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existence of certain other compounds. Thus one 
would expect that the polarizability of the anion 
of the element 85 would be considerably higher 
than that of 1-. The discoverers18 of the radio­
active species of this element report that it does 
not co-precipitate with AgI and behaves like a 
metallic element rather than as a halogen. One 
can express this fact from the above point of 
view by saying that the large deformability 
expected for the anion of ekaiodine leads to the 
instability of its salts. 

In C03~ the refraction per oxygen octet (4.08) 
is smaller than in the analogous Si03~ (4.42) be­
cause the field of the small CH (helium type) 
is stronger than that of SiH (neon type). Thus 
by analogy one would expect O~ in F04-, 
F03+, or F023+ to be deformed by the very 
small P+ still more strongly than by CI7+ in 
CI04-. None of these complex ions of fluorine 
exists; however, F 20 is a stable compound, 

18 D. R. Corson, K. R. MacKenzie, and E. Segn", 
Phys. Rev. 58, 672 (1940). 

which can be considered as formed by inter­
action within the grouping F-OHF-. One can 
interpret the imaginary reaction 2KFOc --7F 20 
+K20+302 as the result of the strong deforma­
tion of the oxygen ions by P+. Obviously this is 
only a way of formulating the fact that the 
electron affinity of fluorine is larger than th?-t of 
oxygen. However, the advantage of the above 
point of view becomes evident when one tries 

. to explain why CI04- exists but Br04- is un­
known. The probable reason is that Br7+ has a 
non-rare gas structure and must have a much 
larger deforming power19 than CF+, as does Cu+ 
compared with Na+. The ion P+, which also 
is of the non-rare gas type but which must be 
considerably larger than Br7+, combines with 
0= to form relatively stable periodates. From 
our point of view, this would mean that P+ 
exerts a smaller influence on the oxygen octet 
than does Br7+, for the same reason the CI7+ 
has a smaller influence than has P+. 

19 K. Fajans, J. Chern. Phys. 9, 281, 378 (1941). 
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A general study is given of the polarization of light 
scattered by isotropic media whose elements of hetero­
geneity are not very small in comparison with the wave­
length, (suspensions, colloidal solutions, solutions of large 
molecules, ... J. This includes an extension of a theory by 
R. S. Krishnan, who, considering certain particular states 
of polarization of the incident light and applying the law 
of reciprocity, had proved the equality of two of the four 
coefficients which are to be considered in these cases. 
Using Stokes' linear representation of the polarization of 
light beams, it is shown that the scattering through a given 
angle and for a given wave-length is characterized by the 
16 coefficients of the linear forms which express the four 
polarization parameters of the scattered beam in terms of 

I 

T HE scattering of light by a macroscopically 
homogeneous medium is caused by some 

----
* Publication assisted by the Ernest Kempton Adams 

Fund for Physical Research of Columbia University. 

the four corresponding parameters of the incident beam 
and that the law of reciprocity leads to six relations be­
tween these sixteen coefficients. For an isotropic asym­
metrical medium (having rotatory power), the scattering 
is thus characterized by ten independent coefficients. In the 
case of a symmetrical medium, four of these coefficients 
must be zero, leaving only six scattering coefficients, and 
if the scattering particles are spherical, there are two addi­
tional relations between these coefficients. The comparison 
with dipolar scattering by very small elements shows that 
the best test to prove multipolar scattering is the existence 
of some ellipticity in the scattered light wheH the incident 
beam is linearly polarized in a direction oblique to the 
scattering plane. 

microscopical structure. If the dimensions of the 
elements of this structure are very small in com­
parison with the wave-length of the light, the 
scattering has the well-known simple charac­
teristics of secondary dipolar emissionY-20 But if 
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these elements have dimensions comparable to 
the wave-length, the phenomenon is more com­
plicated, and has been experimentally studied 
only in particular conditions of excitation or 
observation, and theoretically only for spherical 
scattering particles.7, 21 

Our purpose is to extend a method used by 
R. S. Krishnan, and to point out the independent 
parameters which are necessary for specifying, 
in general, the intensity and polarization of the 
light scattered by any isotropic medium for 
given scattering angle and wave-length. A sum­
mary of this research has been read before the 
French Society of Physical Chemistry in May, 
1939.22 

We shall have to distinguish between sym­
metrical media, for which the center of any large 
spherical volume is a center of symmetry and 
any plane through this center a plane of sym­
metry, and the asymmetrical media, which 
usually have some optical rotatory power. The 
isotropy may be only statistical, as the result of 
an isotropic distribution of small anisotropic 
elements. 

We shall see that for isotropic media, whose 
scattering elements are not very small compared 
with the wave-length, media which are more or 
or less turbid or opalescent, it is necessary to 
introduce several new parameters, whose values 
will contribute to the determination of the mag­
nitude, shape, and optical properties of these 
elements. This method will be applicable in the 
study of smokes, fogs, suspensions, emulsions, 
colloidal solutions, solutions of large molecules, 
and also of media with widely extended fluctu­
ations such as pure fluids, or liquid mixtures, near 
their critical state, glasses, etc. 

My thanks are due to Dr. R. Wurmser with 
whom I had several discussions on these ques-

FI(;.I. 

tions of scattering, which were the origin of this 
research. 

II. THE RELATION OF R. S. KRISHNAN 

In several papers published in 1938, R. S. 
Krishnan l- 5 has established theoretically, and 
has given the experimental verification of, a 
relation between the intensities of certain com­
ponents of the light scattered by an isotropic 
symmetrical medium for some particular con­
ditions of polarization of the incident light. 

