

Tutorial: Mueller matrix ellipsometry: a hands-on understanding of the matrix elements

Oriol Arteaga

UNIVERSITAT DE
BARCELONA

The goal of this tutorial is to explain ellipsometry is to get an intuitive understanding of **Mueller matrix ellipsometry**
without exiting the Stokes-Mueller formalism

In this presentation:

NO JONES MATRICES

NO PSI DELTA

NO COMPLEX NUMBERS

Outline

1. Introduction. MM types
2. MM symmetries
3. Depolarization
4. Complete vs incomplete MMs
5. Conclusions

Introduction. MM types

Mueller matrices

$$\mathbf{S} = \begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} I \\ I_x - I_y \\ I_{45} - I_{135} \\ I_+ - I_- \end{bmatrix}$$

$$\mathbf{S}_{out} = \mathbf{MS}_{in}$$

$$\mathbf{M} = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Phenomenological description of any linear scattering experiment

- Paul Soleillet (1902-1992)
- Francis Perrin (1901-1992)
- Hans Mueller (1900-1965)

$$\mathbf{S}_{in} = \begin{bmatrix} I_0 \\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} \xrightarrow{\text{Blue Plane}} \mathbf{S}_{out} = \begin{bmatrix} I_1 \\ Q_1 \\ U_1 \\ V_1 \end{bmatrix}$$

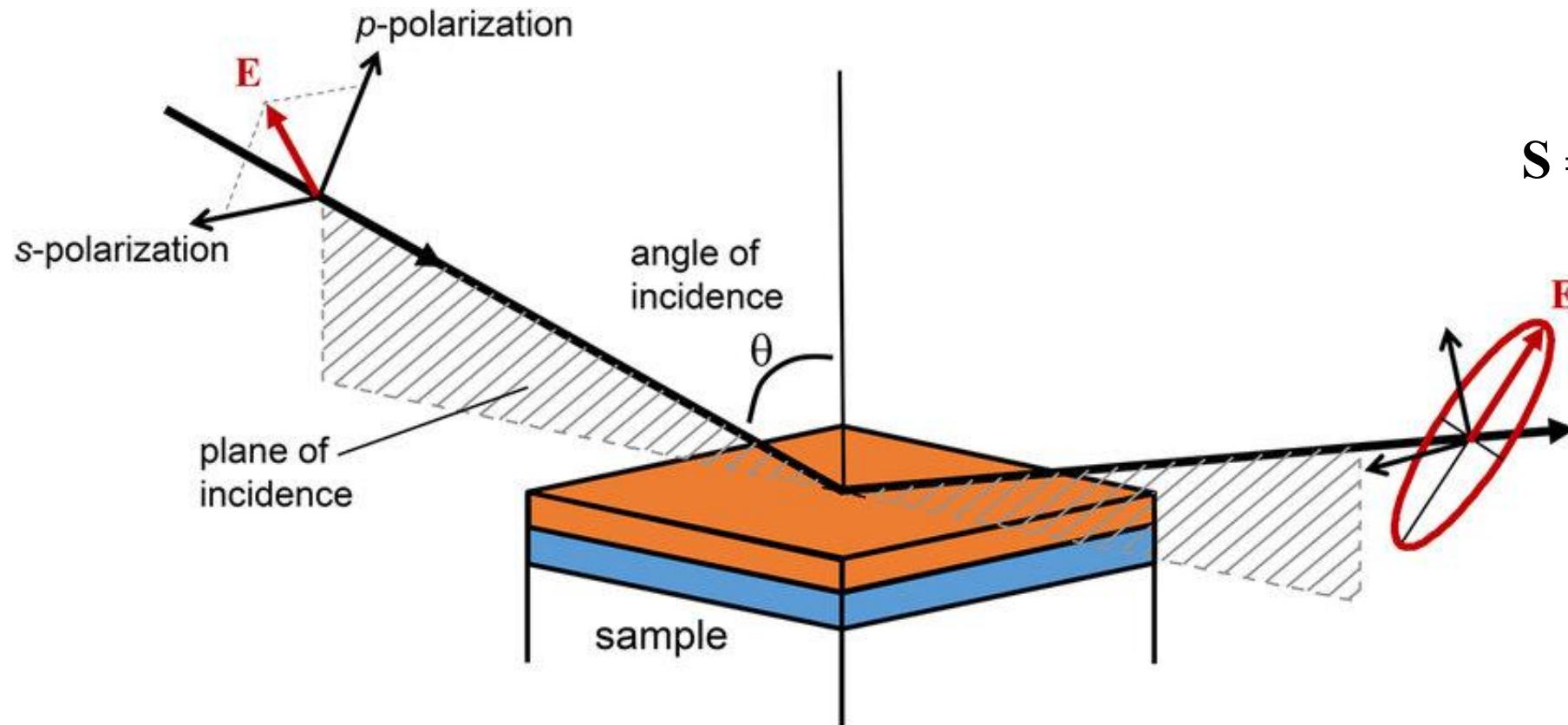
$$\mathbf{S}_{out} = \mathbf{MS}_{in}$$

Introduction. MM types

In Mueller matrix ellipsometry involving samples, we almost always choose our coordinate system such that:

- **x axis** → *p* direction
- **y axis** → *s* direction

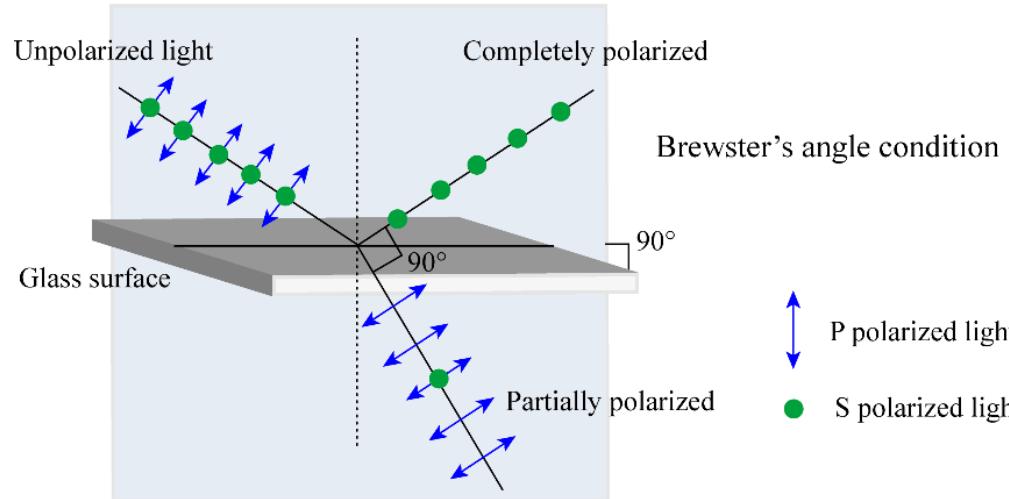
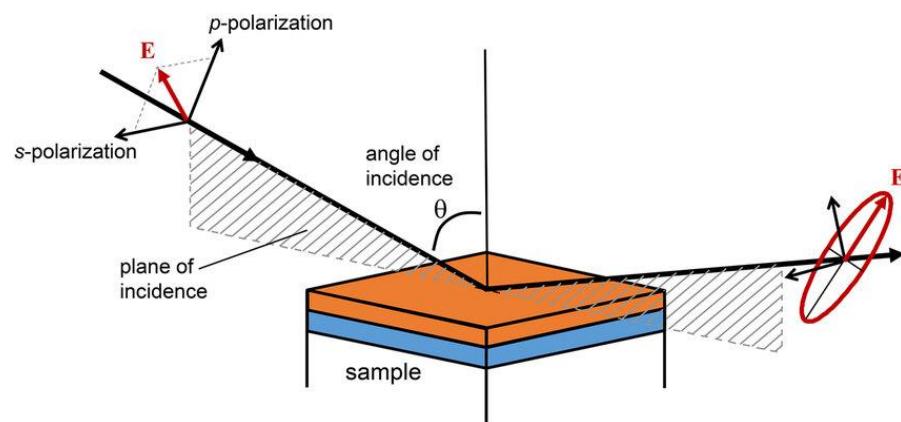
(for ellipsometers where the sample sits horizontally, this may seem counterintuitive!)



$$\mathbf{S} = \begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} I \\ I_p - I_s \\ I_{45} - I_{135} \\ I_+ - I_- \end{bmatrix}$$

Introduction. MM types

E.g. at Brewster angle



$$\mathbf{M} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Introduction. MM types

3 types of elemental Mueller matrices

Anisotropy in s/p

$$\mathbf{M}_L = \begin{bmatrix} 1 & m_{01} & 0 & 0 \\ m_{01} & 1 & 0 & 0 \\ 0 & 0 & m_{22} & m_{23} \\ 0 & 0 & -m_{23} & m_{22} \end{bmatrix}$$

If there is no depolarization $m_{01}^2 + m_{22}^2 + m_{23}^2 = 1$

$$\mathbf{M}_L \begin{bmatrix} |S_1| \\ S_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} |S_1'| \\ S_1' \\ 0 \\ 0 \end{bmatrix}$$

s and *p* polarizations
are eigenpolarizations
of the Mueller matrix

Introduction. MM types

3 types of elemental Mueller matrices

Anisotropy in 45/-45

$$\mathbf{M}_{L'} = \begin{bmatrix} 1 & 0 & m_{02} & 0 \\ 0 & m_{11} & 0 & m_{13} \\ m_{02} & 0 & 1 & 0 \\ 0 & -m_{13} & 0 & m_{33} \end{bmatrix}$$

If there is no depolarization $m_{02}^2 + m_{11}^2 + m_{13}^2 = 1$

$$\mathbf{M}_{L'} \begin{bmatrix} |S_2| \\ 0 \\ S_2 \\ 0 \end{bmatrix} = \begin{bmatrix} |S_2'| \\ 0 \\ S_2' \\ 0 \end{bmatrix}$$

+45 and -45
polarizations are
eigenpolarizations of
the Mueller matrix

Introduction. MM types

3 types of elemental Mueller matrices

Anisotropy in R/L Circular

$$\mathbf{M}_{L'} = \begin{bmatrix} 1 & 0 & 0 & m_{03} \\ 0 & m_{11} & m_{12} & 0 \\ 0 & -m_{12} & m_{11} & 0 \\ m_{03} & 0 & 0 & 1 \end{bmatrix}$$

