H*}
'

Thus we see that a vapour, such as that of a soda-flame, when placed in a

magnetic field, may become strongly doubly refracting for light of periods

near that which it emits.

252. Keturning to the fundamental equations (1), (2), (3') we have in

the case of periodic vibrations

duh =
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and so on.
. Hence equations (3') take the form

+ eh
'

(Ci>h
- Bwh)

= u

4- eh
'

(Awh
- Cuh)

= v

eh
f

(Buh -Ai)h) = w
whence

/ G fi \= u-eh'(Cvh -Bwh)
= u-eh'(^-v- ^-w] .....(28)

and two similar equations, if we neglect the squares and products of the
small quantities eh'A, eh'B, eh'C.

Hence - + u - -i +K * .........(29) ,

and to the same degree of approximation, we obtain for u, v, w expressions of
the form

(30).

Hence if b1} b2 ,
b3 be the components of a vector B, the differential

equations take the form

I> = -CurlOT, & = Curl E + BVD ...............(31),

where the components of E are given by

with 2O=(a-1
t/'

2
+yS-

1F2 + 7
-1F2

) ..................... (33);

more generally when the coordinate axes are not coincident with the axes of

optical symmetry, we have

2$ = au U* + a22F 2 + a^F 2 + ^a^VW + Za^WU+^a^UV ...(34).

In this form the equations admit of the following simple geometrical

interpretation *.

In any direction within a magnetically active crystal two oppositely

polarised streams can be propagated that have their planes of maximum

polarisation parallel respectively to the axes of the central section of the

ellipsoid of polarisation parallel to the plane of the waves : the propagational

speeds of these waves are respectively in excess or defect of the speed

represented by the reciprocal of the length of either axis of the section by an

amount that is inversely proportional to the period of the vibrations and

directly proportional to the length of the axis, to the ratio of the axes of the

elliptic vibration perpendicular and parallel to the axis, and to the component

* Proc. R. S. LXX. 40 (1902).
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perpendicular to the section of a vector dependent upon the intensity of the

magnetic field.

From equations (31) (33), the characteristics of wave-propagation in

magnetically active media may be determined as in 240, 241, but only one

point of special interest need be mentioned.

When the medium is isotropic, the wave-velocity o> in a direction making
an angle 6 with that of the vector B is given by

&>
2 = H2 2irnB cos 8,

where n is the frequency of the waves and fl is the propagational speed when
the field is suppressed. On account of the smallness of the last term, this

may be written

2.7rnB cos 6
or = il2 +

^=r

--
co,

\ff

and we see that on the application of the magnetic force the original spherical

surface of wave-quickness becomes a surface of two sheets, that are ap-

proximately spheres of the same radius, the centres of which are displaced in

opposite directions parallel to the magnetic field*.

The boundary conditions obtained at once from (1) are, the interface

being the plane a; = 0, the continuity of r2! vrz , e2 ,
e3 ;

the two latter giving
in terms of U, V, W the continuity of

+ r-tft and

To these may be added the continuity of 0^ and U, since div or = 0, div D = 0,

but these are clearly involved in the four preceding conditions.

These equations suffice for the solution of the problem of reflection at the

surface of a magnetised medium f.

*
Cornu, C. R. xcix. 1045 (1884).

t Of. Goldhammer, Wied. Ann. XLVI. 71 (1892) ;
XLVIII. 740 (1893) ;

LXV. Ill (1898). Drude,
ibid. XLVI. 353 (1892); LII. 496 (1894); LXII. 687 (1897). Basset, Phil. Trans. CLXXXII. A, 371

(1891) ;
Amer. J. of Math. xix. 60 (1897). Larmor, B. A. Report (1893), p. 335

; Proc. Lond. Math.

Soc. xxiv. 280 (1893). Leathern, Phil. Trans, cxc. A, 89 (1897). Micheli, Drude's Ann. i.

542 (1900).



APPENDIX I.

PROPERTIES OF BESSEL'S AND STRUVE'S FUNCTIONS.

1. BESSEL'S Function of the order n may be defined by the equations

1 xn [
w

Jn (*)
=
v^ 2*r(n + fr)' J o

sin2n w cos ^ cos ^ d<w

in2n "> eta:cos<0 oJto

where n is real and positive and the argument x may be any real or complex

quantity.

Taking the first form and writing

oc -28 pntS28 f.t
. . v / -i \ * 1' Of

COS (X COS ft))
= 2, ( 1)* r^ ,

o L~

we obtain

When ?i is not a positive integer, J_n (a;) is defined by

QO
/p

n+a*

J_n (^)
= S(-l)

8

2
_
n+2<tr(s+1)r(

_ ri + s+1)
............... (3),

and if n be a positive integer,

w. 25
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2. We have from (2)

oo ,v,n+28-i_ v /_ -i \_~__ y / i \

O
v J

2w+2*-i v

00

= /_! + 2 (- I)
8

! ............................................................ (5).

Writing n + 1 for n, this relation gives

xJn (x)
= 2 (n + 1) /+! (a?)

- a?/n+2 (*)

= 2 (n + 1 ) J"n+1 (a?)
- 2 (n + 3) Jn+3 (x) + xJn+t (x)

) ........................ (6).
o

From this it follows that

-
(n + 3) {(n + 4) /n+4 (a;)

-
(n + 6) J"n+6 (#)+...}

+ (n + 5) {(n + 6) /n+6 (ar)
-

...}

= (n + 1) (n+ 2) /n+2 (^) - 2 ( + 2) (n + 4) /n+4 (#)

+ 3 (n + 3) (n + 6) /n+6 (x)
- 4 (n + 4) (n + 8) J"n+8 (a;)

Similarly

= (n + 1 ) (n + 2) (n + 3) Jn+3 - 3 (n + 2) (n + 3) (n + 5) J

These special results suggest the general theorem

fst\
r

T T(n + r)

(2)
^^) =

r^ri)

+
1.2 r (n + 3)

TVV" I> + 4)

8
(n + r + 6)
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Suppose that this is true for a particular value of r, then for the next

greater value

,

1.2.3

-f

TO + r+1)
n+r+1

+ r + 3) J

.