At a point of a horizontal light beam linearly 
polarized and of given intensity, he considered 
the scattering in a horizontal direction making 
an angle cf> with the incident beam. He denoted 
by Hh and V h the intensities of the horizontal 
and vertical vibrations of the scattered beam 
when the direction of vibration of the incident 
beam is horizontal, and by Hv and Vv these 
intensities when this direction is vertical (Fig. O. 
He defined the corresponding depolarization 
factors of the scattered light by the ratios (gener­
ally smaller than 1) 

Ph= Vh/Hh, Pv=Hv/Vv. (1) 

The superposition without any phase relation, 
of the two considered incident beams, polarized 
at right 'angles and of the same intensity, gives 
an unpolarized incident beam to which cor­
responds a scattered beam whose horizontal and 
vertical intensities of vibration are Hu=Hh+Hv 
and Vu= V h + V v' The depolarization factor of 
this scattered beam is defined by the ratio 

Pu=Hu/Vu 

and has thence the value 

The measurements of the three depolarization 



POLARIZATION OF SCATTERED LIGHT 417 

factors Pv, Ph, and pu thus give the ratios of the 
four quantities H h , V h , H v , V v • 

Using a general law of reciprocity due to Lord 
Rayleigh, R. S. Krishnan obtained the relation 

(3) 

for any symmetrical isotropic medium, and 
proved that this relation must be true also for a 
medium with only axial symmetry around the 
vertical direction perpendicular to the plane of 
scattering.2 

This relation is verified in two particular cases 
already known: (1) For very small scattering 
particles (dipolar scattering) V v , H v , V h are 
independent of C/>, and (Lord Rayleigh)6 

Hv= Vh, 
H h= Vv cos2 c/>+Hv sin2 C/>, 

which gives for transverse scattering 

(2) For spherical scattering particles of any 
dimension, and for all values of c/> (G. MieF 

Hv= Vh=O (spheres). (5) 

R. S. Krishnan gave, moreover, the experi­
mental proof of Eq. (3) for various non-spherical 
large particles, for which the observed intensities 
Hvand V h are always equal, but generally dif­
ferent from 0 and from H h• 

From the Eqs. (1), (2), and (3), the relation 
(6) results: 

As a consequence of reciprocity it is thus un­
necessary to measure the depolarization factor 
pu for un polarized excitation, if the depolariza­
tion factors Ph and pv for horizontally and ver­
tically polarized excitation have been measured. 

Finally, in a paper published in November 
1939, R. S. KrishnanR considered the case in 
which the direction of vibration of the linearly 
polarized incident beam makes an angle () with 
the normal to the plane of scattering. Neglecting 
the correlation of phase which then exists between 
the horizontal and vertical components of vibra­
tion of the incident beam, he obtained for the 
ratio of the intensities of the horizontal and 
vertical components of vibration of the scattered 

light the equation, 

pa=HelVo=(1+tg2 ()/Ph)/(tg2 ()+l/pv). (7) 

This equation, though in agreement with the 
particular theoretical results of Lord Rayleigh 
(any small particles) and of G. Mie (large 
spheres) did not seem to him to be generally 
true, because of the arbitrariness of the hypoth­
esis he had made to obtain it. He reported even 
a few measurements he had made of the scat­
tering by large non-spherical particles showing 
some disagreement with it. However, we shall 
show that this equation must be valid for any 
symmetrical medium. 

III. THE LAW OF RECIPROCITY IN OPTICS 

In his book on the Theory of Sound, Lord 
Rayleigh established a theorem of reciprocity for 
the forces and displacements in the neighborhood 
of an equilibrium state of a mechanical system 
governed by linear equations. 9 Later on he· 
extended to optics, without a new demonstration, 
the law of reciprocity; he merely indicated in a 
footnote the necessity of specifying the st;:ttes of 
polarization. lo R. S. Krishnan referred to this 
statement by Lord Rayleigh of the theorem of 
reciprocity to establish, in the case of light scat­
tering, the relation we have given above. But 
the conditions he considered are particular, 
because he did not take into account the possible 
correlation of phases between the two com­
ponents of vibration of each beam of light. 

To apply the law of recipr~city to the most 
general phenomenon of scattering by an isotropic 
medium, it is necessary to start from a precise 
statement of this law. 

Any monochromatic beam of light may be 
considered, in an infinite number of ways, as the 
superposition, with more or less phase correla­
tion, of two completely polarized beams of com­
plementary characters, for instance rectangular 
linear polarizations, or inverse circular polariza­
tions. We shall choose as reference polarization 
states, for each direction of propagation, the 
states of linear polarization along two fixed 
rectangular axes. 

Let us consider, given any system in which 
light can be scattered and absorbed, for an 
incident linearly polarized beam Fl having an 
intensity II, coming from a linear polarizer N, a 
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particular emerging beam from which we may 
separate a linearly polarized component F' b 

having an intensity 1'1, by means of a linear 
polarizer N'. Let us associate with these beams 
the inverse beams, that is to say, an incident 
polarized beam F2 coming from the polarizer N', 
with an intensity equal to II. in the direction 
opposite to that of the emerging beam F'I' and 
the corresponding emerging beam F' 2 coming out 
of the polarizer N in the direction opposite to 
that of the incident beam Fl. The law of reci­
procity states that the intensity 1'2 of this last 
beam F' 2 is equal to the in tensi ty 1'1 of the beam 
F'I: If two incident polarized beams have equal 
intensities, the inverse emerging beams of the same 
polarization, which are associated with them, also 
have equal intensities. 

This law is true only if the considered optical 
system is not affected by a reversal of time, so 
that the sense of propagation of light be imma­
terial. There must be no movements, no electrical 
currents, no magnetic fields. To extend it to more 
general cases it is necessary to reverse, together 
with the direction of light propagation, all 
movements, electrical currents, and magnetic 
fields. For instance, it is well known that the law 
of reciprocity, as stated above, is not true for a 
system in which magnetic rotatory power comes 
into account, if the magnetic fields are not 
reversed with the sense of propagation of light. 