If there is no depolarization $m_{03}^2 + m_{11}^2 + m_{12}^2 = 1$

$$\mathbf{M}_{L'} \begin{bmatrix} |S_3| \\ 0 \\ 0 \\ S_3 \end{bmatrix} = \begin{bmatrix} |S_3'| \\ 0 \\ 0 \\ S_3' \end{bmatrix}$$

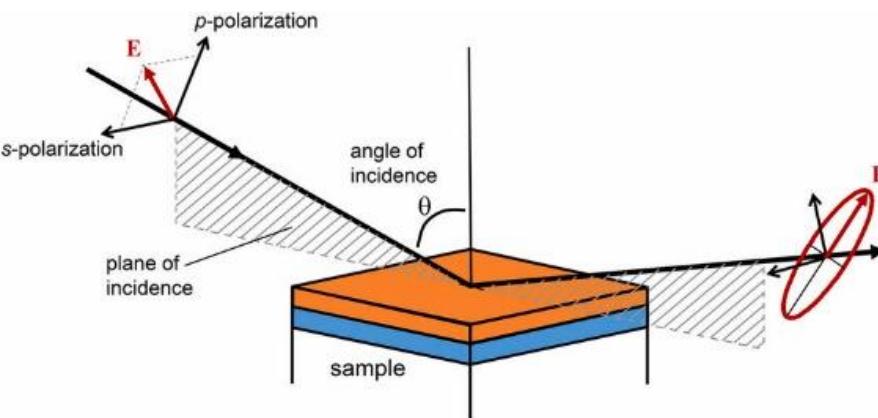
+ and - *circular* polarizations are eigenpolarizations of the Mueller matrix

Introduction. MM types

3 types of elemental Mueller matrices

The specular reflection ellipsometric geometry leads to MMs that usually have this form (or close to this)

$$\begin{bmatrix} 1 & m_{01} & 0 & 0 \\ m_{01} & 1 & 0 & 0 \\ 0 & 0 & m_{22} & m_{23} \\ 0 & 0 & m_{23} & m_{22} \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & -N & 0 & 0 \\ -N & 1 & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C \end{bmatrix}$$



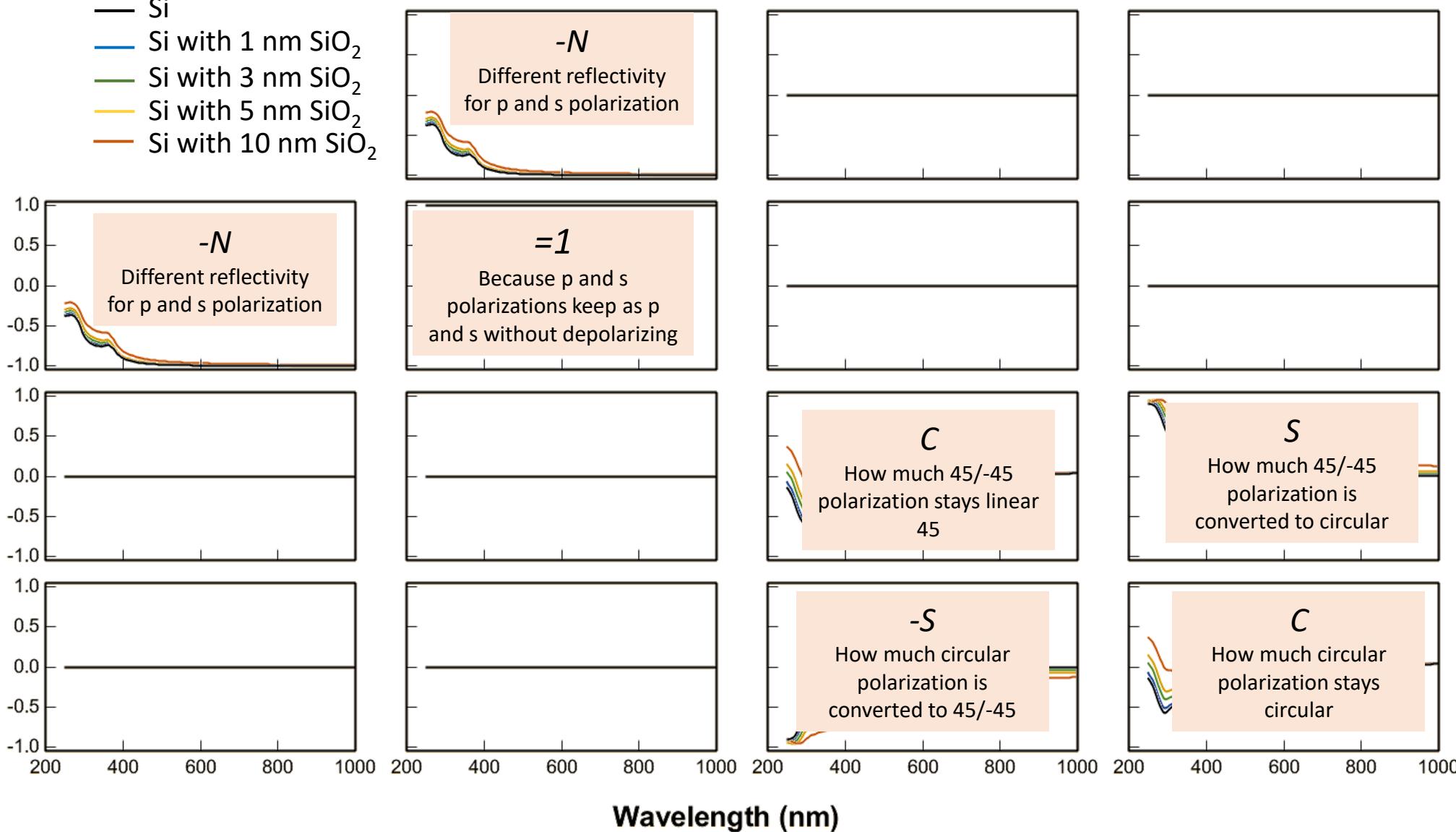
$$\begin{bmatrix} 1 & -N & 0 & 0 \\ -N & 1 & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C \end{bmatrix} \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} S_0 - NS_1 \\ S_1 - NS_0 \\ CS_2 + SS_3 \\ CS_3 - SS_2 \end{bmatrix}$$

Diattenuation

Retardance

Introduction. MM types

- Si
- Si with 1 nm SiO_2
- Si with 3 nm SiO_2
- Si with 5 nm SiO_2
- Si with 10 nm SiO_2

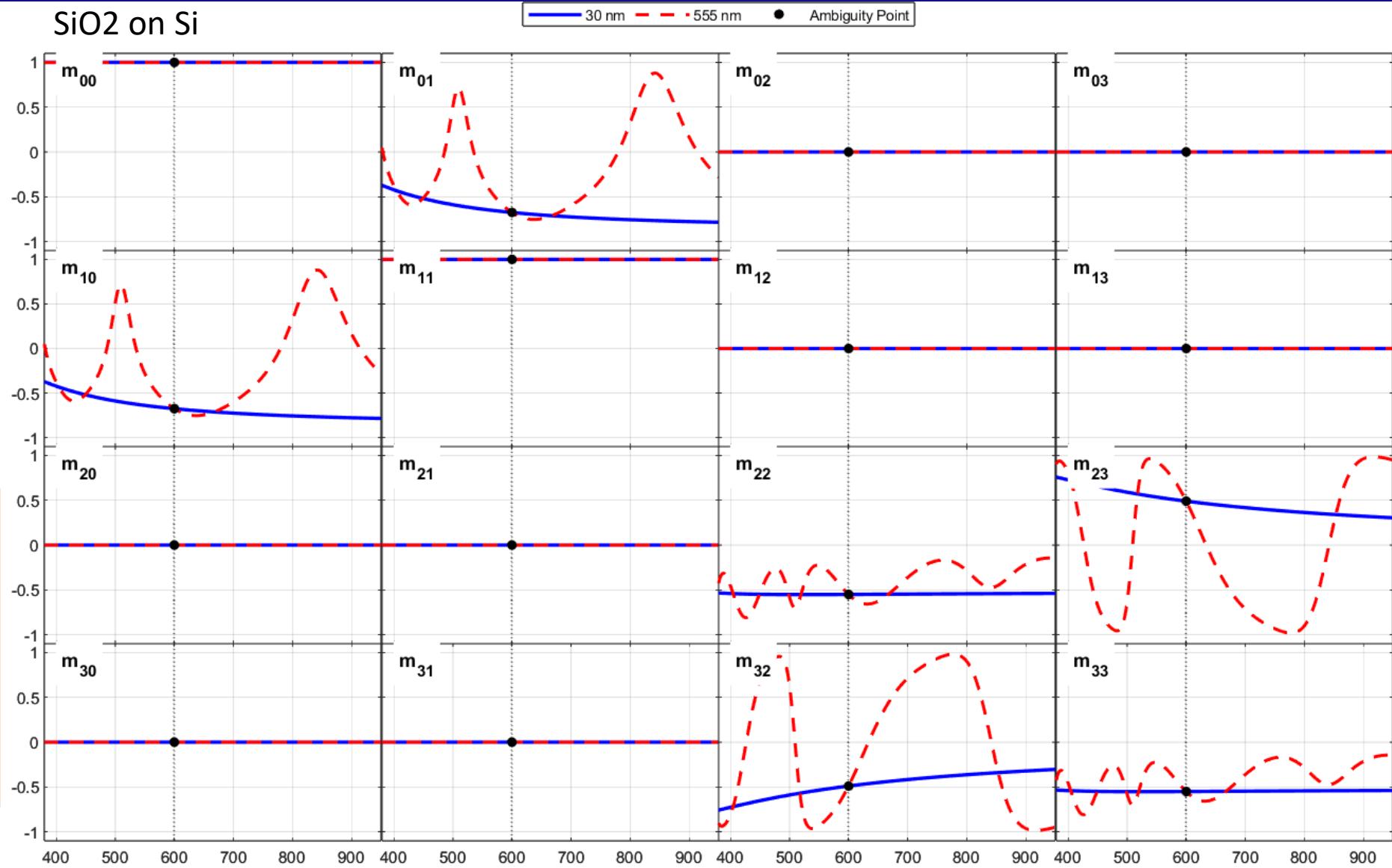


Sensitivity to
the overlayer
thickness!!