/t "\ /n + r + 4)
J
(n +r ^ 5 >W

~
(r + 1}

r
r (n+y

}
(n + r + 3) Jn+r+3

(r + l)(r + 2)r(n + r+3)" Jn+

r(r+l)(r
1.2 Tw + 3 1.2.3

^

+ 4) ^
1.2.3 T(w +

252
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the form of which shows that the theorem remains true for the next greater
value of r, therefore for the value of r next succeeding and so on. But it is

true when r = 2, and therefore for all positive integral values of r,

r / \ \ / / i ,v,\ r /~A

3. From the general expression for Jn (x), we find that

9
oo /O _1_ 9o\ ,v.27l+2 1

- (xnJ }-%(- IV ( '

(xJ n)-(. )

and

2s
n) = (

~

By performing the differentiations on the left-hand sides of these equa-

tions, we find

and -^ = Jn+i + nx I MU

whence by addition -^ = ^ (Jn-i Jn+i)

4. From the expressions in the last section, we obtain

I xnjn_i (x) dx = xnJn (x) (H)>
Jo

ftft"~~7l j ( /v\ sJ nf* I />> 1 / / // \ I

I
*M ** 71+1 V /

W/IA/ ~~~ *v t/
^j, V ^ / Irt

Jo

Again
rx a;+i

Jo ^n

ra; JT (/jA=
/"+! () +( + !)(

tLLJ
(for, from (11)

Jo x
rx rx

= Jn+l (x) + Jn (a?) dx + % I Jn+2 (x) dx, from (5),
Jo Jo
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rx rx

Jn (x)dx= 2/n+i (a;) + Jn+s (x) dx
Jo . o

rx
= 2/n+1 (a?) + 2/n+s (a?) + /n+4 (x) dx

Jo

= 2Sjn+M+1 (^) ............................................. (13).

Hence
fa; / oo rx

I Jn (#) dx
2 2 2 I /w

Jo J o o Jo
+2<H-i

= 22

(t/n+2 + "7i+4 + "n+6 +

+ " n+4 + n+8 4-

) ..................(14).

By partial integration we obtain

/* r re

\xJndx = x \Jndx I IJndx
2

= 2 \at (Jn+i + Jn+3 + Jn+s + )

2 1
but -

v*+M =

2

(n + 2s) (n + 2s + 2)

Multiplying (5) by Jn ,
we have

and this may be written

Jn = Jn (Jni Jn+i) + 22 Jn+s \Jn+s-1
X 1

das-

whence f

*^^ dx = ^- j
/ a

(*) +& J*n* (x) [ (16)-

Jo x zn
(

l
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Using the differential properties in 3, we obtain

o ~,

\v T T \ \^ann &~m T ^.n+i T \

f)x
*

m n+1 >

~
f\r l

' "m- x "n+ij

= x (JmJn Jm+iJn+i) + (m ri) JmJn+i ,

and interchanging m and n,

7)
*

{xJm+iJn} = (JmJn ~ J<m+iJn+i) (m n) Jm+1Jn \

hence by subtraction

fa,
{x(JmJn+i - Jm+iJn)} =(m ri) (JmJn+i

Again
o o
_ ( T T \ _

^ '~

~ m"nj

and therefore

- n

which on integration gives that, if m ^ w,

Consider now the special integral

r<K

\ xJ<?dx ;

Jo

integrating by parts, taking x as the integrand, we have

[
X

T2,J
^

f i T

Jo
X ~

2 .r
*

2 /" O
=

77 Jo* + \xJ-i 5- (Ji) dac
2 J ox

=
|

2

(J"
2 + J1

2

) : (18).

Writing n = 1 in (16), we have

Jo #

and since, as will be shown later 6,

this becomes I dx = \ (1 Jf J, 2
) (19).

Jo *
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This result may be obtained directly as follows: differentiating the

product on the left-hand side of (8), we have

n 8

n
2 = ao~n+l /"_! . x~n+lJn - x~ +*Jn -- Jn

ox
o o

_ ,r. n+i T (nn+i T \ _ ~-2n+2 T TX y n_! -^a! J n_i)X J n =- J n

fmn+l T I 2 _I_ <r~2W+2 r I-

{a; t/n 1) T x K~ n
I

i

whence writing n = 1, and integrating

since 7,(0)
=

1, J
r

1 (0)
= 0.

5. Since

and when n is a positive integer

we see that the coefficient of y
n in the above expression is J(a?) and

similarly the coefficient of y~
n

is (-l)
n

/"n (^) or J-*(as). Hence

Let y = cos to + i sin <w, then

et
a;sin<o _ jo + 2t sin &>./! + 2 cos 2&> . /2 + 2t sin 3ct> . /) -t- . . .

and cos ( sin w) = / + 2 cos 2o> . ^ + 2 cos 4w . J4 + ......... (20),

sin (x sin o>)
= 2 sin CD./! + 2 sin 3&> . 7S + .................. (21),

and writing ?r/2 CD for &>,

cos (as cos CD)
= Jo - 2 cos 2&> . J2 + 2 cos 4o> . J4

- ......... (22),

sin (#coso>)= 2cos&>. Ji
- 2 cos 3&> . J3 + ..................(23).

Writing G> = and &> = ?r/2 the last two equations give

cos# = J -2/2 + 2/4
- ........................(24),

sin a? = 2J; - 2.7, + .............................. (25)>

l = t/2/2/ + ........................ (26).
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6. Aain since

we have e~~ y
~

=J -Jl . (y
-

y-*) + Jt . (y* + y-*) + ...,

and i =

.

Since this must hold for all values of y, we have

l=/ 2 + 2 t/1

2 +2Jr

2
2 + ...........................(27).

Also the coefficient of y*
m+2 in the product is

22 Js/2rft+g+2 + (- l)+i J2
m+i + 2 "f

1

(- l)*
+1
Js+1Jzm-8+i,

and since this must be zero,

oo m-l
22, t/gt/ 2m+8+2 = ( 1) " m+1 + -^ ^< (~ V l'S+l'27n 8'

7. Struve's function of the order n is defined by

2 xn f^

Jo
' sa sn

Expanding sin (x sin eo) in a series of powers of sin o>, we have

O vn an

8. From this expression for Hn (x) we obtain

2w^ , v' 5Y-1iz w"A ; "+2*

^

+^)^

(30)>
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9. Multiplying (30) by xn and differentiating with respect to x, we
obtain

=
o

(
"

= tf
n
#n-i ................................................... (32);

and in the same way

=
(
"

}g

2VTT-!> +!+) 2n

1 oo ~,n+2S+2-

a''~njErn+1 .................................(33)<

Differentiating the product on the left-hand side of (32), we obtain

8
If TT n TT

dx
n ~ n~l

~
x

n

=H^ - i \H^ + Hn+l
-

,

*
^J- from (31)

(3

As special cases of these equations we have

^H = -
dx TT

10. By integration of the expressions (32) and (33) we find

rx^Hn .dx = xn^Hn+l ........................(35),
JO

[Hn__S^ _^_
Jo ar"-1 ^^ 271-1

VTT . T (w + i)

rx [x 2
Thus xH .dx = xHl ,

Hldx = - H + -x.
Jo Jo
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11. We may write

cosm X ~

Q Tiri H I nr\ - J ci Ti i*?J i I - *ji2\W J //^i

~2-V7T.r(n + i)J
whence

r

e-^(i_

Consider the integral I e~y>w (\ + w2
)
n
~^dw, where w is a complex variable

of the form u + iv*. Representing u + iv by a point in a plane, the rectangular
coordinates of which are u and v, we see that the integral in question has

the value zero, if the path of integration be the sides of the rectangle, of

which the angular points are 0, h, h + 1, i, where h is any real positive quantity.