Moreover, only monochromatic beams of the 
same frequency must be considered. At least it 
is necessary that the mechanisms which modify 
the frequency can be reversed with the propaga­
tion of light, as for instance a change of frequency 
caused by scattering by a moving body. The law 
of reciprocity is not valid for fluorescence or for 
Raman effect, in which the change of frequency 
is irreversible. In scattering phenomenon it is 
only relevant for Rayleigh scattering, with no or 
small symmetrical frequency changes. 

It is also interesting to give the corpuscular 
statement of the law of reciprocity: If a photon 
associated with the incident polarized beam FI 
has a probability P to come out of the optical 
system associated with the polarized beam F'I. 
then inversely, a photon associated with the 
beam F2, reverse, to F' b has the same prob­
ability P to come out associated with the beam 
F' 2 reverse to Fl. 

The law of reciprocity is thus seen to be con­
nected with the general principle of quantum 
mechanics asserting the equal probability of 
inverse transitions between two states of the 
same energy. 

IV. STOKES' LINEAR REPRESENTATION OF 
STATES OF POLARIZATION 

Let us first consider a completely polarized 
monochromatic beam of light, whose electrical 
vibration may be represented by its components 
along two rectangular axes 

Ex=PI cos (wt+IOI), 
E y=P2 cos (wt+102), 

(8) 

the amplitudes PI, P2, and the frequency w/21T' 
being positive. Let 0 be the phase difference of 
these components 

0= 101 - 102 

and Ie the total intensity of vibration 

I e =PI2+P22
• 

(9) 

(10) 

The terminal point of the oscillating vector E 
thus specified, describes, in the direct or reverse 
sense according to the positive or negative sign 
of sin 0, an ellipse with semi-axes a and b (b ~ a), 
whose major axis makes an angle a with the 
x axis. Let us set 

tg{3=±b/a, -1T'/4~{3~1T'/4, (11) 

taking the sign + or - according to the sense 
of rotation, i.e., so that always 

tg {3 sin 0>0. 

With such definitions, it is known that 

PI2 - P22 = Ie cos 2{3 cos 2a, 
2PIP2 cos o=Ie cos 2{3 sin 2a, (12) 
2PIP2 sin 0 = Ie sin 2{3. 

These three quantities, which we shall name Me, 
Ge, S., determine the elliptic vibration (except 
its phase). In Poincare's representation they are 
considered as the rectangular components of a 
vector in space, whose length is Ie. longitude 2a, 
and latitude 2{3. 

No actual light is strictly monochromatic. The 
amplitudes and phases of the components of any 
light vibration undergo slow variations without 
strict correlation. The ellipse of vibration, which 
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is still determined at each moment, changes its 
shape and magnitude, slowly in comparison with 
the period of vibration but extremely swiftly in 
comparison with the duration of any measure­
ment. It is thus possible to measure only mean 
values. 

The study of the polarization of a light beam 
requires the use of analyzers, each giving the 
mean intensity of a vibration Ea obtained as a 
linear combination, with given changes in phase, 
of the two components Ex and Ey of the initial 
vibration 

E a=C1P1 cos (wt+'P1+1)1) 
+C2P2 cos (wt+'P2+1)2). (13) 

This mean intensity has the value 

I a = t(C12+C22) (P12)AV+ (P22)AV) 
+ HC12 - C22) (P12)AV - (p22)Av) 
+C1C2 cos (1)1 -1)2) (2P1P2 COS O)Av 

- C1C2 sin (1)1 -1)2) (2PIP2 sin O)AV, 

the notation ( )AV denoting the mean value with 
respect to time. By the use of four differen t 
(linearly independent) analyzers it is thus 
possible to calculate the quantities 

I = (P12)AV+ (P22 )Av = (Ie)Av> 
M = (P12)Av - (P2)AV = (Me)AV> 
C= 2(P1P2 cos 8)Av= (Ce)AV, 
5= 2(P1P2 sin 8)Av = (5e)AV, 

(14) 

and if these four quantities are known, it is 
possible to calculate the intensity that will be 
measured with any analyzer corresponding to 
certain values of the coefficients C1 and C2 and of 
the phase shift (1)1-1)2). That is to say, the four 
quantities I, M, C, 5 give a complete description 
of the polarization properties of the light beam 
(Stokes).ll 

It is easy to prove that for any beam of light 
the parameters I, M, C, 5, verify the inequality 

(15) 

since the equality is true only for completely 
polarized light; and if four quantities satisfy this 
condition they may be considered the pol ariz a­
tion parameters of a light beam. 

Any light beam, having a partial polarizat ion 
specified by the values I, M, C, 5 of the Stokes' 
parameters, may be considered as the super­
position, without any phase correlation, of a 

beam of natural light having an intensity 

and of a beam of completely polarized elliptic 
light having an intensity 

(17) 

and whose ellipse of vibration is defined by the 
angles 0: and {3 given by the relations 

The ratio 

IE cos 2{3 cos 20: = lvI, 
IE cos 2{3 sin 20:= C, 

IE sin 2{3=5. 

is called the degree of polarization. 

(18) 

The essential property of the Stokes' param­
eters is their additivity in the superposition of 
two independent beams of light, i.e., without 
any correlation between the perturbations of 
their phases or amplitudes. This additivity 
corresponds to the absence of any interference. 