Introduction. MM types

One MM measurement is not enough => spectroscopic

Retardance information is experimentally accessed only through cyclic trigonometric functions, which map infinite possible phase delays onto a repeating range of -1 to +1



Outline

1. Introduction. MM types
2. MM symmetries
3. Depolarization
4. Complete vs incomplete MMs
5. Conclusions

MM Symmetries

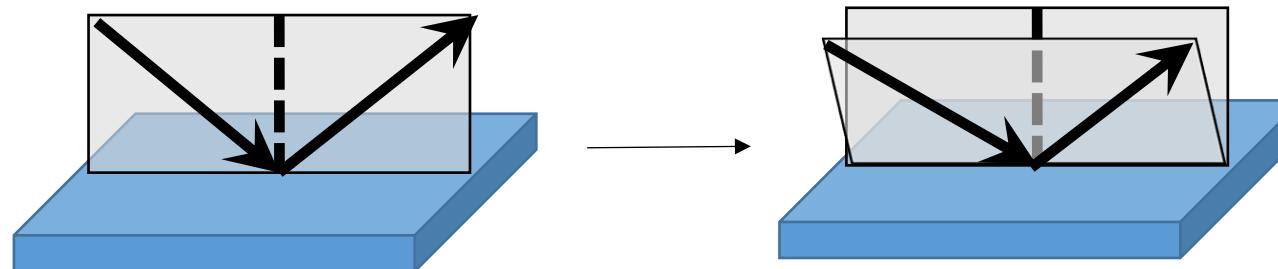
Ellipsometry MMs are not always block-diagonal

$$\begin{bmatrix} 1 & -N & 0 & 0 \\ -N & 1 & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C \end{bmatrix}$$

Block-diagonal=> ISOTROPIC (may be depolarizing or non-depolarizing)

Non-block-diagonal=> ANISOTROPIC (may be depolarizing or non-depolarizing)

Caution! Isotropic materials can lead to a substantially nonsymmetric Mueller matrix if the sample is **poorly aligned**.



Sample **misaligned** with respect to the plane of incidence

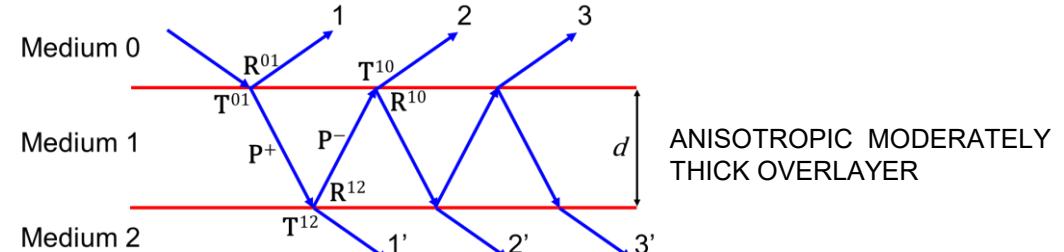
MM Symmetries

These elements are small (e.g.<0.2) even for materials with large anisotropy

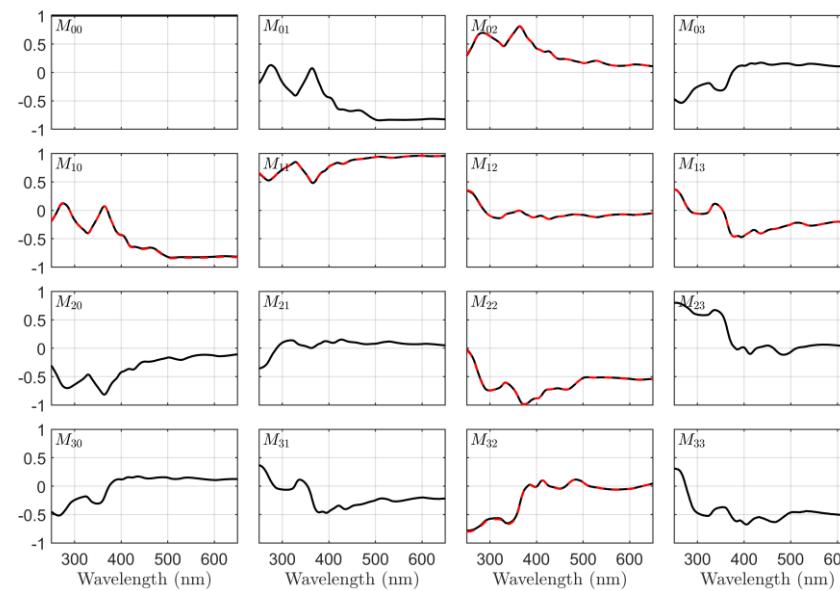
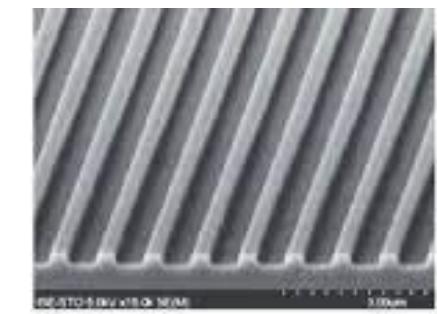
$$\mathbf{M} = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Exceptions

1. Bulk propagation contributes to the measurement



2. Structural anisotropy (gratings, beetles)



MM Symmetries

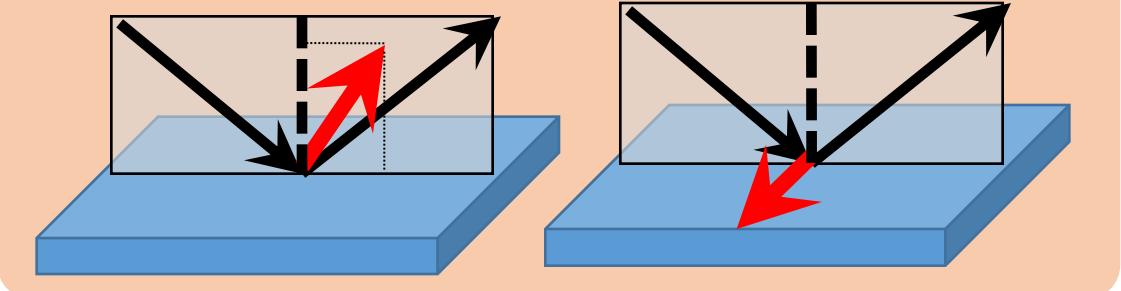
No crosspolarization (preservation of eigenpolarizations)

In the **isotropic** case and some anisotropy situations of high symmetry.

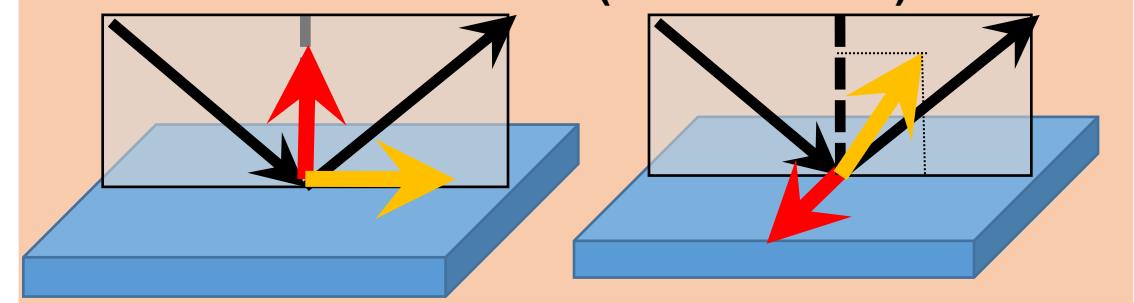
$$\mathbf{M}_L = \begin{bmatrix} 1 & m_{01} & 0 & 0 \\ m_{01} & 1 & 0 & 0 \\ 0 & 0 & m_{22} & m_{23} \\ 0 & 0 & -m_{23} & m_{22} \end{bmatrix}$$

This symmetry appears whenever the sample coincides with its own mirror image with respect to the incidence plane (i.e. the sample is mirror-symmetric with respect to this plane)

Uniaxial



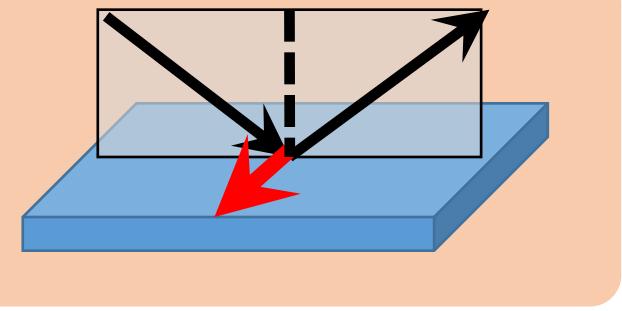
Biaxial (orthorombic)



Arrows are Principal axes (P.A)

Biaxial (monoclinic)

Arrow is P. A.