Thus

f e-*" (1 + w2

)
71-* du + P er* <*+**

{
1 + (h + tv)

2

}

n-* d (iv)
Jo Jo

+ f e-x (+o [i + (u + t)2}-J du +
I

e~MV (1 - fl
2

)
w-* d (LV)

= 0.

J h J t

If now we suppose h= oo
,
the second integral vanishes, and

r1 r

e
-tan>

(!
_ V2)n-j^ _ _ f e

-xu^ + W2)n-j^
Jo Jo

,00

+ 4 g-* <M+"
{
1 +

Jo

The integral on the left-hand side is 271"1

VTT . T (n + ^)
-w

(/n
- t#n),

and

replacing w by /3 on the right-hand side, we obtain

2-1
VTT . T (n + J) x~

n
(Jn - iHn)

/ / ft2\-J
T e-^ll + ^) dyg

Jo V sf/

..-*2+l\ r
00

tR\ n-*

-f-} d/3.

Expanding by the binomial theorem under the integral signs and then

integrating by the formulae

f
Jo

r
g-0

Jo

Lipschitz, Crelle's J. LVI. 189 (1859). Lord Bayleigh, Sound, n. 153.
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we have on equating real and imaginary parts

r^_i~
1.2(2*)

2

1.2.3.4(2*)'

2n + 1 \X COS I * 7T
)

*(-* (rf - t)(rf-(rf-W+ )

sin
/ _2!L

i

)

~-j

and

L +f-

The following are special cases of interest :

J* (*)
=
\/,~

sin ^> ^-i () "V 55
cos *'

2 \ / 2 / . cos #\
" 1

)



APPENDIX II.

LOMMEL'S FUNCTIONS.

1. THE infinite series

(z} ..................(1)
o

is convergent under all circumstances, whatever y, z and v may be, for the

quotient of the (s + l)th term by the sth is (y/z)
2 Jv+2s/Jv+2s^, which

vanishes for s = <x> , If y[z< 1, it converges from the term for which v + 2s

is positive more rapidly than the geometric series 2 (ylz)
v+z

*.

The infinite series

F,(y,*) = 2<-iy(y/*)^J_,-(*) ..................(2)
o

on the other hand is convergent if v be a positive or a negative integer (ri) or

zero, because in' that case
T _ /_ 1 \n T" v 28 ^ L ) u v+ZSi

and the ratio of two consecutive terms is the same as in the former case
;
but

for fractional values of v, it is divergent.

From equations (12) and (13) of Chapter VIII., we have for values of v

less than unity and not less than 1/2,

Uv (y, z}
- F_,+2 (y, z) + i{ Uv+l (y, z}

- F_,+1 (y, z)}

whichich gives Uv (y, z}
- F_,+2 (y, z)

= cos f| + 57
- I )

\Jd // 2/

TT / \ Tr / \

t/H-i (y> z)
-

r-H-i (y>z)
= sin

(^
+
^y

- v
2 j

'

or since the second equation is obtained from the first by writing v + 1 for v,

and the first from the second by writing v 1 for v, the equation

............... (3),

which holds between the limits 1/2 and 3/2 for v, serves to express V in

terms of U.
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Since the series Uv (y, z) is convergent whatever v may be, we may go
further and define Vv (y, z) for any value of v by the equation

F_,+a (y, z)
= Uv (y, z)

- cos
^|
+
|-
- v

^J

or -,y,* = -^y, 2 + cos + + "

Writing z2

/?/
for T/ we obtain

= Uv (y, z)-V_v+,>(y, z} ............ (5).

If v be an integer (n) or zero, we can express Vn by the convergent series

=(-l)
n ^n-,^ ......(6);

also tfn (y,*)
= (-l)*Fn ,* ........................ (7).

From the series for Uv we have

1 11 Z* 7T

but Uv (y, z)
- F_,+2 (y, z) = cos

(J
+^

-
1/

^

, 5)+

Q . a
2. Since ^

we obtain from (1)

(y, f)
y

and from (4)

(10).
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Hence also

9m TT //}/ ^\ & r)*^ 1 TT ('ti <y\ ftYt 1 ^^ 2 TT //*/ ^\IJ v\y> z ) Uv+\\y,z) m 10 u v+i(y, z) . ,

_ r 111).
dzm y ozm~

y ozm~

d Vv (y, z} ^_z_ 3^-1 Vv_1 (y} z) _ m-1 9OT~2 Fy_t (y, g)

^m ^ g^m-i y g^.m-2

Now by Taylor's theorem

calculating the successive differential coefficients by (11) and arranging the

terms we find

v+g (y,z} ............... (13),

if h = 2ez + e
2

;
in the same way

^(y,*) ............... (14).

By these formulae we can interpolate between the tabulated values of the

functions Uv and Vv . The functions Uv+l ,
Uv+2 , ..., Vv-i, F,,_2 , ..., maybe

found by calculating Uv+1 ,
Vv -i by the aid of (9) and (10) and then deducing

the others by the successive application of (8). Since the series (13), (14)

converge very rapidly, only a few terms are required.

If it be required to find the roots of Uv (y, z} = 0, Vv (y, z) = 0, the tabular

values of these functions nearest to zero are taken, and the equations

are solved for h/(2y), and from the value of h thus determined, 6 is calculated

by means of

e2 + 2ze - h = 0.

3. Differentiating the series (1) with respect to y, we have

(15),

whence we deduce

v_l (y,z) ............(16).
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If y be a function of z, then

dz dz dy dz

= - Z-Uv+l (y, *) +

let y = 22
/c >

tnen 9y/9
=

2s/c, and

9 r

or writing y for c,

(17).
y y

9
v

y y \y

9 (& \ z /z2
\

In the same way Vv ( , z] = - Vv+l (-, z] ..................... (18).
dz- \y ) y \y )

4. An important case of Lommel's functions is that in which z = : then

by the definition of Uv we have

Uv (y, 0)
= 2 (- 1)*y^ [z*Jv+v (*)]_

<19 >-

Differentiating this equation m times with respect to y, we obtain from (15)

and since v m, where v > 1 and m is zero or any positive integer, can have

any real value, we may regard (19) as defining Uv (y, 0) for any index. We
may then define Vv (y, 0) by the equation

(20),
\f "/

and we also have

Uv (y, 0) + tf,+2 (y, 0)
= F_, (y, 0) + F_,+2 (y, 0)

=
2T>TT) (21) -

In the special case of integral indices, we have

U (y, 0) = cos y, 7a (y, 0) = sin y , Z7, (y, 0) = 1 - cos y,

f -i

(y, 0)
= (-!)"

jcos
iy - S (-

C re-1

(2/, 0)
= (- 1) sin iy - 2 (-

Cf-an (y, 0)
= (- l)

n cos y, Z7_2n-i (y, 0) = (- l)
n+1 sin ^y,

/ 7T\

or U-m (y, 0)
= cos Uy + m

2j'
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Also F.(y, 0)=1, FHH .1 (y,0)=0 (m = 0, 1, 2, ...),

By Taylor's theorem, we obtain

_,(y,0) .........(22),

+, (2/,0) .........(23),

wherein Uv_s , F,,+g are determined from (21) when two of these functions

with indices differing by unity are known.