When a beam of light passes through some 
optical arrangement, or more generally, produces 
a secondary beam of light, the intensity and the 
state of polarization of the emergent beam are 
functions of those of the incident beam. If two 
independent incident beams are superposed the 
new emergent beam will be, if the process is 
linear, the superposition without interference of 
the two emergent beams corresponding to the 
separate incident beams. Consequently, in such 
a linear process, from the additivity properties 
of the Stokes' parameters, the parameters I', 
M', C', S' which define the polarization of the 
emergent beam must be homogeneous linear 
functions of the parameters I, JW, C, 5 corre­
sponding to the incident beam; the sixteen coef­
ficients of these linear functions will completely 
characterize the corresponding optical phe­
nomenon. This fundamental remark is due in its 
general formulation to P. Soleillet.12 We shall use 
it in the next section in the study of scattering. 
Let us give here only the linear transformation 
formulas of the Stokes' parameters in two simple 
cases which we shall have to consider: 

When the light beam is rotated through an 
angle if; around its direction of propagation, for 
instance by passing through a crystal plate with 
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simple rotatory power, we have 

1'=[, 
M' = M cos 2if;- C sin 2if;, 
C' =M sin 2if;+C cos 2if;, 
S'=S, 

(20) 

and these equations also give the transformation 
of the Stokes' parameters when the reference 
axes are rotated through an angle -if;. 

When a difference in phase cP is introduced 
between the components of the vibration along 
the axes, for instance by a birefringent crystal 
plate with axes parallel to the reference axes 
(axes of maximum speed along Ox for cP>O), we 
have 

1'=[, 
M'=M, (21) 
C'=Ccos cp-Ssin cP, 
S' = C sin cP+S cos cpo 

It is interesting to note how the method used 
by Stokes' to characterize a state of polarization 
may be generalized and connected with the wave 
sta tistics of J. von Neumann :13 Let us consider 
a system of n harmonic oscillations of the same 
frequency subjected to small random perturba­
tions; we may represent them by complex ex­
pressions 

Ek=Pk exp (iwt), Pk=Pk exp (iCPk), (22) 

the modulus Pk and the arguments CPk varying in 
course of time, slowly in comparison with the 
period of oscillation, but quickly in comparison 
with the duration of any measurement. Let us 
suppose that we can measure the mean intensity 
of an oscillation E linearly dependent on these 
oscillations 

E= Lk CkEk, Ck=Ck exp (i'YJk)' (23) 

The value of this mean intensity is (the asterisk 
indicating the change to the complex conjugate 
quantity) 

(EE*)AV= L CkCl*(PkPl*)AV' (24) 
kl 

The mean intensity depends on the particular 
oscillations involved only through the von 
Neumann's matrix 

(25) 

the knowledge of which determines all we can 

know about these oscillations by such measure­
ments. Since this matrix is hermitic, we can set 

}.tk, T'kl = T'lk, (>kl= -Ulk being real quantities. The 
diagonal terms }.tk are the mean intensities of the 
oscillations: 

(27) 

and the other terms give the correlations 
between the oscillations: 

T'kl= (PkPl cos (cpk- CPl»)AV, 
Ukl = (PkPl sin (CPk - CPl) )AV. 

(28) 

The state of excitation of n oscillators having 
the same frequency is thus defined by n2 real 
quantities. For instance, a vectorial vibration in 
space having three components must be defined 
by nine quantities (P. Soleillet),12 and the pos­
sibilities of interference between two beams of 
light of the same frequency depend on sixteen 
parameters, since there are four components (two 
for each beam). 

When the different oscillations are the com­
ponents of an oscillating vector P exp (iwt); the 
matrix r kl has, for any change of the reference 
axes, the variance of a tensor of the second 
order, since its elements are the mean values of 
the products of the components of two vectors 
(P and P*). 

It is easy to prove that the determinant of the 
matrix rkl and all its diagonal minors are always 
positive or zero. 

When the ratios of the Pk's are independent of 
time, the oscillation state of the system is said 
to be pure (complete polarization in the case of 
a light beam); all the diagonal minors of the 
matrix rkl are then zero, and conversely. When 
it is not so, the state is said to be mixed (partial 
polarization). In general, any mixed state of 
oscillation of a system of n oscillators may be 
considered, in an infinite number of ways, as the 
superposition of n pure states without correlation 
(for a state to be equivalent to the superposition 
of less pure states, it is necessary that the deter­
minant of the rkl be zero). 

Still more generally, it is possible, in a similar 
way, to find the quantities which will appear in 
the linear investigation of a non-harmonic system 
whose motion is described by n statistical func-
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z' • 

FIG. 2. (Above.) FIG. 3. (Below.) 

tions of the time Ek(t): These will be the cor­
relation functions of M. Courtines14 and J. 
Bernamont15 defined by the relation 

or the functions corresponding to them by the 
Laplacian transformation 

+00 

rkl(lI) = f fkl(T) exp (-27r'iIlT)dT, (30) 
-00 

which are the amplitudes of their representation 
by Fourier's integrals 

+00 

hl(T)= f r kl(lI) exp (27riIlT)dll 
-00 

(31) 

and verify the condition of hermiticity 

(32) 

I t is thus seen that the state of motion of a 
system having n degrees of freedom is charac­
terized, when linear methods of analysis are used, 
by n2 continuous spectra giving, for each fre­
quency, n spectral densities of intensity and 
n(n-1) spectral densities of correlation. 

v. THE SIXTEEN SCATTERING COEFFICIENTS OF 
AN ARBITRARY ISOTROPIC MEDIUM 

If a monochromatic parallel beam of light Fl 
is propagated along an axis OlZl, we consider the 
light scattered at a point 0 of this axis in a 
direction OZ'l, making an angle t/> (between 0 
and 7r) with OZI. Let us specify the state of 
polarization of the incident beam Fl by the 
values I!, M l , Cl , Sl of its Stokes' parameters for 
the axes OlXlYl, and that of the scattered beam 
F'l by the values 1'1, }.If'l, C'l, S'l of its Stokes' 
parameters for the axes O/lX/ly/l. The two sets of 
rectangular axes OlXlYlZl and O'lx/ly/lZ/l are 
right handed; the planes OlZlXl and O/lZ/lX/l 
coincide; and the parallel axes OlYl and O'lY' 1 

are orientated so that the rotation t/> smaller than 
7r which brings OZI on Oz'I is positive around 
their common direction (Fig. 2). 