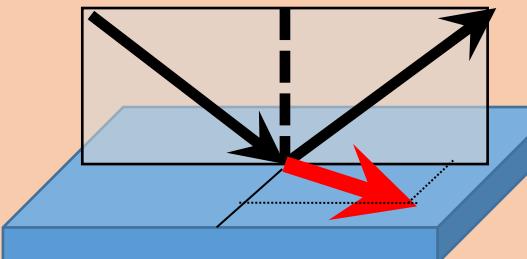
MM Symmetries

Anti-symmetric crosspolarization

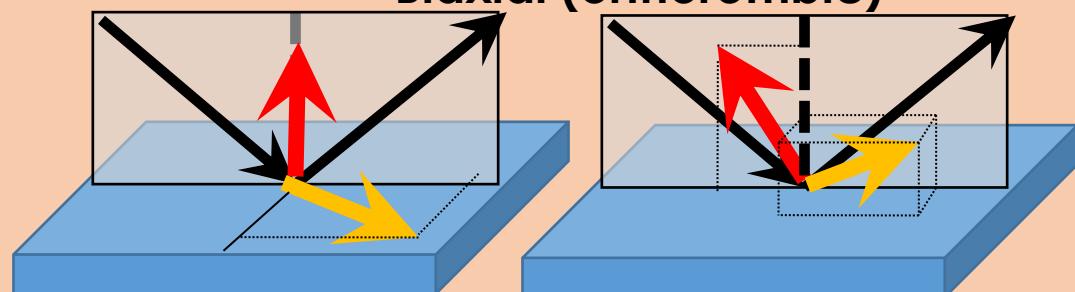
$$\mathbf{M} = \begin{bmatrix} 1 & m_{01} & m_{02} & m_{03} \\ m_{01} & m_{11} & m_{12} & m_{13} \\ -m_{02} & -m_{12} & m_{22} & m_{23} \\ m_{03} & m_{13} & -m_{23} & m_{33} \end{bmatrix}$$

A 180°-rotation of the sample about its normal brings it in its initial position

Uniaxial

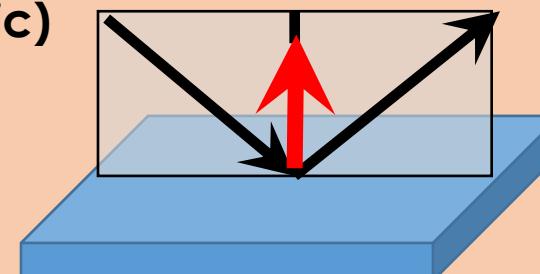


Biaxial (orthorombic)



Arrows are Principal axes (P.A)

Biaxial (monoclinic)



Arrow is P. A.

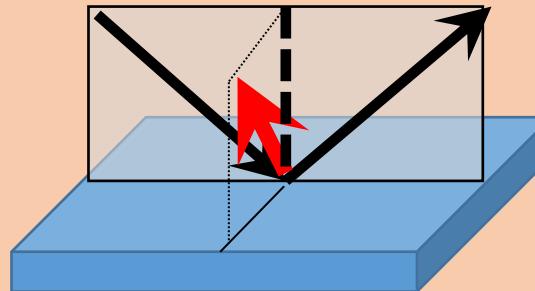
MM Symmetries

Symmetric crosspolarization

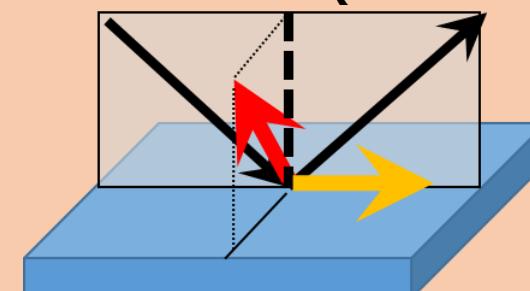
$$\mathbf{M} = \begin{bmatrix} 1 & m_{01} & m_{02} & m_{03} \\ m_{01} & m_{11} & m_{12} & m_{13} \\ m_{02} & m_{12} & m_{22} & m_{23} \\ -m_{03} & -m_{13} & -m_{23} & m_{33} \end{bmatrix}$$

The sample is mirror-symmetric with respect to the plane perpendicular to the incidence plane and containing the sample normal

Uniaxial

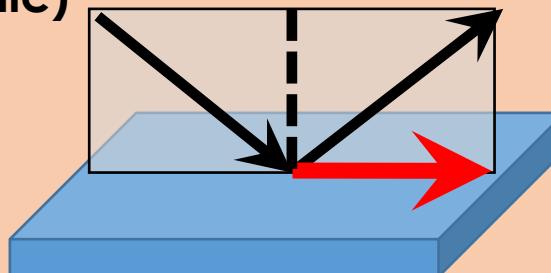


Biaxial (orthorombic)



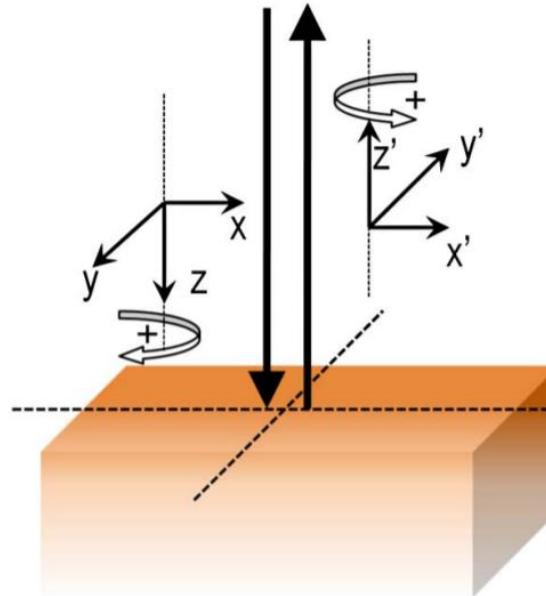
Arrows are Principal axes (P.A)

Biaxial (monoclinic)



Arrow is P. A.

MM Symmetries



There is no contrast about the change of refractive index along the direction of propagation of light!

When the **angle of incidence approaches zero** this is the most general possible symmetry

$$\begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{01} & m_{11} & m_{12} & m_{13} \\ -m_{20} & -m_{12} & m_{22} & m_{23} \\ m_{03} & m_{13} & -m_{23} & m_{33} \end{bmatrix}$$

Measures

- Differential phase retardations
- Differential reflectivity

In this situation typically off-diagonal elements are very small and measurement is close to

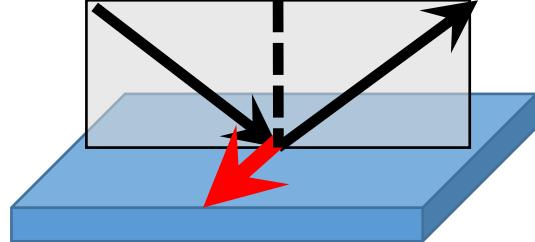
$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

(always reciprocal symmetry)

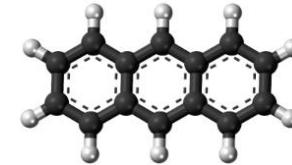
Similarly, at grazing incidence (AOI close to 90°)

$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

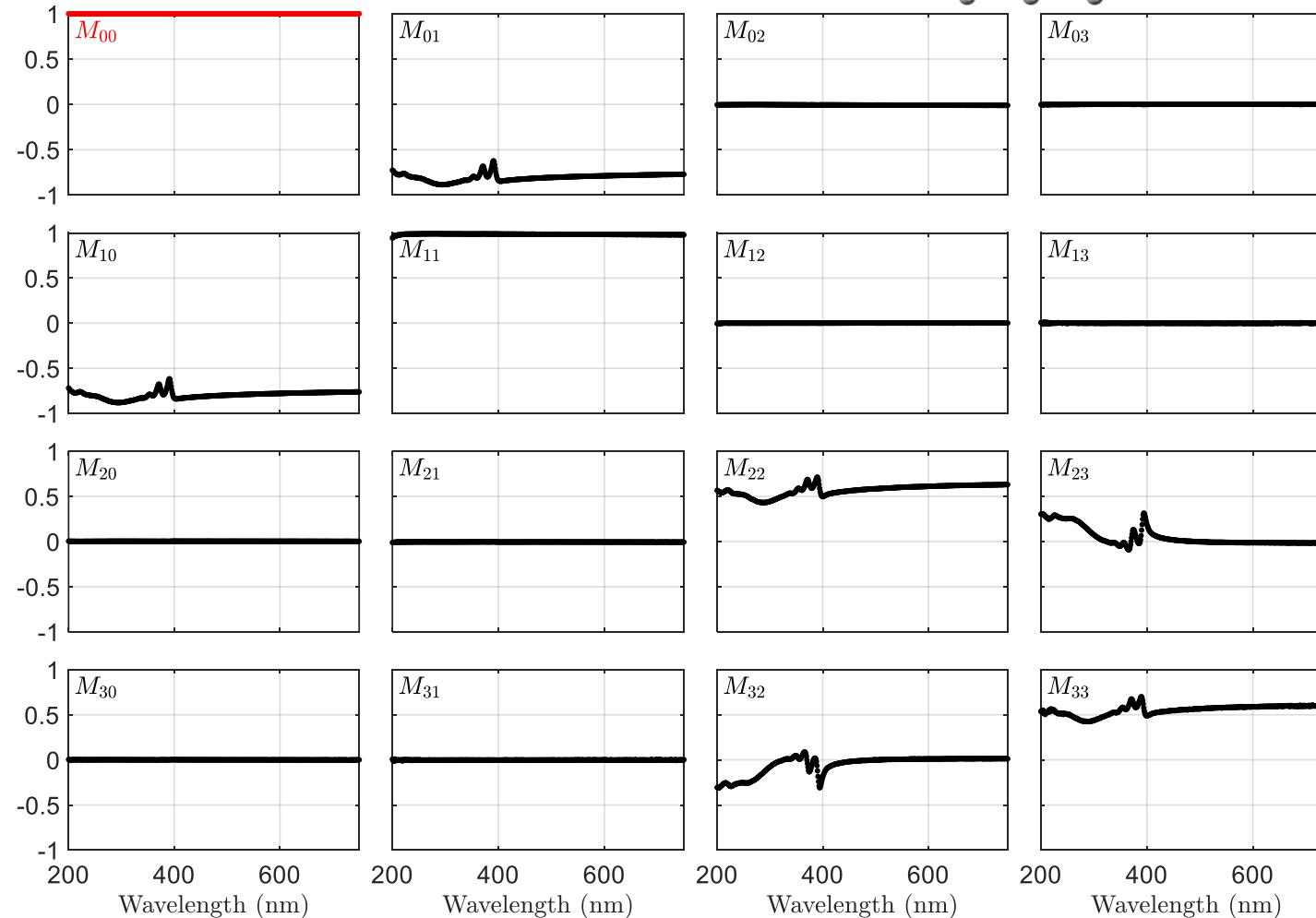
MM Symmetries



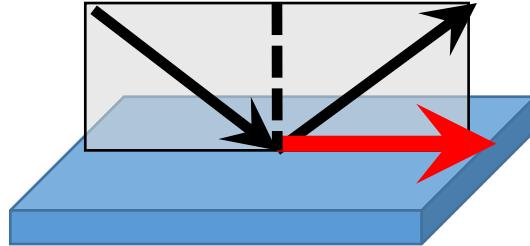
Example: Anthracene crystal (monoclinic)



$$\mathbf{M}_L = \begin{bmatrix} 1 & m_{01} & 0 & 0 \\ m_{01} & 1 & 0 & 0 \\ 0 & 0 & m_{22} & m_{23} \\ 0 & 0 & -m_{23} & m_{22} \end{bmatrix}$$