5. Writing x = ru, we have from equation (10), Chapter VIII., for v not

less than J,

du ......(24),

and since [(zu)-"
+1

we have

Uv (y, V}+iUv+l (y, 0)
=

2r
.

(y)

-1^'1-^ 1^ ...... (25).

Also for v < 1, equation (ii), Chapter VIII., gives

71,+, (y, *) 4 *F_^ (y, e) = - j^ t

*

(^X/.-x (*) ^'-"^ rfw . . .(26),
* J i

or writing v + l for
i/,

FH* (y, z) + iVv (y, z)
= - y~

v \\zuy-"J_v (zu) e^~^ du

= _
yi--

f
(zu)

vJ-9 (zu) w
i-

Jl

where v is now greater than zero. But

(y, 0) + iVv (y, 0) = -

if v be written for y (w
2

l)/2.
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,
r -w*+v)u ,

r (")
_Ll \JW C/

*

Cv Cv tv -" "t TTT . ,

Jo (W2 + ^)"
hence

1 f ^ r*
F.+1 (y, 0) + t7,(y, 0) = - -^r-<| e

-
^ v 1*/ " v-1- v)Jo Jo

and equating real and imaginary parts

F(i>)f (1 i/) J 1 + w2

V (30).
1

/" ?t"~
1
e~J'

M

In particular when v = ^,

,.
,

1 f
00
M-ie-^ \

Fj(2y, 0)= - --du]
TrJo 1 + w2

which are Gilbert's integrals*.

Hence V* (2y, 0) is always positive, and since its first differential coefficient

F|(2y, 0) is always negative, it decreases continuously as y increases from

the value l/\/2 when t/
= to the value for y

= oo . Fj(2y, 0) is always

negative, and since its first differential coefficient, which is the second

differential coefficient of V (2y, 0), is always positive, it increases continuously

with y from the value 1/V2 for y = to the value for y = GO .

6. Since (zu)*J-i (zu} '-.= (e
1 + e~"u},

V2?r

we have from (24) by writing v = \,

7, (y, z} + iU* (y, z)
= A //- ]

P e^^ 1 -*>-">' dw + P
V ZTT [J o Jo

r
J Q

where r(y +*M%)p 8 = (2/~

Writing in the first integral |(~ +
w
)

= "^ it; becomes

V H7^

7T (Jo

= {^(2cr, 0)+ iZ7, (2cr, 0)}
-

w.

J/em. couron. de I'Acad. de Brux. xxxi. 1 (1862).

26
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In the case of the second integral, when y < z, we have as in the integral
just considered

I (23,0)}

pVST
i 2y

Jo

on the other hand if y > z,

2y

z/y

Hence

[7t (y, *)+ *Z7-(y, )
= + * {^ (28, 0) + itf, (28, 0)} **

+ 1
1 ^(20-, 0)+ iU%(2<r, 0)} e-^ ...... (32),

the upper or lower sign being taken according as y < or >z\ and. since

^ (y, z) + iUs (y, z)
= F

f (y, *) + c F. (y, ^)
-J i

"+^ '

,

we obtain

r ......(33),

and

0)}e ,fory> < er ...... (34).

Also Z7t (2r, 0) + t7-,(2r, 0) = 2 J- f'^d-%V 7T Jo
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and hence U$.(y,z) and U$(y, z) may be expressed in terms of Fresnel's

integrals

I cos ^Trv
2

. dv and I sin ^Trv
2

. dv,

while Fj (y, z) and F| (y, z) may be similarly expressed by means of the

formulae



APPENDIX III.

RADII OF CURVATURE OF FRESNEL'S WAVE-SURFACE.

1. LET o-j and cr2 be the radii-vectores from the centre to the wave-

surface in the direction, of which the direction-cosines are \, JJL,
v referred to

the principal axes of the surface, then from the equation of the surface we
have

a2

(6
2 -

o-!
2
) (c

2 -
o-!

2
) X

2
4- 62

(c
2 -

a?) (a
2 -

of) p? + c2 (a
2 -

of) (6
2 -

a?} v* -
;

a2

(6
2 -

a.?) (c
2 -

of) X
2 + 62

(c
2 -

of) (a
2 -

of) p? + c
2

(a
2 -

of) (6
2 - o-2

2

) L2 = 0,

whence since A,
2
-f yu,

2 + v2 = 1,

we find Qo-jWX2 = - 62c2

(6
2 - c

2

) (a
2 -

o-j
2
) (a

2 -
of),

Qo-jW/i
2 = - c

2a2

(c
2 - a2

) (6
2 -

o-j
2
) (6

2 - o-2
2

),

Qo-jV.V = - a262

(a
2 - 62

) (c
2 -

o-,
2

) (c
2 - o-2

2

),

where Q = (6
2 - c

2

) (c
2 - a2

) (a
2 - 62

).

Hence if x, y, z be the coordinates of the extremity of the radius-vector

o-1( so that x = Xo-j , y = /xo-j, z = vcr^, we have

1

y = -

2. If now we write

"dx = a
1d<r1 + a2cZc ,

dz c^dcr^ 4- C2

pdvf -f
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= 0,

= E', A a!
' = F', Act"

then the radii of curvature of the surface at the point (x, y t z) are given by

E'p-EV, F'p-FV
F'p-FV, G'p-GV

=
(2).

3. Calculating the values of these functions for the case of the wave-

surface and writing

we find on reduction

E' =

F=Q, G = - D/P, = g/(- P2), (say),

+ D (P1 + aW - v&a? + 2^") + a2
Z>
2
c
2P1 }

. (say),'

Then the radii of curvature are given by

and

eV-/ /2 =
{Z) + a2

(6
2 -

tx / - J. I

eg' + e'g
= '

(3),

(c
2 -

o-,
2

) (a
2 -

a-,')}

^ + 62
(c

2 - a,
2

) (a
2 -

<*)



406 The Analytical Theory of Light [APP. in

Hence

D + c
2
(a

2
-of)(&

2 -of) D

^
{D + a2

(b
2 - of)(c

2-
of)} {D + b2

(c
2 - of)(a

2 -
of)} {D + c2 (a

2 - of)(6
2-

of)}

=
(4).

4. Since D and Px always have the same sign, it is clear that D and

D + Pl can only vanish when of = of = b2
,
that is at the conical points of

the wave-surface.