We assume the linear character of light scat­
tering for the superposition of non-coherent 
beams: If two independent light beams F and 
G which can be propagated along OlZl give, when 
separate, the scattered beams F' and G' along 
OZ/ l , the scattered beam when the incident beams 
F and G are superposed without any phase rela­
tion, may be obtained by the superposition 
without phase relation of the two beams F' and 
G'. Since the Stokes' parameters are additive for 
the superposition of non-coherent beams, this 
requires that the quantities I'), M'l, C'l, S'l be 
linear homogeneous functions of the quantities 
I!, M l , Cl , Sl, i.e., that 

I'l =allIl+a12M l +aJ3 Cl +a 14Sl, 
M'l =a2dl +a22M l +a23Cl +a24Sl, 
C/l = anI 1 +as2Ml +aSSCl +aS4Sl, 
S'l =a41Il+a42Ml +a4SCl+a44Sl. 

(33) 

If the scattering is produced by an isotropic 
medium, the sixteen scattering coefficients aik will 
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depend only, for a given medium, on the fre­
quency of the light and on the scattering angle ct>. 

We shall see in the next sections that sym­
metry and reciprocity arguments prove that the 
number of independent scattering coefficients is 
actually less than sixteen. 

VI. SYMMETRICAL MEDIUM 

If the scattering medium is symmetrical, and 
consequently without any rotatory power, the 
plane of scattering OZiZ'I determined by the 
directions of excitation and observation, is a 
plane of symmetry for the medium. Therefore, 
if the incident beam (II, M I , CI, SI) is replaced 
by the symmetrical beam with respect to this 
plane, a beam whose parameters are (II. M I , 

-CI, -SI), the new scattered beam must be 
. symmetrical to the first scattered beam, and 
hence its parameters will be (I'r, M''r, - C'I, 
-S'I). In other words the relations (33) must 
hold if the sign of the parameters CI, SI, C'I, S'I 
is changed whatever the values of II, M I, CI, SI. 
This requires that for an isotropic symmetrical 
medium 

and consequently that for such a medium the 
relations (33) reduce to 

1'1 = alII 1 +aI2Jv1 1, 
1\11'1 = a 2rI I +a22 1V1 1, 
C'I =a33CI +a34SI, 
S'I = a43 CI +a44SI. 

(33A) 

For a symmetrical medium the number of scat­
tering coefficients is only eight. 

VII. RECIPROCITY 

We must now apply the law of reciprocity, and 
for this purpose consider an incident beam being 
propagated along the axis OZ2 opposite to the 
direction OZ'I of the first scattered beam, and the 
corresponding scattered beam F'2 in the direction 
OZ'2 opposite to the direction OZj of the first inci-

. dent beam (Fig. 3). We shall take as reference 
axes for the states of polarization of these new 
beams two sets of axes having, with respect to 
F2 and F'2 the same orientation as the axes pre­
viously used with respect to FI and F'I: For beam 
F2 the axis 02X2 in coincidence with O'IX'I and the 

axis 02Y2 opposite to O'Iy'1. for beam F'2 the axis 
O'2X'2 in coincidence with OIXI and the axis 0'2y'2 
opposite to OIYI' With these reference axes the 
Stokes' parameters 1'2, M'2, C' 2, S' 2 of the scat­
tered beam F' 2 will be expressed as linear func­
tions of the parameters 12 , M 2 , C2 , S2 of the 
incident beam F2 by relations identical to the 
relations (33) : 

I' 2 = allI2+aI2 1VI 2+aI3C2+aI4S2, 
1\1[' 2 = a2rI2+a22M 2+a23CZ+a24SZ, 
C' 2 = a3rI2+a3ZM 2+a33C2+a34S2, 
S' 2=a4rI2+a4ZMz+a43C2+a44S2. 

(34) 

The coefficients aik have the same values, since 
the scattering angle has the same value ct> and 
since the medium is supposed to be isotropic.* 

To be able to express reciprocity, we must 
introduce on the paths of the incident and 
scattered beams some polarizers transforming an 
initial beam having a fixed linear polarization 
into an incident beam of any elliptical polariza­
tion, and any component of the scattered beam 
into a final beam having, like the initial beam a 
fixed linear polarization. 

For this purpose we may introduce on the path 
of the incident beam F I : (1) a linear polarizer N 
with fixed orientation such that the electrical 
vibration of the light emerging from it is along 
OIXI, this light having thus the Stokes' parameters 
(1, 1,0,0) if its intensity is unity; (2) a crystal 
plate R with rotatory power turning the light 
vibration through an angle if;; according to 
formulas (20) the Stokes' parameters of the 
beam after this plate will be (1, cos 2 if; , sin 2 if; , 0) ; 
(3) a birefringent crystal plate B with its axes 
parallel to the reference axes OIXIYI and produc­
ing a change in phase 'P between the vibrations 
along OIXI and OIYI. The incident beam thus 
obtained may have any complete elliptical 
polarization; its Stokes' parameters will be, 
according to Eq. (21), 

11 = 1, 
MI=cos 2if;, 
CI = sin 2if; cos 'P, 

SI=sin 2if; sin 'P. 