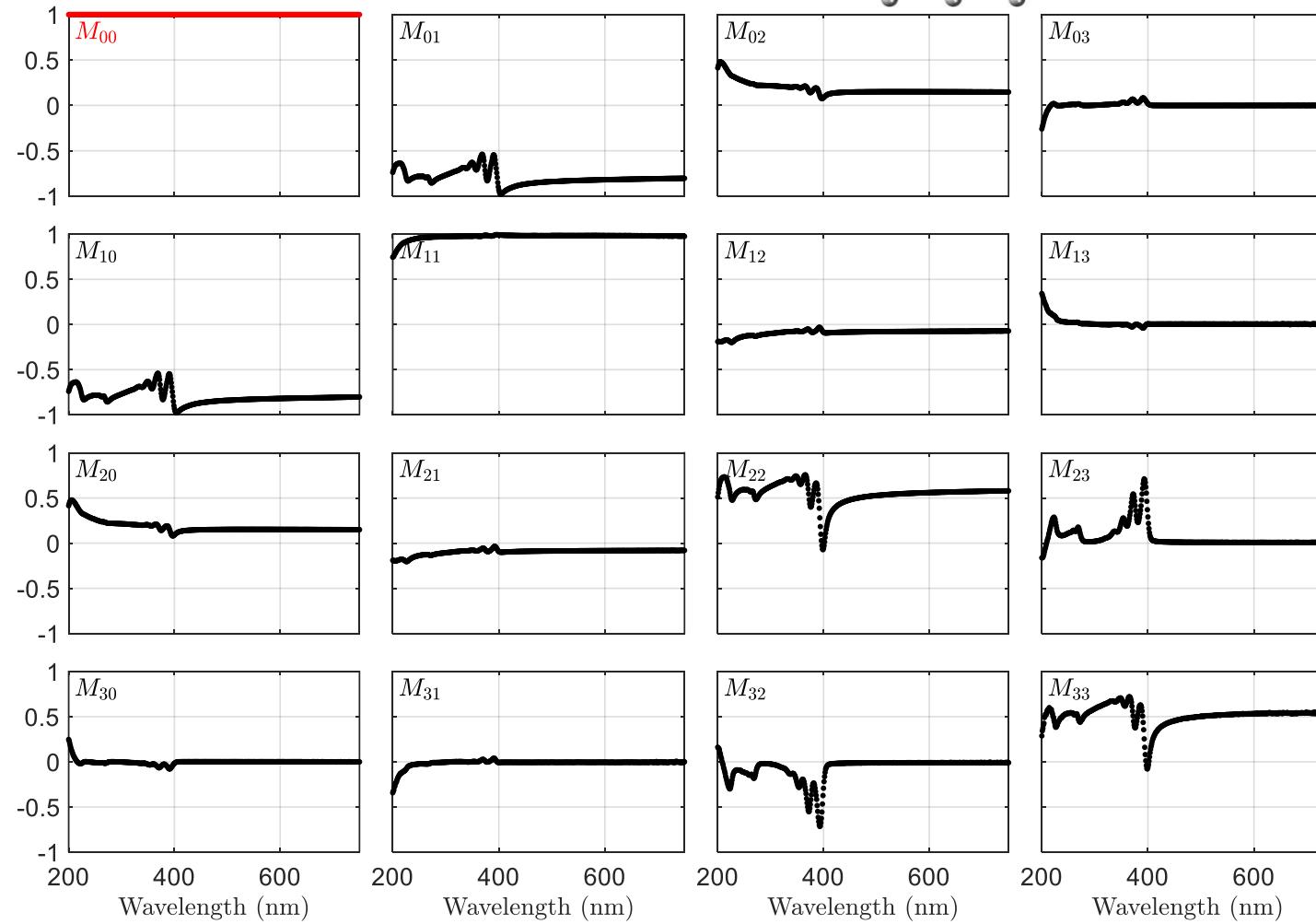


MM Symmetries

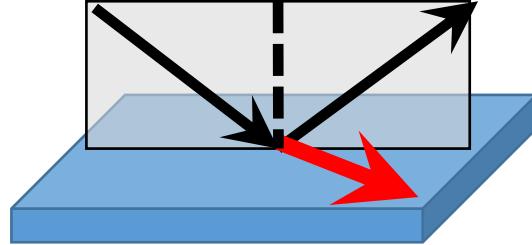


$$\mathbf{M} = \begin{bmatrix} 1 & m_{01} & m_{02} & m_{03} \\ m_{01} & m_{11} & m_{12} & m_{13} \\ m_{02} & m_{12} & m_{22} & m_{23} \\ -m_{03} & -m_{13} & -m_{23} & m_{33} \end{bmatrix}$$

Example Anthracene (monoclinic)

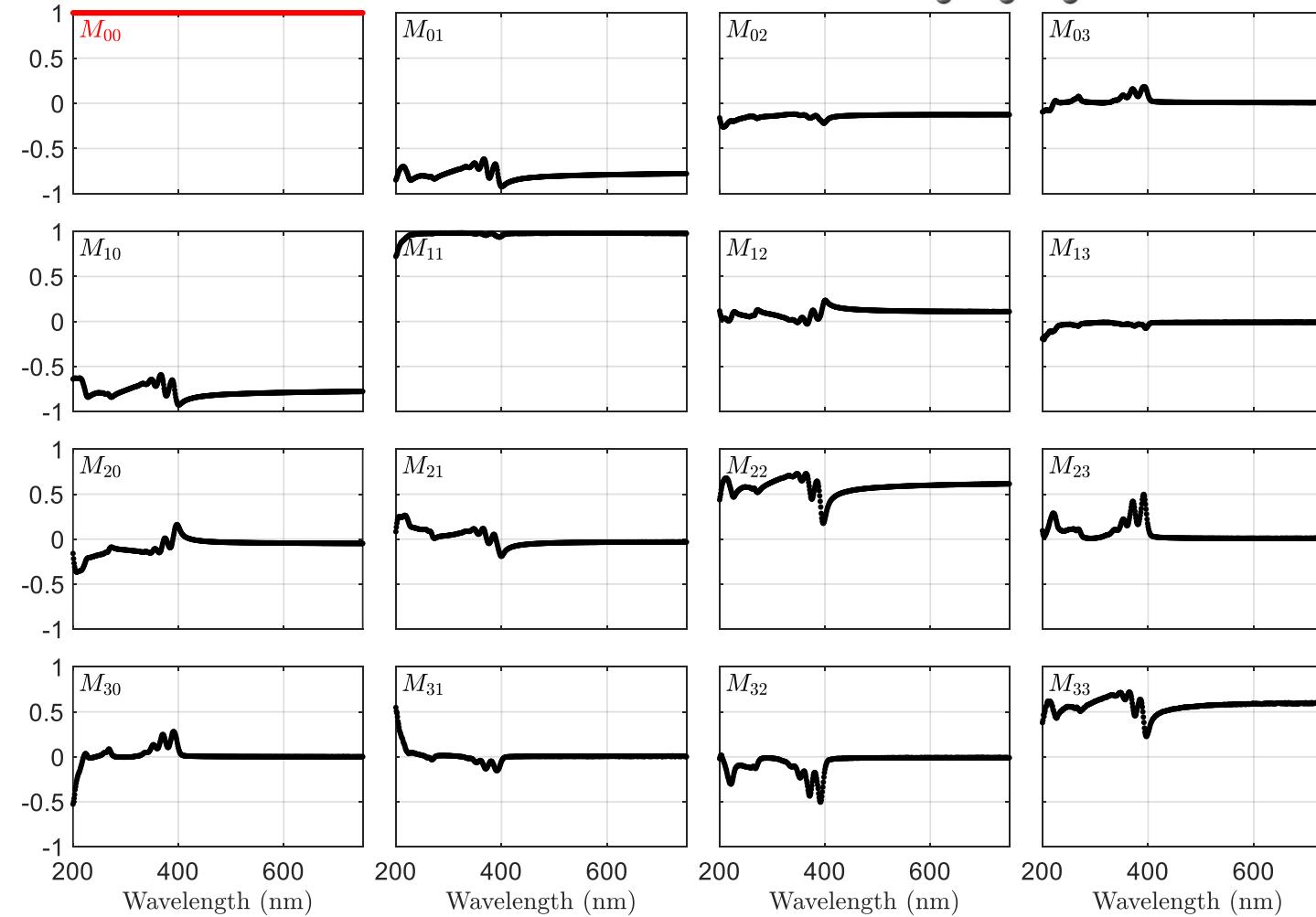


MM Symmetries



Example Antracene (monoclinic)