To determine the values of p at these points, let of = b2
, then

1 1 ) Db2

bD i a2c2

(b
2 - of)

'

'

' p
~ T D - b2 (a

2 - b2

) (b
2 - c2)

~
a2

c
2
(b

2 -
of)

-
(a

2 - b2

) (b
2 - c2) of

'

the second value being zero, if of= b2.

Again let of = b2
,
then D = a2c2 (of - 62

), and

2 ((a? + c2 - of)* ac (of
- b2

) Va2 + c2 - of] (of
- 62

) (a
2 + c2 - of)

2

^
"

ac a2
c
2 a262 62c2 + 62of j

^ a2
c
2 a262 62

c
2 + 62

o-!
2 '

V * * *

(a
2 + c

2 -
o-!

2^ ^
ac (o-!

2 - 62
) Va2 + c

2 -
q-!

2

'

ac a2
c2 - a262 - 62

c
2 + ftVi

2 '

the second value vanishing when o-j
2 = 62

.

5. The radius of curvature can only become infinite, if

D + a? (6
2 -

o-j
2
) (c

2 -
oV) =0, or D + b* (c

2 -
of) (a

2 -
o-j

2
)
= 0,

or D + c
2

(a
2 -

oy
2

) (6
2 -

o-!
2
)
= 0.

Now

D + a2

(6
2 -

o-,
2

) (c
2 -

o-,
2
)
=

2 {6
2
c
2
(o-,

2 - o-2
2
) + (6

2 -
o-,

2
) (c

2 -
o-,

2

) o-2
2

}"

and since b2
o-2

2 and b2 ^2 have opposite signs, this can only be zero if

o-j
2 = o-2

2 = 62
,
the case just considered.

Similarly D + c2 (a
2 -

of) (b
2 - oy

2
)
= 0, only if of = of = b2

.

But if D + b2
(c

2 - of) (a
2 -

of) = 0.. we have

^f {c
2

(a
2 -

of)
- of (a

2 -
of)}

= 0,
"2

which is possible, provided oy
2
is greater than 6s.
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Hence since D and D +Pa are zero, only if oV = <r2
2= 62

, we see that one

radius of curvature is infinite at points on the outer sheet of the wave-

surface, for which
a2

c
2

="

2

Now from the equation of the wave-surface we have

bz
fj? + cV

'

whence substituting for <r2
2 and remembering that

as = Xo-j , y = pa-! ,
z = i/o-j

are the coordinates of the extremity of the radius vector a-1} we find that the

points at which one radius of curvature becomes infinite are the intersections

of the outer sheet of the wave-surface and the ellipsoid

(a
2 + 62

) a? + 26y + (6
2
.+ c

2
) z

2 = 62
(a

2 + c
2

),

and these are the circles along which the singular tangent planes touch the

surface.

The other radius of curvature at these points is

_ _PCD + PQ2^2_
P

ffl VD (D + PO {D + a2
(6

2 -
oV) (c

2 -
oV)} [D + c2

(a
2 -

o?) (6
2 -

<??)}

.

"

(a
2 - 62

) (c
2 - 62

)

6. To find the umbilics we have

(e'g'-f'J (p
-

PJ =
eg {(eg'

-
e'gf + legf*},

which gives

D {D + a? (6
2 -

o-,
2
) (c

2 -
o-x

2

)}
2

\D + 62
(c

2 - ^) (a
2 - ^j 2

x {D + c2
(a

2 -
o-,

2

) (6
2 -

cr,
2

)}
2

(p
-

PJ
= ^2

(D + A)
|"{a

262c2 (D + PO2 - I> (^^Sa
2 -

20V)}
2

............ (5).

Now PXP2 is never positive, and D, D + Pi only vanish when of = oy
1 = 62

,

a case already discussed : hence the conditions for an umbilic are

PaP2
= and a262c

2
(D + P1)

2 = I>2

{(
a2 + 62 + c2)^4 - 2^<

}-

But if P! = 0, the second condition becomes

D2

[a
262c

2 -
(a

2 + b* + c
2

)^ + 20-,
6

}
= 0,

and aW -
(a

2 + 62 + c
2

) oV + 20V
2a2 + a262

) <rS
- 2 (a

2 + 62 + c
2

) er,
4 + 3a-3

6
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The second condition therefore gives that dPJdar? = or that Pl
= has

equal roots, which is impossible.

If P2
= 0, we have

D+P, = D + P,-P, =^^ {P2 + (a + &2 + c
2
)oW - oYW -

<r_a_}O"2

=
o-i

2

Oi
2 - o-2

2
) (a

3 + &2 + c- - <r,
2 - o-2

2

),

and the second condition gives that

o-2
4

(a
2 + 62 + c

2 -
o-f

- o-2
2
)
2 = a262

c
2

(a
2 + 62 + c

2 - 2^),
whence

2
__

Now if P2
= 0, o-2

2 can have either of the three values a2
, 62

, c2 :

(a) if ay* = a2
,
then

a2 + 62 + c
2 -

o-j
2 - o-2

2 = 62 + c
2 -

o-!
2 > a263

c
2

/a
4

;

hence the upper sign must be taken and

=
(a

262 + c Va2 - 62
(c Va2 - 62 - 6 Va^c2

)} ;

tv

(6) if <72
2 = 62

,
then

a262
c
2 - o-2

4
(a

2 + 62 + c2 - 2<r2
2
)
= 62

(a
2 - 62

) (c
2 - 62

) < 0,

and o-i
2
is imaginary ;

(c) if o-2
2 = c

2
,
then

a2 + 62 + c
2 -

OY*
- o-2

2 = a? + 62 -
o-!

2 < a262
c
2

/c
4

;

hence the lower sign must be taken and

= \ {6
2c2 - a V62 - c2 (a \/62 -c2 - 6 V^^72

)}.
c

Neither of the values thus determined makes the coefficient of (p p')
2

vanish, and thus there are real umbilics when and only when

i ___ _ __ \

o-j
2 =

(a
262 + c va2 - 62

(c Va2 - 62 - 6 Va2 - c
2

)}, <72
2 = a2

ft _ _ _ ......w
and o-!

2 = -
{6

2c2 - a \/6
2 - c

2
(a V&

2 - c
2 - 6 Va2 - c2

)}, <r_
2 = c

2

c /

that is, the real umbilics are in the elliptic sections of the wave-surface made

by the planes of yz and xy respectively.
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Since at an umbilic eg' e'g
= 0, f 0,

we have

#'_ e' _ Y (D + a262c2

) (D + PQ - <r/ (a
2 + 62 + c

2 - 2qy
i

) D
<7~e~ ^(D

and the radius of curvature at an umbilic is

e'ff + eg')

eg X

(D + a262
c
2
) (D + P!)

- of (a
2 + 62 + c

2 -
2o-!