(35) 

* It is even sufficient that the direction Oz, and OZ2 be 
equivalent in the scattering medium, which might, for 
instance, have only axial symmetry around the perpen­
dicular Oy to the scattering plane. 
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Similarly, on the path of the scattered beam 
F'l whose Stokes' parameters 1'1, M'I' C'1, 5'1 
will be obtained by relations (33) in which 11, 
Ml, Cl, 51 have the values given by (35), we 
shall introduce: (1) a birefringent crystal plate 
B' with its axes parallel to the axes 0' IX' 1Y' 1 and 
producing a change in phase <p' between the 
vibrations along 0' IX' 1 and 0' lY' 1; after this 
plate the Stokes' parameters of the beam will be 
(Eq. 21) 

1'1, 

M'l' 
C'1 cos <p' - 5' 1 sin <p', 
C'l sin <p' + 5' 1 cos <p' ; 

(2) a crystal platp R' with rotatory power turning 
the light vibration through an angle v/; after this 
plate the Stokes' parameters will become (Eq. 20) 

I't, 
M'l cos 21/;' - ( C' 1 cos <p' - S'1 sin l) sin 21/;', 
M'l sin 21/;' + (C' 1 cos <p' - 5' 1 sin <p') cos 21/;', 
C'l sin <p' +5' 1 cos <p'; 

(3) a linear polarizer N' with fixed orientation 
selecting the electrical vibration along 0' IX' 1. 

The intensity J 1 of the light coming out of this 
polarizer will be equal to half the sum of the 
first two Stokes' parameters of the light entering 
it; thus 

J 1 = t[I' 1 + AI' 1 cos 21/;' - C'1 sin 21/;' cos <p' 
+S'1 sin 21/;' sin <p']. (36) 

Let us consider now the light being propagated 
in the reverse direction through this arrange­
ment, when the intensity of the beam F2 coming 
out of the polarizer N' toward the scattering 
medium has an intensity equal to unity. 
The values of the Stokes' parameters are then 
for this beam (1,1,0,0) and after the plates R' 
and B' they will be 

12= 1, 
.il12 = cos 21/;', 
C2=sin 21/;' cos <p', 
52 = sin 21/;' sin <p'. 

(37) 

The parameters 1'2, M' 2, C' 2, S' 2 of the cor­
responding scattered beam will be given by Eq. 
(34) h M 2 , C2 , 52 having the values (37), and 
the intensity of the light coming out of the 
arrangement through the polarizer N, obtained 

as for the first scattered beam, will be 

J 2=t[I'2+M'2 cos 21/;-C'2 sin 2 1/; cos <p 
+5'2 sin 21/; sin <PJ. (38) 

Since the incident beams F1 and F2 have the 
same intensity, and the initial and final states of 
polarization are the same complete linear 
polarization, the intensities J 1 and J 2 of the 
emergent beams must be equal, according to the 
law of reciprocity, whatever crystal plates are 
introduced in the path of the light. 

We have, consequently, 

1'1 + M' 1 cos 21/;' - C'l sin 21/;' cos <p' 
+51' sin 21/;' sin <p'=I'2+M'2 cos 21/; 
- C' 2 sin 21/; cos <p+S' 2 sin 21/; sin <p, (39) 

whatever the values of the angles 1/;, <p, 1/;', <p'. 
Using Eqs. (33), (34), (35), and (37), we obtain 

(a12-a21)(COs 21/;-cos 21/;') 
+(a13+a31)(sin 21/; cos <p-sin 21/;' cos <p') 
+ (a14 - a4l) (sin 21/; sin <p - sin 21/;' sin <p') 
+ (a23+ a 32)(sin 21/; cos cp cos 21/;' 

- sin 21/;' cos <p' cos 21/;) 
+(a24-ad(sin 21/; sin <p cos 21/;' 

-sin 21/;' sin <p' cos 21/;) 
- (a34 +a43) sin (<p - <p') sin 21/; sin 21/;' = o. (40) 

This identity can be maintained only if all the 
coefficients of the trigonometrical expressions in 
it are zero: For 1/;=0, 1/;'=71'/2 it reduces to 

(41) 

for 1/; = -1/;' = 71'/4, <p= <p' = 0, to 

(42) 

fory;.=-1/;'=7r/4, cp=cp'=7r/2, to 

(43) 

After the suppression of the three first terms in 
the identity (40), as a consequence of the zero 
value of their coefficients, the new identity ob­
tained reduces, for 1/; = 71'/4, 1/;' = <p = <p' = 0 to 

(44) 

for 1/;=71'/4,1/;'=0, <p=<p'=7r/2, to 

(45) 

and for 1/;=1/;'=71'/4, cp=7r/2, cp'=O, to 

(46) 
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The sixteen scattering coefficients must there­
fore obey six conditions of symmetry or anti­
symmetry, and the linear relations which give 
the Stokes' parameters of the scattered beam in 
terms of those of the incident beam, may be 
written 

I'=ad+b1M -baC+b.S, 
M"=bd+a2M -b4C+b6S, 
C' = baI +b4M +aaC+b2S, 
S' = boI +b6M -b2C+a4S, 

(47) 

The scattering of light, through a given angle, by 
an asymmetrical isotropic medium is characterized 
by ten independent coefficients. 

If the scattering medium is symmetrical, and 
has therefore no rotatory power, the coefficients 
ba, b4, b., b6 are necessarily zero, since in this case 
the relations (47) must have the form of the 
relations (33A), and the linear relations between 
the Stokes' parameters are reduced to 

I'=ad+b1M, 
M'=bd+a2M , 
C' =aaC+b2S, 
S' = -b2C+a4S, 

(47A) 

The scattering of light, through a given angle, by 
a symmetrical isotropic medium is characterized 
by six independent coefficients. 

R. S. Krishnan in his publications dated 
19381- 5 considered only incident beams with 
linear polarization either horizon tal (1 = 1, M = 1, 
C=S=O) or vertical (1=1, M= -1, C=S=O). 
These excitation conditions involve onlv the 
four coefficients all, a12, a21, a22, and the re-Iation 
obtained by him Hv= Vh is equivalent to the 
first relation proved here al2 = a21. 