$$\mathbf{M} = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix}$$

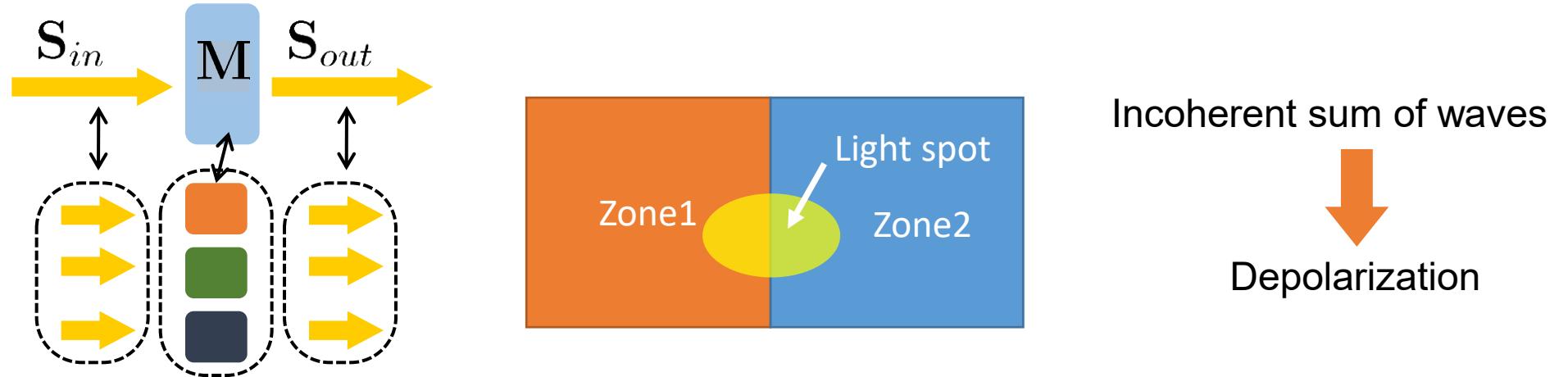


Outline

1. Introduction. MM types
2. MM symmetries
3. Depolarization
4. Complete vs incomplete MMs
5. Conclusions

Depolarization

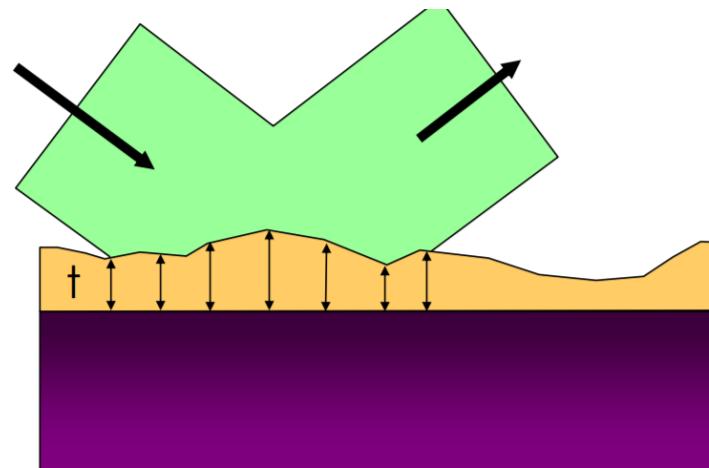
Depolarization is the reduction of the degree of polarization of light. Typically occurs when the emerging light is composed of several incoherent contributions.



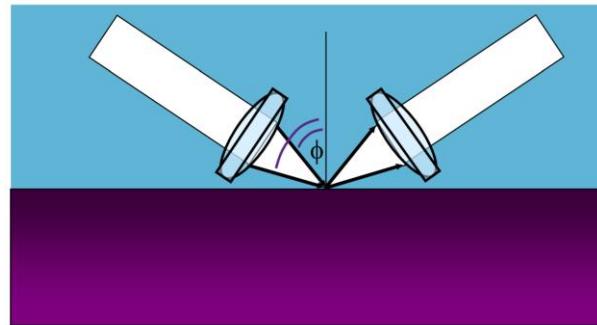
Incoherent sum: Mueller matrices: $\mathbf{M}=\mathbf{M}_1+\mathbf{M}_2$

$$\frac{1}{2} \begin{bmatrix} 1 & -N_1 & 0 & 0 \\ -N_1 & 1 & 0 & 0 \\ 0 & 0 & C_1 & S_1 \\ 0 & 0 & -S_1 & C_1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & -N_2 & 0 & 0 \\ -N_2 & 1 & 0 & 0 \\ 0 & 0 & C_2 & S_2 \\ 0 & 0 & -S_2 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & -(N_1+N_2)/2 & 0 & 0 \\ -(N_1+N_2)/2 & 1 & 0 & 0 \\ 0 & 0 & (C_1+C_2)/2 & (S_1+S_2)/2 \\ 0 & 0 & -(S_1+S_2)/2 & (C_1+C_2)/2 \end{bmatrix}$$
$$N_1^2 + C_1^2 + S_1^2 = 1 \quad N_2^2 + C_2^2 + S_2^2 = 1 \quad \frac{1}{4}[(N_1+N_2)^2 + (C_1+C_2)^2 + (S_1+S_2)^2] \leq 1$$

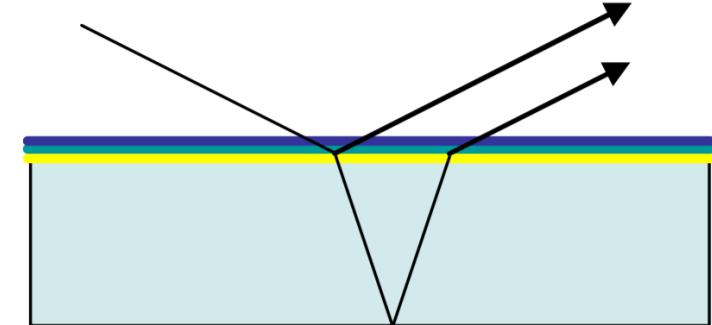
Depolarization



Thickness non uniformity



Angular spread



Backside reflections

* Images from J. A. Woollam tutorial

Parasitic light contamination

$$\frac{1}{2} \begin{bmatrix} 1 & -N_1 & 0 & 0 \\ -N_1 & 1 & 0 & 0 \\ 0 & 0 & C_1 & S_1 \\ 0 & 0 & -S_1 & C_1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -N_1/2 & 0 & 0 \\ -N_1/2 & 0.5 & 0 & 0 \\ 0 & 0 & C_1/2 & S_1/2 \\ 0 & 0 & -S_1/2 & C_1/2 \end{bmatrix}$$

Depolarization

In anisotropic systems, depolarization will “usually” NOT break the symmetries

A symmetric matrix

- Can be non-dep.
- Can be depolarizing

$$\mathbf{M} = \begin{bmatrix} 1 & m_{01} & m_{02} & m_{03} \\ m_{01} & m_{11} & m_{12} & m_{13} \\ -m_{02} & -m_{12} & m_{22} & m_{23} \\ m_{03} & m_{13} & -m_{23} & m_{33} \end{bmatrix}$$

A non-symmetric matrix

- Can be non-dep.
- Can be depolarizing

$$\mathbf{M} = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Depolarization index

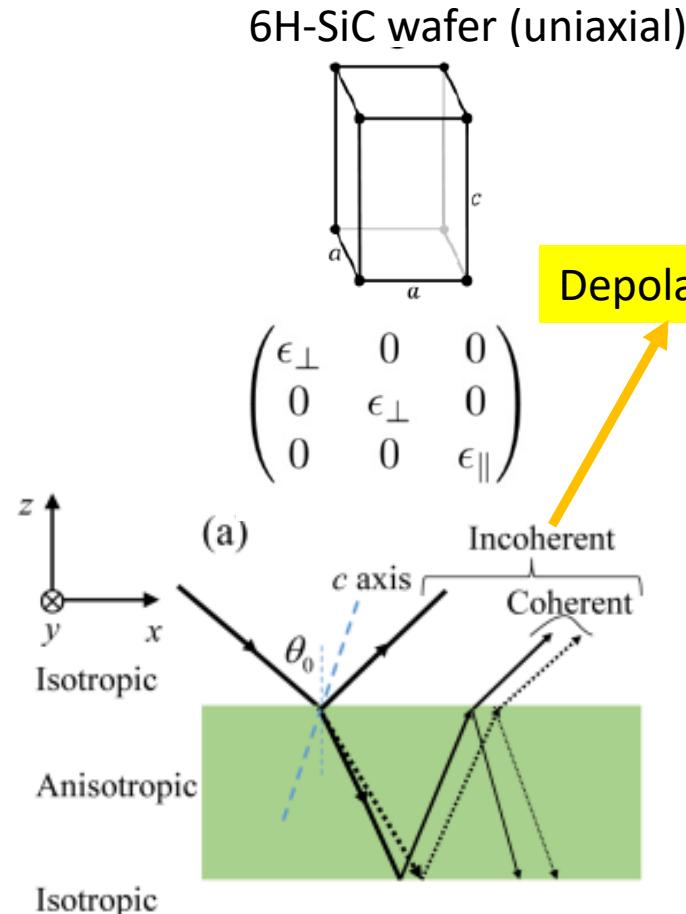
$$DI = \frac{\sqrt{\sum_{ij} m_{ij}^2 - m_{00}^2}}{\sqrt{3}m_{00}}$$

$$0 \leq DI \leq 1$$

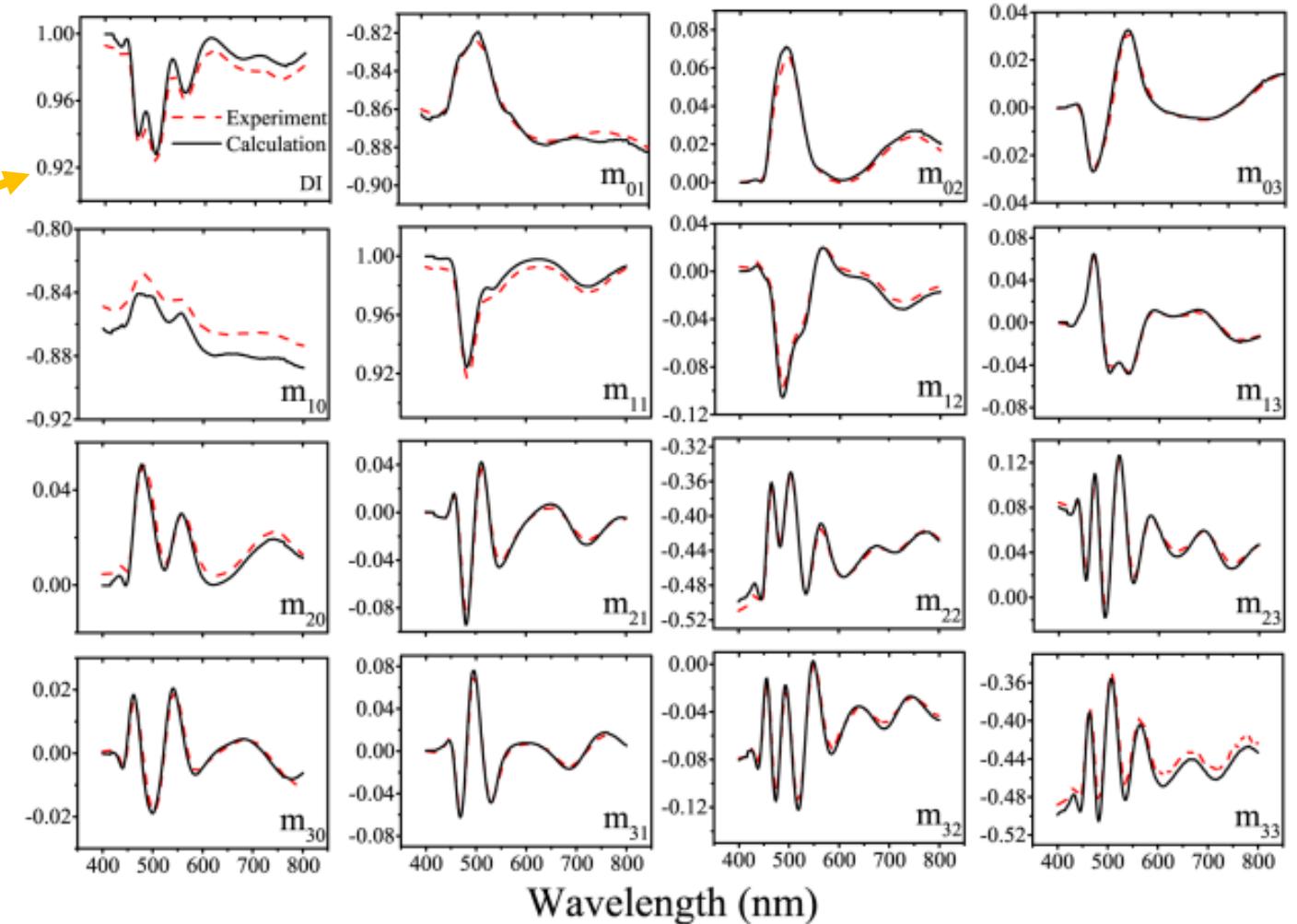
Symmetric situations have the advantage that even depolarizing samples can be studied without full MM systems