2
) D

'

But since P2
= we have

D + Pj = of (of - of) (a
2 + 62 + C

2 - ay - <r2
2

),

(D + a262
c
2
) (D + P x )

- of (a
2 + b- + c- - 2of) D

= a262
c
2

2 o-j
2

(o-!
2 - oy) (a

2 + b- + c
2 - of - o-2

2
)

O"2

- ofa262
c
2 **~**

(a
2 + 62 + c

2 - 2af)

"2

Hence p = -^- (a
2 + 62 + c

2 - of - of)* (7).

7. Let di and ft>2 be the radii-vectores from the centre to the surface of

wave-quickness in the direction given by the cosines l,m,n; then from the

equation to the surface

(6
2 -

ft)!
2

) (c
2 -

ft)!
2
) I- + (c

2 -
ft)!

2
) (a

2 -
ft)!

2

)w2 + (a
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ft)!
2
) (6

2 -
ftf) n

2 = 0,

(&2
_ ^2) (C

S _ ^2) p + (C
2 _ ^2) (a

2 _ W22) w2 + (ft
2 _ ^2) (fr

_^ n* = Q,

whence since l2 + m2 + ri* = l, we find

Too g2 j2
\

?
2 = - -^- (a

2 -
a)!

2
) (a

2 - ft)2
2
),

m2 = - -^- (b
n~ - of) (b
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|
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2_ ft,12)(c
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)
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2

(c
2 -

a)!
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"
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j

where ^ = (a
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2
) (6

2 -^ (c
2 -

ft)!

2
) ..................... (10 ).

ft)!

2
CD2

2

...(9),
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we have for the coordinates (x, y, z) of the point at which the plane

Ix + my + nz = &>j

touches the wave-surface

F2
I F2 m F2 n

u/ vuji ;, tJ /;tu/i rf ,
* /c/w/i ,

&>! a &>i G>1 &>! &>! (T Ct)i

whence a\ =
&>i

2 + F2

/^
2

Now from the equation of the wave-surface

2
a262

c
2

a2X2 + 6>2 + C2i/2
'

7 a? a-^ . .. .

but Xo-j = =
tft)! , and two similar equations,

whence
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2
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ft)!

2
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2

o-j
2
)
2

^ ^ ,
and two similar equations,
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)
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2
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2
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2
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2 -
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2
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and we obtain after some transformations

or =
i

Again we have
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c
2
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2 -

o-!
2
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)
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and two similar equations ;
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*i jpi
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2
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2

) (c
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2

).....................(14).

8117 -i- a.1. 7 W
l

4
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4
(")l

2~ W2
2
)

. Writing then k = ^ = v
,
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we have D = kP1} a? = (
1 + T }

af,
\ */

a2 -
^ /*2 2

(1 + A?) Pj

and substituting these expressions in (4), we obtain

fo'-^' .
^-^

.

c
2 -^2 1+fcl P,'~ + + ~~~

G)l
"h&)l =
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...... (15).

We thus find
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8
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2
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......(16),

and from (5) we obtain
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]
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4

^1^2 ............ (17).

9. The conditions for an umbilic are

{ci

262
c
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4

(a
2 + 62 + c

2 -
2&)!

2

)} (ft)i

2 - &)2
2

) + 2^!&)i
2 =

0,

and ^1^2 = 0;

whence proceeding as in 6, we find that the real umbilics are given by

ft)!
2
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)(a
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)}
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&c, ft)2
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)
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2 = c

2
)

Since p2
= the first condition for an umbilic gives
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c
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ft)i
4
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2
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c
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whence the radius of curvature at an umbilic is

,=^ .................................(19).
&>l

3
ft)2

2
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291 ;

differential equations and boundary
conditions for 251

; absorbing 319-329 ;

active 344-369

Differential equations of the polarisation-
vector, for absorbing media 319 ;

for

crystals 251 ;
for ponderable bodies 338 ;

for free ether 77, finite solution of, on a

simple plane 156, on a Blemann's surface

157 ; for active media (structurally) 357,

(magnetically) 383

Diffraction, general expression for 96 ; import-
ance in theory of instruments 99 ;

distinc-

tion between Frauuhofer's and Fresnel's

96 ; Sommerfeld's investigation of 153-
163

;
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with a circular

aperture 123, when the source is, linear

124, two luminous lines 126, an area with

straight edge 127 ;
with a sector of a circle

127 ;
with an heliometer-objective 128

See also Grating.
-, Fresnel's, with a rectangular aper-

ture 133
;
with a rectangular obstacle 136 ;

with an infinite half-plane 139; with a

biprism 142 ;
with a circular, aperture 147,

disc 151

Dispersion, absent in free ether 336 ;
how

explained 336 ; its law in transparent iso-

tropic bodies 33'J ; auomalous, its discovery

337, its geometrical representation 341,

Kundt's law 337, how investigated 341-343

Doppler, Chr., on the effect of convection on

radiant periods 19

Double Refraction, in uniaxal crystals, dis-

covered by Bartholinus 188, investigated

by Huygens^SS, by Malus 189, by Wol-

laston 189 ;
in biaxal crystals, discovered

by Brewster 189, investigated by Fresnel

195, 196 ; of vapours in a magnetic field

376, 382

Drude, P., his method, of investigating metallic

reflection 333, of measuring the optical

constants of metals 333, 334

Du Bois, H., on magneto-optic rotation in

magnetic metals 371

Egoroff, N. G., and N. Georgiewsky, their ex-

periments on the Zeeman effect 375

Ellipsoid, of polarisation 196, 208 ; reciprocal

196, 217

Elliptic polarisation 27 ; produced by reflection

183 ; test for 307 ; represented geometric-

ally 308-311; its study 312-317

Emission-theory 1

Energy, methods of its transport 1
; of lumin-

ous disturbance, expression for 178, 251;
its flow along a ray 251

Faraday, M., discovers magneto-optic rotation
370

Fermat, P., his law of least time 3
Fizeau, H. L., determines the velocity of light 1 ;

group-velocity given by his method 81; on
the complex radiation from soda-flames 71

and J. B. L. Foucault, on interference
with large difference of phase 41

Foci of lines, with an anisotropic plate 225 ;

with uniaxal plates 227 ; with biaxal plates
228

Foucault, J. B. L., determines the velocity of

light 1 ; consideration of his method 81

Fraunhofer, J.
,
his diffraction phenomena 96,

99-129 ;
his lines, and Kirchhoff's law 337,

explained by Stokes 337

Fresnel, A., recognition of the wave-theory due
to 2

;
his simplification of the study of

wave-propagation 3
;
his diffraction phe-

nomena 97, 130-152
;
his investigation of

double refraction 195 ; his wave-surface
206 ; his laws do not hold for absorbing
media 322, unless the absorption is slight
323 ;