In the more general case considered in his 
paper of 1939, the incident beam has a linear 
polarization in a direction making an angle fJ 
with the perpendicular to the scattering plane. 
The Stokes' parameters of the incident beam are 
then 

I = 1, M = -2 cos 2fJ, C=sin 2fJ, s=o 

and, applying Eq. (47) we obtain 

He I'+M' 
pe=-=--

Ve I'-M' 

al +b1(1- cos 28) -a2 cos 28 - (b a+b4) sin 20 

. al-b 1(1 +cos 2fJ) +a2 cos 2fJ- (b a-b4) sin 2fJ' 

When fJ is 0 or 7r/2 this formula gives 

Pu=- Ph=-
Vv al+2b1+a2' Hh al-2b1+a2' 

which shows that the expression of PO may be 
written 

l+tg2 fJ/Ph-2(b a+b4)(al-a2)-1 tg fJ 

tg2 0+1/ pv-2(ba-b4)(al-a2)-1 tg fJ 

This proves that Eq. (7) proposed with some 
doubt by R. S. Krishnan, must be true for any 
symmetrical medium, since then ba=b4 =0 but 
not for an asymmetrical medium. 

VIII. FORWARD AXIAL SCATTERING 

The light scattered in the same direction as the 
incident beam cannot be distinguished from the 
remaining light of this beam. However, if the 
incident beam has a small aperture w, it is possible 
to define, as a limit when w-;O, a transmitted 
beam T, with axis OZI and aperture w, and a 
scattered beam including all rays between two 
cones of apertures 1/ (1/>w) and 1/+d1/, having 
also OZI as axis. The scattered beam F' ° thus 
defined may vary with the small angle 1/, but 
whatever this angle, it will have axial symmetry 
around OZI. 

The law of reciprocity applies to the trans­
mitted beam T as well as to the axially scattered 
beam F'o. If reference axes parallel to those 
chosen for the incident beam are used for the 
polarization states of these beams, the linear 
relations between Stokes' parameters will have in 
both cases, the form obtained above. Writing 
them for beam F'o, we will indicate the zero 
value of the scattering angle cp by marking the 
coefficients with a superscript 0 

I' =aloI +b10M -baoC+b.oS, 
M'l =b1oI +a20M -b40C+b6oS, 
C' = baoI +b40 M +aaoC +b20S, 
S' =b.oI +b60M -b2oC+a40S. 

(48) 

In this case we must also express the axial 
symmetry around the common direction of the 
incident and scattered beams: If the incident 
beam is turned around itself through any angle, 
the axially scattered beam plo will simply turn 
around itself through the same angle. It is 
sufficient to consider an infinitesimal rotation 
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tda which changes the beam (I, M, C, S) into a 
beam F1 with parameters 

11=1, 
M1=¥-Cda, 
C1=Mda+C, 
Sl=S, 

(49) 

and the beam Flo(I', M", C' , S') into a beam F'01 
with the parameters 

1'1=1' , 
Mil = M'I - C'da, 
C'1 = M1lda+ C', 
Sll=S'. 

(50) 

The parameters 1'1, M'l. C'l, S'1 must be ex­
pressed in terms of 11, M 1, C1, Sl by the relations 
identical to relations (48). Eliminating I, M, C, S 
and 1', M' , C' , S' between the relations (48), (49), 
and (50), we obtain 

I'l =a1°I1 + (b1o+baOda)M1 
- (baO-bNa)C1 +b50S1, 

M'r= (b10-baOda)I1+a2oMl 
- [b 40+ (aaO-a2°)daJC1 

+ (b60-b20da)Sl' (51) 
C' 1 = (b ao+bNa)I1+ (b40- (aaO-a2°)daJM1 

+aaoCl + (b 2o+b60da)Sl, 
Sl' = b50I1 + (b6o+b20da)M1 

- (b 20 - b60da) C1 +a4oSl. 

So that this linear system be identical with 
system (48) it is necessary and sufficient that 

The linear transformation for the Stokes' 
parameter is thus, for axial scattering: 

I' =a10I +b6oS, 
M'I=a2oM -b40C, 
C' = b40 M +a2oC, 
S'=b 50I+a4°S. 

(53) 

These equations apply to any asymmetrical 
medium. They show that forward axial scattering 
involves in general five independent coefficients. 

For a symmetrical medium b40 and b50 are 
necessarily zero; therefore, the linear trans­
formation is reduced to 

I' =a1°I, 
M ' =a2oM , 
C' =a2oC, 
S'=a4oS. 

(53A) 

The forward axial scattering involves in this case 
only three independent coefficients. 

For the transmitted beam T the linear trans­
formation will have also the form (53) or (53A) 
but with other values of the coefficients, which 
will in this case correspond to simple classical 
properties: The quantity 

will measure the absorption for natural light; 
the quantity 

the tangent of the rotation (rotatory power) ; the 
quantity 

1- (a202+b402+b602)! : a10 

the depolarization for linear light; the quantity 

the depolarization for circular light; and the 
quantity 

the circular dichroism. 

IX. BACKWARD AXIAL SCATTERING 

A similar argument may be applied to the 
scattering in the direction opposite to that of the 
incident beam, since there is also in this case 
axial symmetry. But then any rotation of the 
incident beam around its direction must produce 
an inverse rotation of the same magnitude of the 
scattered beam around its direction. 

Marking with a superscript 11' the coefficients 
of the linear transformation (47) for the value 
c/>= 11' which correspond to backward scattering, 
the invariance for an infinitesimal rotation leads 
to the conditions 

b1"=b2"=ba"=b4"=b6"=0, a211"= -aa" (54) 

and the linear transformation is 

I'=a1"I+b6"S, 
M ' =a2"M, 
C' = -a2"C, 
S'=b 5"I+a411"S. 