Depolarization

Example general case



H. Li, et al. Journal of Applied Physics, 128(23), 235304. (2020)



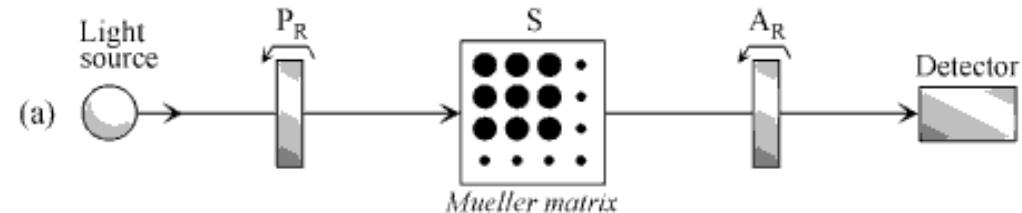
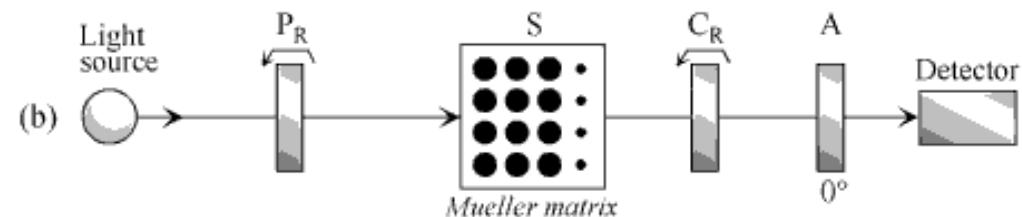
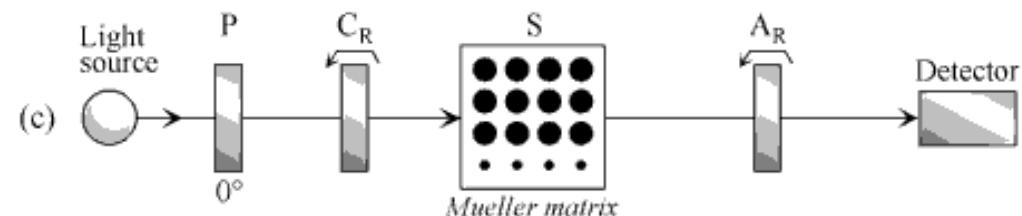
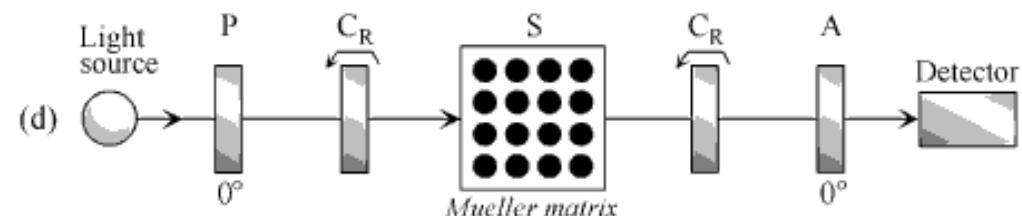
No symmetries if the OA is not parallel/perpendicular to the plane of incidence /sample plane

Outline

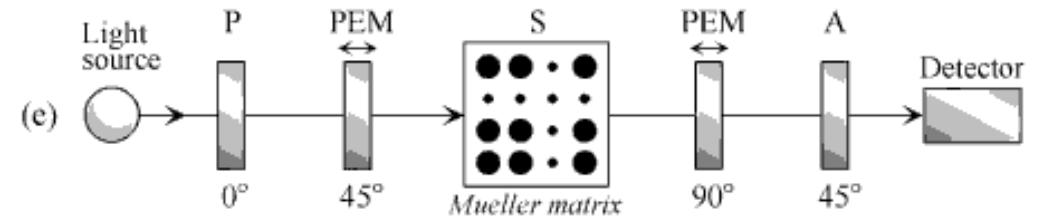
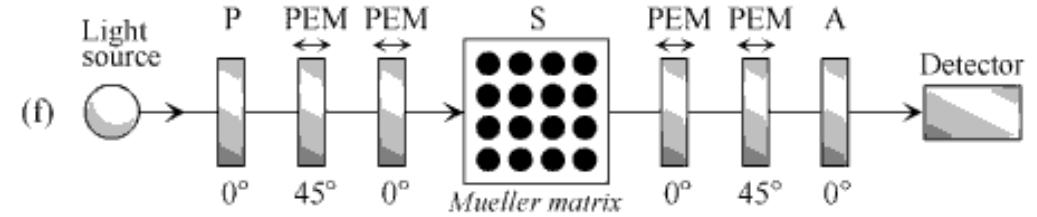
1. Introduction. MM types
2. MM symmetries
3. Depolarization
4. Complete vs incomplete MMs
5. Conclusions

Complete vs incomplete MMs

Rotating-element MME



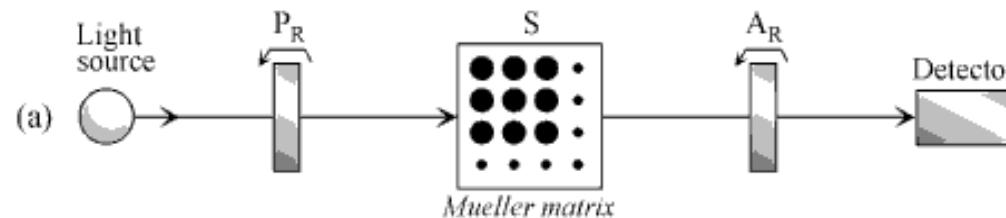
PEM-element MME



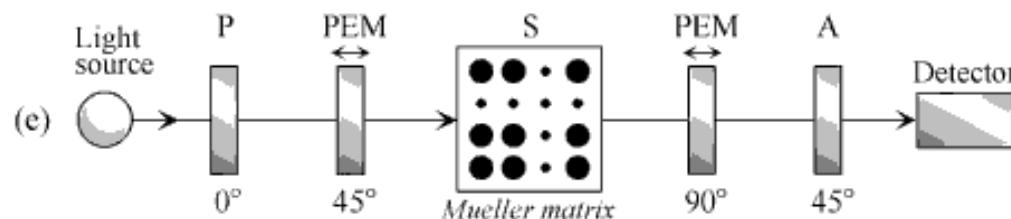
P. S. Hauge, Surf. Sci. 96(1-3), 108–140 (1980)

Complete vs incomplete MMs

Rotating-element MME



PEM-element MME



9 ELEMENTS MEASURED

For non depolarizing samples the full MM can be reconstructed

R. Ossikovski and O. Arteaga, "Complete Mueller matrix from a partial polarimetry experiment: the nine-element case," J. Opt. Soc. Am. A 36, 403-415 (2019)

R. Ossikovski and O. Arteaga, "Completing Experimental Non-Depolarizing Mueller Matrix with Both a Row and a Column Missing," J. Opt. Soc. Am. A accepted (2026)

*(very fast reconstruction, no delay in the acquisition
+ see my talk on Thursday for more examples)*

But there are two solutions!

$$\begin{bmatrix} \circ & \circ & \circ & \pm m_{03} \\ \circ & \circ & \circ & \pm m_{13} \\ \circ & \circ & \circ & \pm m_{23} \\ \pm m_{30} & \pm m_{31} & \pm m_{32} & m_{33} \end{bmatrix}$$

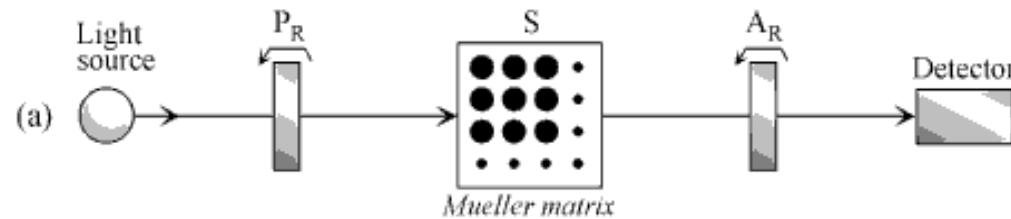
Here we cannot always chose the right solution! (retardance ambiguity!)

$$\begin{bmatrix} \circ & \circ & \pm m_{02} & \circ \\ \pm m_{10} & \pm m_{11} & m_{12} & \pm m_{13} \\ \circ & \circ & \pm m_{22} & \circ \\ \circ & \circ & \pm m_{32} & \circ \end{bmatrix}$$

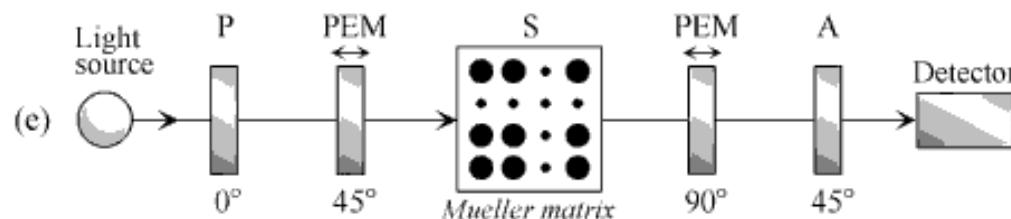
Here we can always chose the right solution!