on the interference of polarised light

25, his laws of the phenomenon 263, their

experimental proof 264; his explanation of

rotary polarisation 346, experiments in

support of it 346-348 ;
his mirrors 39-41 ;

his biprism 42-44

Gouy, L. G., his theory of active media 351

Grating, simple 102
; plane ruled 112, 115 ;

ghosts produced by periodic spacing 116 ;

curved ruled 119 ; the echelon 113

Group-velocity 81

Haidinger, W., his fringes 65 ; their localisa-

tion 65

Hamilton, Sir W., his construction for reflected

and refracted waves 5
;

discovers the

conical refractions 223

Herschel, Sir W. ,
his bands 65 ;

their achro-

matism 66

Huygens, Chr., expounds the wave-theory 2
;

his principle 2, its analytical expression

84, defect in its application 153 ;
his con-

struction for reflected and refracted waves

4 ; his discovery of polarisation 20, 189 ;

his investigation of double refraction 188 ;

his wave-surface 188

Iceland spar, form of crystals 20

Intensity of light, its measure 24

Interference, its analytical expression 20 ;

condition, for no 26, for perfect 28; of

polarised light 25, 263-267, its-laws 263

Interference fringes, from two correlated

sources 34
;

shift produced by a plate 35,

51 ; their visibility 37 ;
limit imposed by

molecular motion 37 ; spectroscopic analy-

sis of 38, 39 ; necessity for an initial single

source 39 ;
with Fresnel's mirrors 40, 41,
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effect of moving one mirror 41 ; with high
relative retardation 41

;
with the biprism

42-44 ; with the divided lens 44
;

with

Lloyd's mirror 48
; effect, of extending the

source 45-47, 49, of the orientation of

the slit 47, 49 ; abnormal shift, by a

prism 50, by a plate 51 ; achromatism 50 ;

achromatic system 51-53 ; lateral systems
in experiment on rotary polarisation 348

Interference by absorbing crystalline plates
326-329

by crystalline plates, calculation of

the intensity 268
; of the retardation 269,

276 ; its localisation 270 ; with white light

268, 271, 286; in parallel light 271;
curves of constant intensity 274, 275, 282 ;

curves of constant retardation 274, 275,
with uniaxal plates 281, with biaxal plates
283-286; lines of like polarisation 274,

275, 279, with uniaxal plates 280, 281,
with biaxal plates 283-286 ; achromatic
lines 275, isochromatic curves 275 ; with

light circularly polarised or analysed 290 ;

with light circularly polarised and analysed
292 ; with light elliptically polarised and

analysed 292 ;
with two plates superposed,

in parallel light 272, in convergent light
293 ; Savart's plate 294 ; twin uniaxal

plate 295-299

by isofcropic plates, its localisation 54,

57, 64
;

effect of introducing a slit 57 ;

condition of distinctness with extended
source 56 ; Haidinger's fringes 65 ;

Her-
schel's bands 66

; wedge-shaped film 67 ;

Newton's rings 68
with plates of quartz 361-369

Jamin, J. C., his investigations on elliptic

polarisation by reflection 183
;
on positive,

negative and neutral reflection 183 ; on
metallic reflection 332

Jellett, J. H., his analyser 306

Kelvin, Lord, on the explanations of dispersion
336

Kerr, J., on reflection from the pole of a mag-
net 372

Kirchhoff, G. R., on Fraunhofer's lines 337 ;
his

principle employed for the study of the
Zeeman effect 375

Kundt, A., his metallic prisms 334 ;
his experi-

ments on anomalous dispersion 337, 341
;

his law 337

Leroux. P.P., discovers anomalous dispersion 337

Light, definition of monochromatic 17 ; com-

plex character of, from natural sources 18,
19 ; nature of, transmitted through a

rotating plate of crystal 32 ; distinction

between different types 317

, common, its fundamental property 21
;

not absolutely monochromatic 28
; ana-

lytical conditions for 29
; equivalence to

two oppositely polarised streams 30

Light-vector, 162, 164, 165

Lloyd, H., his mirror experiment 48; on conical

refractions 223

Localisation of interference, with isotropic
plates 54, 57 ; in the case, of Haidinger's
fringes 65, of a wedge-shaped film 68, of
Newton's rings 69 ;

with crystalline plates
270 ;

with Babinet's compensator 312
Lommel, E. C. J., on Fresnel's diffraction phe-

nomena 130-152 ; properties of his func-
tions 396-403

Macaluso, D. , and 0. M. Corbino, on the
Zeeman effect 375

MacCullagh, J., his uniradial directions 255
Mach, E., on the interference of polarised light

265 ;
on investigating anomalous disper-

sion, by interference 342, by total reflec-

tion 342

Magneto-optic effect, represented by a vector
376

Magneto-optic rotation, its discovery 370 ;
its

characteristics 370 ;
its laws 371 ; in mag-

netic metals 371 ; important at critical

frequencies 375, 378 ;
within the region of

absorption 379
Mallard, E., his theory of active media 353-356
Malus, E. L., discovers polarisation by reflection

169 ;
his definition of the plane of polari-

sation 169, 189 ; investigates double re-

fraction 189
;
on the effect of a plate of

crystal on polarised light 262

Metals, their optical constants 334
; their

anomalous dispersion 335
Michelson, A. A., his interferometer 16, 74 ;

his measure of visibility of fringes 37, 46 ;

on the analysis of radiations 74 ; on the
resolution of double sources 107

; his
echelon grating 112

Newton, Sir I., on the emission-theory 1
; re-

cognises the periodicity of light 16
; his

rings 68, their achromatism 69, formation
of their central spot beyond the critical

angle 180

Nicol, W., his polarising prism 301
; its con-

struction to give a maximum symmetrical
field 303

Oppositely polarised streams, defined 27

Optic axes 189, 195 ;
their directions 198 ; their

dispersion 286, 287

Optic axis, of Iceland spar 20, 188
;
of uniaxal

plate parallel to the axis, how determined

228, 283

Phase, its variation along a ray 93 ; change of,

produced, by ordinary reflection 60, 182,

by total reflection 176

Pile, of plates, as a polariser 171, 300; inten-

sity of reflected and transmitted light 171;
perfectly transparent 173 ; degree of po-
larisation of transmitted light 173

Plate, refraction through 6
;
determination of

the waves' within 7 ; intensity of reflected

and transmitted light, with thin 58-61,
with thick 61

;
reflection and refraction of

unhomogeneous waves with 178-180 ; foci

of lines seen through 225-230
See also under Interference.
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Polarisation, fundamental experiment of 21
;

its analytical expression 22
; right- and

left-handed 22
; plane 26

; elliptic 27 ;

circular 27 ; partial, its analytical condi-
tions 31

; plane of 21, 169, 189 ; by reflec-

tion 169 ; by a pile of plates 171, 300, its

degree 174
Polarisation-vector 22

; symbolical expression
for 23 ; transverse to the direction of

propagation 26 ;
its differential equations,

in absorbing media 319, in active media

(structurally) 357, (magnetically) 383, in

crystals 251, in free ether 77, in ponder-
able bodies 338

Polarised light, direction of vibrations in

169, n.