(55) 

The backward scattering by an asymmetrical 
medium involves only four independent coef-
ficients. 
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For a symmetrical medium b." must be zero, 
so that the linear transformation is 

I'=al'1, 
M'=a2"M, 
C'= -a2"C, 
S' =a4"S. 

(55A) 

The backward scattering involves then three 
independent coefficients, like the forward scat­
tering. 

x. SCATTERING BY PARTICLES HAVING 
SPHERICAL SYMMETRY 

When the incident light is completely polarized, 
the light scattered by one particle of any shape 
is completely polarized. Any depolarization of 
the light scattered by an isotropic distribution of 
similar particles is the result of the difference in 
polarization of light waves scattered by particles 
of different orientation; but if the scattering is 
caused by identical particles having spherical 
symmetry, the polarization will be the same for 
all the partial waves, and there will be no 
depolarization, if we suppose the emulsion suf­
ficiently diluted, so that double scattering be 
negligible. 

Thus, for such.a diluted emulsion of identical 
spherical particles, whenever the incident light 
is completely polarized, the scattered light must 
be also completely polarized; consequently, 
whenever the Stokes' parameters of the incident 
beam verify the condition 

12-M2-C2-S2=0 

the Stokes' parameters of the scattered beam 
must verify the similar condition 

1'2- M'2- C'2-S'2=0. 

In other words, the linear transformation (47) 
on the Stokes' parameters must correspond in 
this case to a rotation and a similarity in a 
Minkowsky four-dimensional space. Expressing 
this we obtain the relations 

albl-a2bl-b3b4-b.b6=O, 
-a1b3+b1b4 -a3b3+b2b.= 0, 

a 1b.-b1b6 - b2b3 -a4b. = 0, 
- b1b3 +a2b4 - a3b4 + b2b6 = 0, 

b1b.-a2b6-b2b4 -a4b6 = 0, 
-b3b6+b4b6-a3b2+a4b2 = 0, 

(56) 

and 
al2 = a22+bi+b4

2+b6? +b62, 
aI2=a32+bI2+b22+b42+b62, (57) 
al2 = a42+bI2+b22+bi+b62. 

The three relations (57) are a consequence of 
the six relations (56), which are linear with 
respect to the four quantities ai, a2, a3, a4 and 
are coherent if * 

b2b3b4 +b2b6b6+blb4b6 - bl b3b. = o. (58) 

They give then 

b3b4+b.b 6 b2b.+b 1b4 b2b3+b1b6 

2al= -~--+---+----, 
bl b3 b, 

2a2= -----+--~-+----, (59) 

2a3= --~--+--~-------, 

2a4= -~--+--------

from which follows a linear relation between the 
a's 

(60) 

There are thus only five independent param­
eters in the scattering by identical spherical 
particles without mirror symmetry. 

In the case of an emulsion containing spherical 
particles differing in magnitude or optical proper­
ties, each scattering coefficient will be the sum 
of the corresponding coefficients for the various 
types of spherical particles in the mixture. The 
only relation between the scattering coefficients 
which will hold after this adding process, will be 
the linear relation (60), which is thus charac­
teristic of scattering by any mixture of spherical 
particles without mirror symmetry. 

For identical spherical particles with mirror 
symmetry we must have b3 =b4=b6=b6=0 and 
the general solution of Eqs. (56), (57) gives 

(60A) 
and 

(61) 

The two relations (60A) being linear will remain 
true for a mixture of different spherical particles 

* It is also possible to solve the Eqs. (56) when the b's 
obey the two conditions 

bIb, = bab. = b,b5, 

but the singular solutions then obtained do not corre­
spond to scattering by spherical particles. 
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with mirror symmetry: There are then four 
independent scattering coefficients. 

The first of the relations (60A) is equivalent 
to the relation Hv= Vh=O resulting, in. the case 
of homogeneous symmetrical spheres, from the 
theory of G. Mie. 7 

XI. COMPARISON WITH DIPOLAR SCATTERING 

The general polarization properties of dipolar 
secondary light emission have been determined 
by P. SoleilletP His theory results in the fact 
that the linear relations between the Stokes' 
parameters of the incident and scattered beams, 
must be in the case of dipolar scattering 

I' = (a-b sin2 cp)I -b sin2 cpM, 
M'= -b sin2 cpI+b(1+cos2 cp)M, 
C' = 2b cos cpC, 
S' = 2c cos cpS, 

(62) 

in which a, b, care independent of the angle of scat­
tering cpo There is then no distinction between 
symmetrical and asymmetrical media. 

For any angle of scattering, dipolar scattering 
is qualitatively characterized by the condition 

(63) 

which expresses the non-existence of any el1ip­
ticity in the scattered light when there is no 
ellipticity in the polarization of the incident light 
(S'=O when S=O). 

For transverse dipolar scattering (cp=7r/2) we 
have, moreover, 

(64) 
and 

(65) 

which proves that whatever the polarization of 
the incident light, there is then neither obliquity 
of polarization (C' = 0) nor el1ipticity (S' = 0), 

and that for an incident beam polarized in the 
plane of scattering (I=M, C=S=O) the scat­
tered light is not at all polarized (M' =C' = S' = 0). 

This last test was used by R. S. Krishnan to 
prove the multipolar character of light scattering 
by some media, particularly by liquid mixtures 
in the neighborhood of the critical state. But this 
proof has been criticized,t6. 23 because convergence 
in the incident beam or secondary scattering is, 
at least qualitatively, a possible cause of the 
observed polarizations. 

The existence of some ellipticity in the scat­
tered light for an incident beam linearly obliquely 
polarized (C~O, S=O) which would prove that 
the coefficient b2 is not zero, would be a much 
more sure test of the multipolar character of the 
scattering, and consequently, of the non­
negligible magnitude, in comparison with the 
wave-length, of the elements of heterogeneity of 
the scattering medium. 
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