Complete vs incomplete MMs

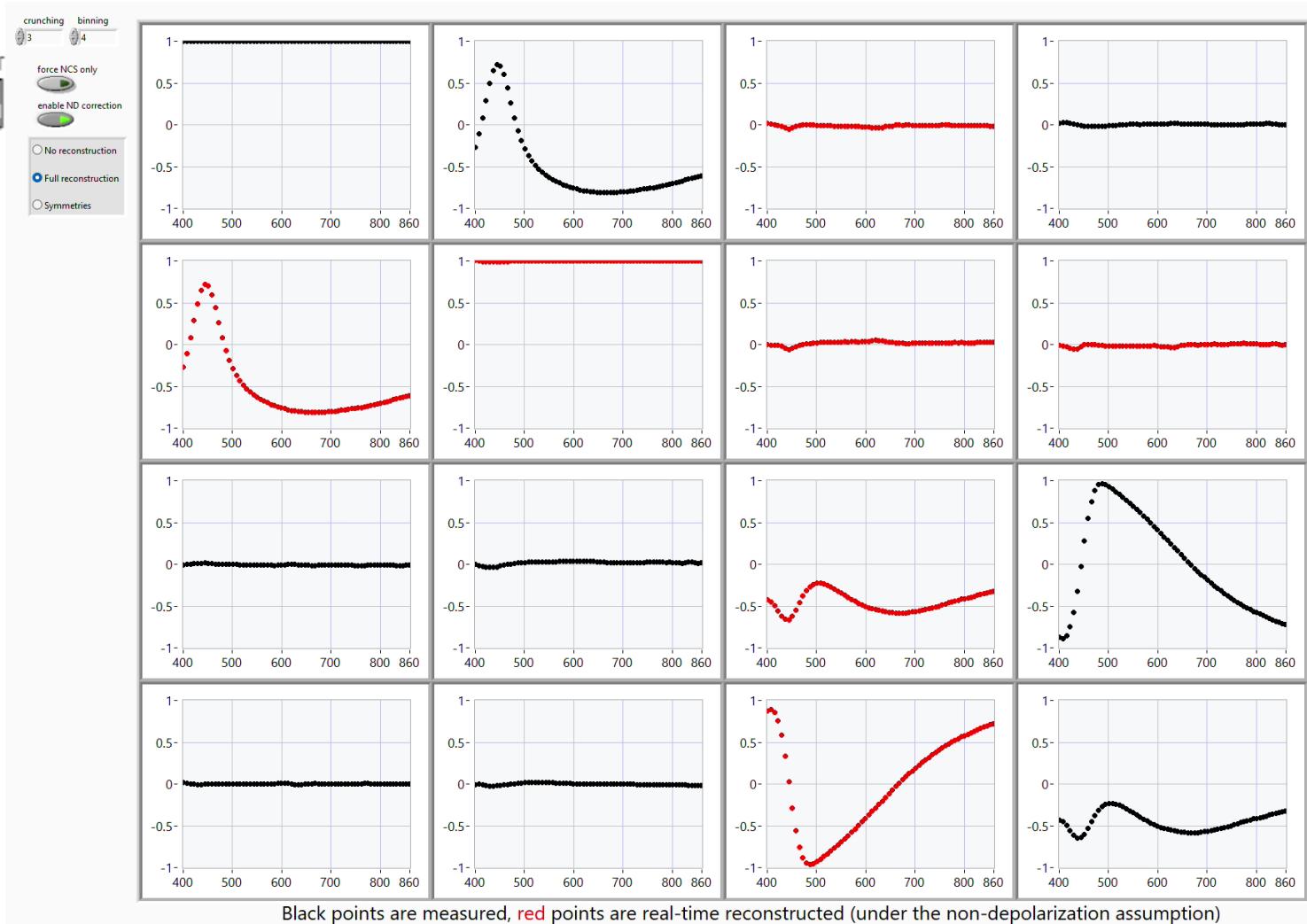
Rotating-element MME



PEM-element MME

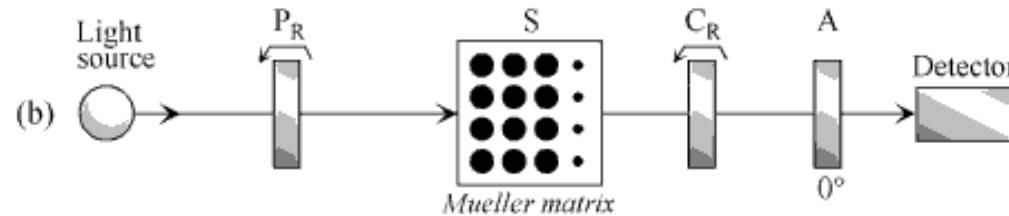
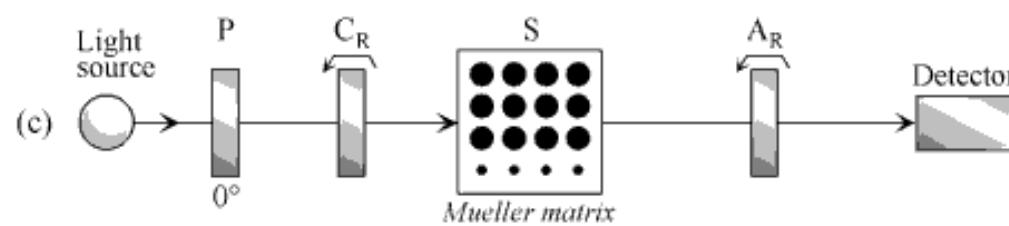


9 ELEMENTS MEASURED

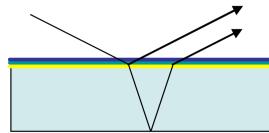


Talk on Thursday!

Complete vs incomplete MMs



For **depolarizing** samples the full MM can be reconstructed if using symmetries



- ○ ○ *symmetry*
- ○ ○ *symmetry*
- ○ ○ *symmetry*
- ○ ○ *algebraic*

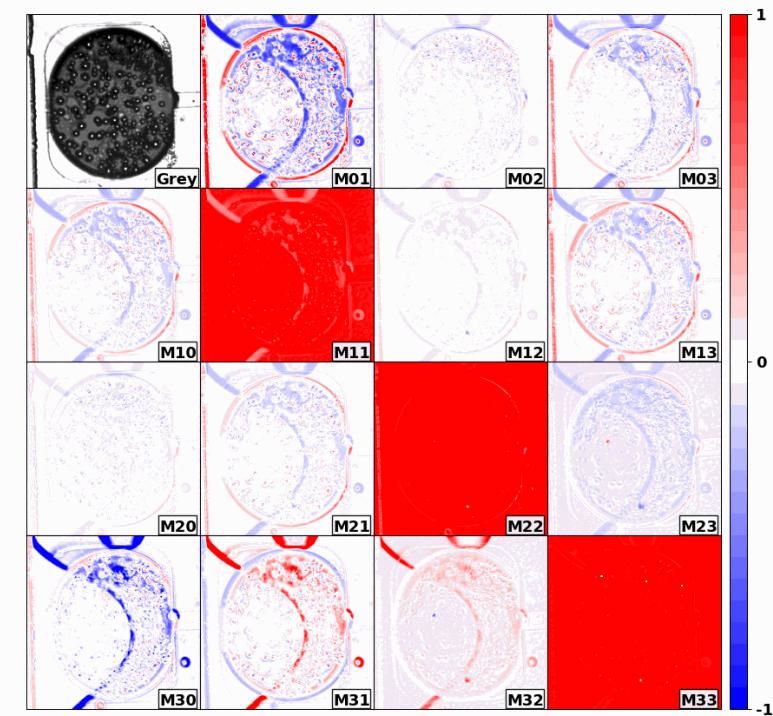
To be published

12 ELEMENTS MEASURED

For **non depolarizing** samples the full MM can be reconstructed

Razvigor Ossikovski, Oriol Arteaga; Completing an experimental nondepolarizing Mueller matrix whose column or row is missing. *J. Vac. Sci. Technol. B* 1 (2019)

O. Arteaga and R. Ossikovski, "Complete Mueller matrix from a partial polarimetry experiment: the 12-element case," *J. Opt. Soc. Am. A* 36, 416-427 (2019). Very fast



Only one solution!
(*very fast, no delays*)

Outline

1. Introduction. MM types
2. MM symmetries
3. Depolarization
4. Complete vs incomplete MMs
5. Conclusions

Conclusions

$$\mathbf{M} = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix}$$

- A phenomenological understanding of Mueller matrix elements is relatively easy to obtain. In many cases, ***interpreting the Mueller matrix is actually the easiest part of the experiment analysis.***
- Symmetries or assymmetries of a MM give information about the orientation the sample and/or the crystallographic system
- For intrinsic anisotropy the non-diagonal Jones elements are small and the Mueller matrix is close to a NSC matrix. If they are large suspect about structure-induced anisotropy or misalignement of the sample

Acknowledgements

- **Razvigor Ossikovski (École Polytechnique)**
- **G. E. Jellison (ORNL, retired)**

Funding: **PID2022-138699OB-I00**

Agència
de Gestió
d'Ajuts
Universitaris
i de Recerca

<http://www.mmpolarimetry.com>
<http://ub.edu/plat>
Contact: oarteaga@ub.edu

Thank you for your attention