Polarisers, denned 262, n.
; types of 301-305

;

elliptic, their character 292

Polarising angle, of isotropic media 169 ;
of

crystalline media 256 ; of uniaxal crystals
for reflection in a principal plane 257

Polarising prisms, Eochon's 301
; Senarmout's

301; Wollaston's 301; Nicol's 301-304;
Sang's 304

Positive and negative crystals, uniaxal 192 ;

biaxal 201 ;
how distinguished 291

Positive, negative and neutral reflection 183

Potter, R., on abnormal shift of fringes 51

Principal plane 20

Prisms, refraction through, direct 8, oblique
11 ; equation of the wave within 13

; Uni-

axal 230, minimum deviation with 232;
Biaxal 234, minimum deviation with 238 ;

metallic, made by Kundt 334

See also under Polarising prisms.

Quarter-wave plate 288 ;
its employment, when

perfect 315, when imperfect 316

Ray, defined 3 ; its experimental determination

14, 15 ; angle between it and the wave-

normal, in uniaxal crystals 192, in biaxal

crystals 208, 218 ;
its significance in

crystals 251

Ray-axes 217

Ray-velocity 3 ;
in uniaxal crystals 191 ;

in

biaxal crystals 217

Rayleigh, Lord, on radiations from natural

sources 18
;
on limit to interference caused

by motion of the source 37 ; on the roots

of tanu= u 46; on achromatism of inter-

ference 50, 69 ; on an achromatic system

51; on resolving power, of a prism 104,

of a grating 113
;

on the image of a

luminous line in a telescope 124
;
on re-

flection, at a twin surface 257, from a

laminated medium 261
;

on iridescent

crystals 261

Reciprocal line 208, 217

Reflection, conditions for perfect 161 ; total, at

an isotropic surface 175 ;
at a crystalline

surface 7, 242-249

Reflection and Refraction, crystalline, general

formulas 252-256; with uniaxal crystals

256, 257 ;
at a twin surface 257-260

t isotropic, its geometrical laws 165 ; of

uuhoinogeneous waves 166
;
of homogene-

ous waves 167 ; of common light 168
;

rotation of the plane of polarisation by
170 ; elliptic polarisation by 182 ; effect of
a transition-layer on 184; at a pile of

plates 171; at a thin plate 179
Reflection and Refraction, metallic, its geo-

metrical laws 329 ; its theory 331, 332
;

experimental investigations of 333 ; isola-
tion of long waves by 335

Resolution of double sources 107

Resolving power 104
;

of a prism 105
; of a

ruled grating 113; of the echelon grating
114 ; of a telescope 126

Retardation, relative, produced by a plate 58,

by a thin film 62, by a crystalline plate
269, 276

Reusch, F. E. , on combinations of plates of

mica 353

Reversion, principle of 58

Righi, A., on Fresnel's experiment of rotary
polarisation 349

Rochon, A. M. de, his polarising prism 301

Romer, 0., determines the velocity of light 1 ;

his method gives the group-velocity 81

Rotary Polarisation, its discovery by Arago
344 ; Biot's laws of 344 ; Fresnel's expla-
nation of 345, the experimental proofs
insufficient 347, 349 ; Airy's generalisation
349

See also Active media.

Sang, E., his polarising prism 304

Savart, F., his plate 294 ; his analyser 305

Senarmont, H. H. de, his polarising prism 301

Shadows, laws of geometrical 90
Slit in interference experiments, its admissible

width and orientation 45-47, 49 ; localisa-

tion of fringes destroyed by 57 ;
in general

necessary for visibility 57, 68

Smith, Archibald, his determination of the

wave-surface 206

Snell, W., his law of refraction 169

Spectroscopic analysis of interference 38, 39,

41, 47

Stokes, Sir G. G., his principle of reversion 58 ;

his law of the secondary disturbance 87 ;

on the integration of intensity in diffrac-

tion 124 ; on a pile of plates 171 ; on the

central spot of Newton's rings 180 ; on the

evidential value of conical refractions 223 ;

on the foci of lines seen through a plate

225 ; on iridescent crystals 261 ; on select-

ive absorption 337

Struve, H., on the telescopic image of a line

124
;
on the heliometer objective 127 ; his

functions 392-395

Talbot, W. H. Fox, his bands 110; discovers

anomalous dispersion 337

Total Reflection 7 ; limiting cones of 8 ;
with

isotropic media 175, the refracted waves

in this case 177, their source of energy

178 ;
with uniaxal crystals 243 ;

with bi-

axal crystals 245 ; experimental methods

of 242

Tourmaline, its polarising action 300
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Transition-layer, produces elliptic polarisation
186; its thickness 187

Uniaxal crystals, their wave-surface 190, sur-

face of wave-quickness 191, of wave-
slowness 192 ; angle between ray and wave-
normal in 192 ; determination of rays and
waves and their polarisation in 193

Uniradial directions 255, 256

Vector, stream of light represented by 22 ;

to represent the action, of molecules 338,
of a magnetic field 376

Verdet, E., his constant defined 371

Visibility of fringes, its measure 37 ;
its ex-

pression in the case of, Fresnel's mirrors
&c. 46, of Lloyd's mirror 49, of complex
sources 71-73 ; analysis of radiations by
73-76; resolution of double sources by
108

Wave, line of, replaced by an ellipse 11

Waves, periodicity of luminous 17 ;
unhoino-

geneous 78; propagation of singularities
of 79 ; velocity of a group of 81

Wave-quickness, surface of, defined 3
;

its ex-

perimental determination 8, from a central

section indeterminate 236 ;
in uniaxal

crystals 191 ; in biaxal crystals 202
;
in

active media 359 ;
in isotropic magnetic-

ally active media 384

Wave-slowness, defined 5
; surface of, defined 5,

in uniaxal crystals 193, in biaxal crystals
203

Wave-surface, defined 2
;

in uniaxal crystals
188, 190

;
in biaxal crystals 207, its curva-

. ture 404-411, its umbilics 407, 411

Wave-theory 2

Wave-velocity 3
;
in uniaxal crystals 192 ; in

biaxal crystals 197, 200 ;
in active media

359 ; its dependence on period 339

Wernicke, C. W., investigates metallic reflec-

tion 333

Wollaston, W. H., his polarising prism 301;
investigates double refraction 189

Young, Th. , suggests a wave-surface for biaxal

crystals 195 ;
his explanation of chromatic

polarisation 263

Zeeman, P., his magneto-optic effect 373; its

kinematical explanation 373 ; its investi-

gation by absorption 375 ; analytical in-

vestigation 376-382
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